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Abstract

This paper proposes a novel deep subspace clustering

approach which uses convolutional autoencoders to trans-

form input images into new representations lying on a union

of linear subspaces. The first contribution of our work is to

insert multiple fully-connected linear layers between the en-

coder layers and their corresponding decoder layers to pro-

mote learning more favorable representations for subspace

clustering. These connection layers facilitate the feature

learning procedure by combining low-level and high-level

information for generating multiple sets of self-expressive

and informative representations at different levels of the en-

coder. Moreover, we introduce a novel loss minimization

problem which leverages an initial clustering of the sam-

ples to effectively fuse the multi-level representations and

recover the underlying subspaces more accurately. The

loss function is then minimized through an iterative scheme

which alternatively updates the network parameters and

produces new clusterings of the samples. Experiments on

four real-world datasets demonstrate that our approach ex-

hibits superior performance compared to the state-of-the-

art methods on most of the subspace clustering problems.

1. Introduction

Subspace clustering is an unsupervised learning task

with a variety of machine learning applications such as mo-

tion segmentation [20, 36], face clustering [3, 51], movie

recommendation [27, 50], etc. The primary goal of this task

is to partition a set of data samples, drawn from a union of

low-dimensional subspaces, into disjoint clusters such that

the samples within each cluster belong to the same subspace

[2, 28]. A large body of subspace clustering literature re-

lies on the concept of self-expressiveness which states that

each sample point in a union of subspaces is efficiently ex-

pressible in terms of a linear (or affine) combination of other

points in the subspaces [8]. Given that, it is expected that

the nonzero coefficients in the linear representation of each

sample correspond to the points of the same subspace as

the given sample. In order to successfully infer such un-

derlying relationships among the samples and to partition

them into their respective subspaces, a common practice

approach is to first learn an affinity matrix from the input

data and then apply the spectral clustering technique [26]

to recover the clusters. Recently, these spectral clustering-

based approaches have shown special interest in utilizing

sparse or low-rank representations of the samples to create

more accurate affinity matrices [8, 9, 22, 23, 41]. A well-

established instance is sparse subspace clustering (SSC) [8]

which uses an ℓ1-regularized model to select only a small

subset of points belonging to the same subspace for recon-

structing each data point. More theoretical and practical

aspects of the SSC algorithm are investigated and studied in

detail in [34, 38, 48, 49].

Despite the key role that the self-expressiveness plays in

the literature, it may not be satisfied in a wide range of ap-

plications in which samples lie on non-linear subspaces, e.g.

face images taken under non-uniform illumination and at

different poses [16]. A common practice technique to han-

dle these cases is to leverage well-known kernel trick to im-

plicitly map the samples into a higher dimensional space so

that they better conform to linear subspaces [29, 30, 42, 46].

Although this strategy has demonstrated empirical success,

it is not widely applicable to various applications, mainly

because identifying an appropriate kernel function for a

given set of data points is a quite difficult task [54].

Recently, deep neural networks have exhibited excep-

tional ability in capturing complex underlying structures

of data and learning discriminative features for clustering

[6, 11, 17, 40, 43]. Inspired by that, a new line of re-

search has been established to bridge deep learning and

subspace clustering for developing deep subspace cluster-

ing approaches [1, 16, 33, 44, 55]. Variational Autoen-

coders (VAE) [19, 24] and Generative Adversarial Network

(GAN) [12] are among the most popular deep architectures

adopted by these methods to produce feature representa-

tions suitable for subspace clustering [24]. Compared to the

conventional approaches, deep subspace clustering methods
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Figure 1: Illustration of representation learning for sub-

space clustering. (a) Sample points may come from a union

of nonlinear subspaces; (b) Deep subspace clustering ap-

proaches aim to transform the samples into a latent space so

that they lie in a union of linear subspaces.

can better exploit the non-linear relationships between the

sample points and consequently they achieve superior per-

formance, especially in complex applications in which the

samples do not necessarily satisfy the self-expressiveness

property [16].

In this paper, we propose a novel spectral clustering-

based approach which utilizes stacked convolutional au-

toencoders to tackle the problem of subspace clustering. In-

spired by the idea of residual networks, our first contribu-

tion is to add multiple fully-connected linear layers between

the corresponding layers of the encoder and decoder to infer

multi-level representations from the output of every encoder

layer. These connection layers enable to produce repre-

sentations which are enforced to satisfy self-expressiveness

property and hence well-suited to subspace clustering. We

model each connection layer as a self-expression matrix

created from the summation of a coefficient matrix shared

between all layers and a layer-specific matrix that captures

the unique knowledge of each individual layer. Moreover,

we introduce a novel loss function that utilizes an initial

clustering of the samples and efficiently aggregates the in-

formation at different levels to infer the coefficient matrix

and the layer-specific matrices more accurately. This loss

function is further minimized in an iterative scheme which

alternatively updates the network parameters for learning

better subspace clustering representations and produces a

new clustering of the samples. We perform extensive exper-

iments on four benchmark datasets for subspace clustering,

including two face image and two object image datasets, to

evaluate the efficacy of the proposed method. The exper-

iments demonstrate that our approach can efficiently han-

dle clustering the data from non-linear subspaces and it per-

forms better than the state-of-the-art methods on most of the

subspace clustering problems.

2. Related Works

Conventional subspace clustering approaches aim to

learn a weighted graph whose edge weights represent the re-

lationships between the samples of input data. Then, spec-

tral clustering [26] (or its variants [37]) can be employed to

partition the graph into a set of disjoint sub-graphs corre-

sponding to different clusters [4, 7, 8, 9, 13, 15, 22, 35, 47].

A commonly-used formulation to obtain such a weighted

graph is written as

minimize
C∈R

n×n

1

2
‖X−XC‖

2

F
+ λ g(C) (1a)

subject to diag(C) = 0, (1b)

where ‖.‖
F

indicates Frobenius norm, X ∈ R
d×n is a data

matrix with its columns representing the samples {xi ∈
R

d}ni=1
, C is a self-expression matrix with its (i, j)th ele-

ment denoting the contribution of sample xj in reconstruct-

ing xi, g : Rn×n → R is a certain regularization function,

and λ > 0 is a hyperparameter to balance the importance of

the terms. Equality constraint (1b) is imposed to eliminate

the trivial solution C = In that represents a point as a linear

combination of itself. Once the optimal solution
∗

C of (1a) –

(1b) is obtained, symmetric matrix 1

2
(|

∗

C|+ |
∗

C|
⊤

) can serve

as the affinity matrix of the desired graph where |.| shows

the element-wise absolute value operator. Different variants

of (1a) – (1b) have been well-studied in the literature where

they utilize various choices of the regularization function

g(.) such as ‖C‖
0

[45, 48], ‖C‖
1

[8], ‖C‖∗ [23, 41], ‖C‖
F

[34], etc, to impose desired structures on the graph.

Deep generative architectures, most notably GANs and

VAEs, have been widely used in the recent literature to fa-

cilitate the clustering task [25], especially when the sam-

ples come from complex and irregular distributions [24, 43].

These architectures improve upon the conventional feature

extractions by learning more informative and discrimina-

tive representations that are highly suitable for clustering

[5, 32, 33]. To promote inferring clusters with higher qual-

ity, some deep approaches propose to jointly learn the rep-

resentations and perform clustering in a unified framework

[25, 31, 53, 55]. One successful deep approach to the sub-

space clustering problem is presented in [16], known as

Deep Subspace Clustering (DSC), which employs a deep

convolutional auto-encoder to learn latent representations

and uses a novel self-expressive layer to enforce them to lie

on a union of linear subspaces. The DSC model is further

adopted by Deep Adversarial Subspace Clustering (DASC)

method [55] to develop an adversarial architecture, consist-

ing of a generator to produce subspaces and a discriminator

to supervise the generator by evaluating the quality of the

subspaces. More recently, [53] introduced an end-to-end

trainable framework, named Self-Supervised Convolutional

Subspace Clustering Network (S2ConvSCN), which aims to
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jointly learn feature representations, self-expression coeffi-

cients, and the clustering results to produce more accurate

clusters.

Our approach can be seen as a generalization of the DSC

algorithm [16] to the case that low-level and high-level in-

formation of the input data is utilized to produce more in-

formative and discriminative subspace clustering represen-

tations. Moreover, we introduce a loss minimization prob-

lem that employs an initial clustering of the samples to ef-

fectively aggregate the knowledge gained from multi-level

representations and to promote learning more accurate sub-

spaces. Notice that although our work is close to DASC

[55] and S2ConvSCN [53] in the sense that it leverages a

clustering of the samples to improve the feature learning

procedure, we adopt a completely different strategy to in-

corporate the pseudo-label information into the problem.

It is noteworthy to emphasize that our approach may

seem similar to the multi-view subspace clustering ap-

proaches [10, 23, 39, 52] as it aggregates information ob-

tained from multiple modalities of the data to recover the

clusters more precisely. However, it differs from them in

the sense that our method leverages some connection layers

to simultaneously learn multi-level deep representations and

effectively fuse them to boost the clustering performance.

3. Problem Formulation

Let {xi ∈ R
d}ni=1

be a set of n sample points drawn

from a union of K different subspaces in R
d that are not

necessarily linear. An effective approach to cluster the

samples is to transform them into a set of new represen-

tations that have linear relationships and satisfy the self-

expressiveness property. Then, spectral clustering can be

applied to recover the underlying clusters. To this end, the

DSC algorithm [16] introduced a deep architecture consist-

ing of a convolutional autoencoder with L layers to gener-

ate latent representations and a fully-connected linear layer

inserted between the encoder and decoder to ensure the self-

expressiveness property is preserved. Let E and D, param-

eterized by Θe and Θd, denote the encoder and the decoder

networks, respectively. Given that, the DSC algorithm pro-

posed to solve the following optimization problem to learn

desired representations and infer self-expression matrix C

minimize
Θ

‖X−X̂Θ‖
2

F
+λ‖ZΘe

−ZΘe
C‖

2

F
+γ‖C‖p (2a)

subject to diag(C) = 0, (2b)

where λ, γ>0 are fixed hyperparameters to control the im-

portance of different terms and Θ = {Θe,C,Θd} shows

the network parameters. Matrix ZΘe
∈ R

d̄×n indicates

the latent representations where d̄ is the dimension of the

representations and ZΘe
= E(X; Θe), and matrix X̂Θ ∈

R
d×n denotes the reconstructed samples where X̂Θ =

D(E(X; Θe)C; Θd). The main goal of problem (2a) – (2b)

is to compute the network parameters such that equality

ZΘe
= ZΘe

C holds and the reconstructed matrix X̂ can well

approximate the input data X. [16] used the backpropaga-

tion technique followed by the spectral clustering algorithm

to find the solution of the minimization problem (2a) – (2b)

and determine the cluster memberships of the samples.

In what follows, we propose a new deep architecture that

leverages information from different levels of the encoder

to learn more informative representations and improve the

subspace clustering performance.

4. Proposed Method

This section presents a detailed explanation of our pro-

posed approach. As it can be seen from the problem (2a) –

(2b), the DSC algorithm only relies on the latent variables

ZΘe
to perform clustering. Due to the fact that different

layers of the encoder provide increasingly complex repre-

sentations of the input data, it may be quite difficult to learn

suitable subspace clustering representations from the output

of the encoder. This provides a strong motivation to incor-

porate information from the lower layers of the encoder to

boost the clustering performance. Towards this goal, our ap-

proach uses a new architecture which jointly benefits from

the low-level and high-level information of the input data to

learn more informative subspace clustering representations.

The approach adds multiple fully-connected linear layers

between the symmetrical layers of the encoder and the de-

coder to provide multiple paths of information flow through

the network. These connection layers can not only enhance

the ability of the network in extracting more complex infor-

mation from the input data but also supervise the output of

encoder layers to generate multiple sets of representations

that satisfy the self-expressiveness property. Figure 2 illus-

trates an example architecture of our proposed approach.

Observe that the representations learned at different levels

of the encoder, denoted as {Zl
Θe
}Ll=1

, are input to the fully-

connected linear layers and the outputs of these layers are

fed into the decoder layers. This strategy allows the decoder

to reuse the low-level information for producing more ac-

curate reconstructions of the input data which in turn can

improve the overall clustering performance.

We assume each fully-connected layer is associated with

a self-expression matrix in the form of the summation of

two matrices, where the first one is shared between the en-

tire layers and the second one is a layer-specific matrix. The

encoder, which can be seen as a mapping function from the

input space to the representation space, aims to preserve the

relations between the data samples at different levels of rep-

resentations. Moreover, some samples may have stronger

(or weaker) relations at different levels of the encoder. De-

fine C ∈ R
n×n as the consistency matrix to capture the

relational information shared between the encoder layers

2041



x

C+D3
Z3 Z3(C+D3)

C+D2
Z2 Z2(C+D2)

C+D1
Z1 Z1(C+D1)

x̂

Figure 2: Architecture of the proposed multi-level representation learning model for L = 3. Observe that the representations

learned at different levels of the encoder are fed into fully-connected linear layers to be used in the reconstruction procedure.

Such strategy enables to combine low-level information from the early layers with high-level information from the deeper

layers to produce more informative and robust subspace clustering representations. Each fully-connected layer is associated

with a self-expression matrix formed from the summation of a coefficient matrix C shared between all layers and a distinctive

matrix Dl, l ∈ {1, . . . , L}, which captures the unique information of each individual layer.

and {Dl}Ll=1
∈ R

n×n as distinctive matrices to produce the

unique information of the individual layers. Given that, we

incorporate the following loss function to promote learning

self-expressive representations

Lexp =
L
∑

l=1

‖Zl
Θe
−Zl

Θe
(C+Dl)‖

2

F
. (3)

The above formulation is able to simultaneously model

the shared information across different levels while consid-

ering the unique knowledge gained from each individual

layer. This property allows to effectively leverage the infor-

mation from the representations learned at multiple levels

of the encoder and therefore is also particularly well-suited

to the problem of multi-view subspace clustering [23].

The self-expression loss Lexp is employed to promote

learning self-expressive feature representations at different

levels of the encoder. To better accomplish this purpose, it

is beneficial to adopt certain matrix norms for imposing de-

sired structures on the elements of the distinctive matrices

{Dl}Ll=1
and the consistency matrix C. For the distinctive

matrices, we use Frobenius norm to ensure the connectivity

of the affinity graph associated with each fully-connected

layer. For the consistency matrix C, we employ ℓ1-norm

to generate sparse representations of the data. Ideally, it is

desired to infer the consistency matrix and the distinctive

matrices such that sample xi is only expressed by a linear

combination of the samples belonging to the same subspace

as xi. To ensure these matrices obey the aforementioned

desired structures, we propose to incorporate the following

regularization terms

LC = ‖Q⊤|C|‖
1
, LD =

L
∑

l=1

‖Dl‖
2

F
, (4)

where ‖.‖
1

computes the sum of absolute values of its in-

put matrix. Regularization term LC is used to incorporate

the information gained from an initial pseudo-labels of the

input data into the model. Let Q ∈ R
n×K be a member-

ship matrix with its rows are one-hot vectors denoting the

initial pseudo-labels assigned to the samples. The multipli-

cation of Q⊤ and |C| gives a matrix whose (i, j)th element

shows the contribution of the samples assigned to the ith

subspace in reconstructing the jth sample. Unlike the com-

monly used regularization ‖C‖
1

which imposes sparsity on

the entire elements of the consistency matrix C, LC pro-

motes sparsity on the cluster memberships of the samples.

In other words, it encourages each data to be reconstructed

by the samples with the same pseudo-label and hence can

smooth the membership predictions of the samples to differ-

ent subspaces. Moreover, the regularization term LD pro-

motes the elements of the distinctive matrices to be similar

in value, which in turn can enhance the connectivity of the

affinity graph associated with each fully-connected layer.

Combining the loss function (3) and the regularization

termsLC andLD together with the reconstruction loss ‖X−
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X̂‖
2

F
leads to the following optimization problem that needs

to be solved for training our proposed model

minimize
Θ∪{Dl}L

l=1

‖X−X̂Θ‖
2

F
+λ1

L
∑

l=1

‖Zl
Θe
−Zl

Θe
(C+Dl)‖

2

F

+ λ2‖Q
⊤|C|‖

1
+λ3

L
∑

l=1

‖Dl‖
2

F
(5a)

subject to diag(C+Dl) = 0, l ∈ {1, . . . , L}, (5b)

where λ1, λ2, λ3 > 0 are hyperparameters to balance the

contribution of different losses. We adopt standard back-

propagation technique to obtain the solution of problem

(5a) – (5b). Once the solution matrices
∗

C and {
∗

Dl}Ll=1

are obtained, we can create a symmetric affinity matrix

W ∈ Sn of the following form

W =

∣

∣

∗

C+ 1

L

∑L

l=1

∗

Dl
∣

∣

2
+

∣

∣

∗

C⊤+ 1

L

∑L

l=1

∗

Dl⊤
∣

∣

2
, (6)

which shows the pairwise relations between the samples.

Given that, the spectral clustering algorithm can be utilized

to recover the underlying subspaces and cluster the samples

to their respective subspaces.

Note that the pseudo-labels generated by spectral clus-

tering can be leveraged to retrain the model and provide a

more precise estimation of the subspaces. To this end, we

assume the membership matrix Q is a variable and develop

an iterative scheme to jointly learn the network parameters

and matrix Q. The approach starts from an initial Q (or

equivalently an initial clustering of the input data) and al-

ternatively runs the model for T epochs to train the network

parameters Θ ∪ {Dl}Ll=1
and then updates the membership

matrix. This training procedure is then repeated until the

number of epochs reaches maxIter. Different steps of our

proposed scheme are delineated in detail in Algorithm 1.

Algorithm 1 Proposed Subspace Clustering Approach

Input: X, Q, T , k = 1
1: repeat

2: Update network parameters Θ ∪ {Dl}Ll=1
by

solving (5a) – (5b) for one epoch

3: if k mod T = 0 then

4: Form affinity matrix W

5: Apply spectral clustering to update Q

6: end if

7: k ← k + 1
8: until k ≤ maxIter

Output: Q

Observe that Algorithm 1 can train the network parame-

ters Θ ∪ {Dl}Ll=1
from scratch given the input matrices X,

Q, and scalar T . However, several aspects of the algorithm

such as convergence behavior and accuracy can be consid-

erably improved by employing pre-trained models and us-

ing fine-tuning techniques to obtain initial values for the en-

coder and the decoder networks [16].

In the next section, we perform extensive experiments to

corroborate the effectiveness of the proposed model. Also,

we present a detailed explanation about the parameter set-

tings, the pre-trained models, and the fine-tuning proce-

dures used in our experiments.

5. Experiments

This section evaluates the clustering performance of

our proposed method, termed MLRDSC, on four standard

benchmark datasets for subspace clustering including two

face image datasets (ORL and Extended Yale B) and two

object image datasets (COIL20 and COIL100). Sample im-

ages from each of the datasets are illustrated in Figure 3. We

perform multiple subspace clustering experiments on the

datasets and compare the results against some baseline al-

gorithms, including Low Rank Representation (LRR) [22],

Low Rank Subspace Clustering (LRSC) [41], Sparse Sub-

space Clustering (SSC) [8], SSC with the pre-trained con-

volutional auto-encoder features (AE+SSC), Kernel Sparse

Subspace Clustering (KSSC) [30], SSC by Orthogonal

Matching Pursuit (SSC-OMP) [48], Efficient Dense Sub-

space Clustering (EDSC) [14], EDSC with the pre-trained

convolutional auto-encoder features (AE+EDSC), Deep

Subspace Clustering (DSC) [16], and Deep Adversarial

Subspace Clustering (DASC) [55], Self-Supervised Convo-

lutional Subspace Clustering Network (S2ConvSCN) [53].

For the competitor methods, we directly collect the scores

from the corresponding papers and some existing literature

[16, 53].

Note that the subspace clustering problem is regarded as

a specific clustering scenario which seeks to cluster a set

of given unlabeled samples into a union of low-dimensional

subspaces that best represent the sample data. In this sense,

the subspace clustering approaches are basically different

from the standard clustering methods that aim to group the

samples around some cluster centers. Most of the subspace

clustering literature revolves around using the spectral clus-

tering technique to recover underlying subspaces from an

affinity matrix, created over the entire samples. This can

considerably increase the computational cost of these meth-

ods in comparison to the standard clustering approaches.

As a consequence of this limitation, the benchmark datasets

used for subspace clustering are generally smaller than that

for the clustering task. In this work, we perform experi-

ments on the aforementioned four datasets which are fre-

quently used in the recent literature [8, 16, 53, 55] to evalu-

ate the performance of the subspace clustering approaches.

In what follows, we first describe the training procedure
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(a) Extended Yale B (b) ORL (c) COIL20 and COIL100

Figure 3: Example images of Extended Yale B, ORL, COIL20, and COIL100 datasets. The main challenges in the face

image datasets, Extended Yale B and ORL, are illumination changes, pose variations and facial expression variations. The

main challenges in the object image datasets, COIL20 and COIL100, are the variations in the view-point and scale.

used in our experiments. Then, we provide more details

for each dataset separately and report the clustering perfor-

mance of state-of-the-art methods.

5.1. Training Procedure

Following the literature [16, 55], for the convolutional

layers, we use kernel filters with stride 2 in both dimensions

and adopt rectified linear unit (ReLU) activation function.

For the fully-connected layers, we use linear weights with-

out considering bias or non-linear activation function. In

order to train the model and obtain the affinity matrix, we

follow the literature [16, 53, 55] and pass the entire samples

into the model as a single batch. The Adam optimizer [18]

with β1 = 0.9, β2 = 0.999, and learning rate 0.001 is used

to train the network parameters. All experiments are im-

plemented in PyTorch and the source code will be publicly

available on the author’s webpage.

As it is mentioned in [16], training the model from

scratch is computationally expensive mainly because the

samples are passed through the network as a single batch.

To address this issue and following [16], we produce a

pre-trained model by shortcutting all connection layers (i.e.

C + Dl = I for l ∈ {1, . . . , L}) and ignoring the self-

expression loss term Lexp. The resulting model is trained

on the entire sample points and it can be utilized to initialize

the encoder and the decoder parameters of our proposed ar-

chitecture. We initialize the membership matrix Q to a zero

matrix in all experiments (LC = 0 for the first T epochs),

although existing methods can be utilized to obtain better

initialization. Moreover, we set each of the individual ma-

trices C and {Dl}Ll=1
to a matrix with all elements equal

to 0.0001. Notice that Algorithm 1 may fail to generate a

convergent sequence of Q as it is terminated after maxIter
epochs. One practical solution to handle this issue is to con-

tinue the training procedure until Q converges to a stable

matrix [21].

5.2. Results

The results of all experiments are reported based on the

clustering error which is defined to be the percentage of the

misclustered samples to the entire sample points.

Extended Yale B: This dataset is used as a popular

benchmark for the subspace clustering problem. It con-

sists of 2432 frontal face images of size 192 × 168 cap-

tured from 38 different human subjects. Each subject has

64 images taken under different illumination conditions and

poses. For computational purposes and following the liter-

ature [8, 16, 53], we downsample the entire images from

their original size to 48× 42.

We perform multiple experiments for a different num-

ber of human subjects K ∈ {10, 15, 20, 25, 30, 35, 38} of

the dataset to evaluate the sensitivity of MLRDSC with re-

spect to increasing the number of clusters. By numbering

the subjects from 1 to 38, we perform experiments on all

possible K consecutive subjects and present the mean and

median clustering errors of each 39 − K trials. Such ex-

periments have been frequently performed in the literature

[8, 16, 55, 53]. Through these experiments, we have em-

ployed an autoencoder model consisting of three stacked

convolutional encoder layers with 10, 20, and 30 filters of

sizes 5 × 5, 3 × 3, and 3 × 3, respectively. The parame-

ters used in the experiments on this dataset are as follows:

λ1 = 1 × 10
K

10
−1, λ2 = 40, λ3 = 10, and we update

the membership matrix Q in every T = 100 consecutive

epochs. For the entire choices of K, we set the maximum

number of epochs to 900. The clustering results on this

dataset are reported in Table 1. Observe that MLRDSC

achieves smaller errors than the competitor methods in all

experiments, except for the mean of clustering error in case

K = 30.

ORL: This dataset consists of 400 face images of size 112×
92 from 40 different human subjects where each subject has
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Table 1: Clustering error (%) of different methods on Extended Yale B dataset. The best results are in bold.

Measure LRR LRSC SSC AE+SSC KSSC SSC-OMP EDSC AE+EDSC DSC S2ConvSCN MLRDSC

10 subjects

Mean 22.22 30.95 10.22 17.06 14.49 12.08 5.64 5.46 1.59 1.18 1.10

Median 23.49 29.38 11.09 17.75 15.78 8.28 5.47 6.09 1.25 1.09 0.94

15 subjects

Mean 23.22 31.47 13.13 18.65 16.22 14.05 7.63 6.70 1.69 1.12 0.91

Median 23.49 31.64 13.40 17.76 17.34 14.69 6.41 5.52 1.72 1.14 0.99

20 subjects

Mean 30.23 28.76 19.75 18.23 16.55 15.16 9.30 7.67 1.73 1.30 0.99

Median 29.30 28.91 21.17 16.80 17.34 15.23 10.31 6.56 1.80 1.25 1.02

25 subjects

Mean 27.92 27.81 26.22 18.72 18.56 18.89 10.67 10.27 1.75 1.29 1.13

Median 28.13 26.81 26.66 17.88 18.03 18.53 10.84 10.22 1.81 1.28 1.12

30 subjects

Mean 37.98 30.64 28.76 19.99 20.49 20.75 11.24 11.56 2.07 1.67 1.78

Median 36.82 30.31 28.59 20.00 20.94 20.52 11.09 10.36 2.19 1.72 1.41

35 subjects

Mean 41.85 31.35 28.55 22.13 26.07 20.29 13.10 13.28 2.65 1.62 1.44

Median 41.81 31.74 29.04 21.74 25.92 20.18 13.10 13.21 2.64 1.60 1.47

38 subjects

Mean 34.87 29.89 27.51 25.33 27.75 24.71 11.64 12.66 2.67 1.52 1.36

Median 34.87 29.89 27.51 25.33 27.75 24.71 11.64 12.66 2.67 1.52 1.36

10 images taken under diverse variation of poses, lighting

conditions, and facial expressions. Following the literature,

we downsample the images from their original size to 32×
32. This dataset is challenging for subspace clustering due

to the large variation in the appearance of facial expressions

(shown in Figure 3) and since the number of images per

each subject is quite small.

Through the experiment on ORL, we have adopted a net-

work architecture consisting of three convolutional encoder

layers with 3, 3, and 5 filters, all of size 3 × 3. Moreover,

the parameter settings used in the experiment are as follows:

λ1 = 5, λ2 = 0.5, λ3 = 1, T = 10, and the maximum num-

ber of epochs is set to 420. The results of this experiment

are presented in Table 2. It can be seen that MLRDSC out-

performs all the competitor methods, except S2ConvSCN

which attains the smallest clustering error rate on ORL.

COIL20/COIL100: These two datasets are widely used for

different types of clustering. COIL20 contains 1440 images

captured from 20 various objects and COIL100 has 7200
images of 100 objects. Each object in either of the datasets

has 72 images with black background taken at pose intervals

of 5 degrees. The large viewpoint changes can pose serious

challenges for the subspace clustering problem on these two

dataset (Shown in in Figure 3).

For COIL20 and COIL100 datasets, the literature meth-

ods [16, 53, 55] mostly adopt one layer convolutional au-

toencoders to learn feature representations. This setting

admits no connection layer and hence is not well-suited

to our approach. To better demonstrate the advantages of

MLRDSC, we use a two layers convolutional autoencoder

model with 5 and 10 filters for performing experiment on

COIL20 and adopt the same architecture with 20 and 30

filters for COIL100. The entire filters used in both experi-

ments are of size 3×3. Moreover, the parameter settings for

the datasets are as follows: 1) COIL20: λ1 = 20, λ2 = 20,

λ3 = 5, T = 5, and the maximum number of epochs is set

to 50; 2) COIL100: λ1 = 20, λ2 = 40, λ3 = 10, T = 50,

and the maximum number of epochs is set to 350. The re-

sults on COIL20 and COIL100 datasets are shown in Ta-

ble 2. Observe that our approach achieves better subspace

clustering results on both datasets compared to the existing

state-of-the-art methods.

According to the Tables 1 and 2, the deep subspace

clustering methods, such as DSC, S2ConvSCN, and ML-

RDSC, perform considerably well compared to the classical

subspace clustering approaches on the benchmark datasets.

This success can be attributed to the fact that deep models

are able to efficiently capture the non-linear relationships

between the samples and recover the underlying subspaces.

Moreover, the results indicate that MLRDSC outperforms

the DSC algorithm by a notable margin. This improve-

ment can be resulted from the incorporation of a modified

regularization term and the insertion of connection layers

between the corresponding layers of the encoder and de-

coder. These layers enable the model to combine the infor-

mation of different levels of the encoder to learn more favor-

able subspace clustering representations. It is noteworthy to

mention that although our approach achieves better cluster-

ing results than the DSC method, it has more parameters to

train, which in turn increases the computational burden of

the model.

Ablation Study: To highlight the benefits brought by dif-

ferent components of our proposed model, we carry out

an ablation study by evaluating a variant of our approach,
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Table 2: Clustering error (%) of different methods on ORL, COIL20, and COIL100 datasets. The best results are in bold.

Dataset LRR LRSC SSC AE+SSC KSSC SSC-OMP EDSC AE+EDSC DSC DASC S2ConvSCN MLRDSC

ORL 33.50 32.50 29.50 26.75 34.25 37.05 27.25 26.25 14.00 11.75 10.50 11.25

COIL20 30.21 31.25 14.83 22.08 24.65 29.86 14.86 14.79 5.42 3.61 2.14 2.08

COIL100 53.18 50.67 44.90 43.93 47.18 67.29 38.13 38.88 30.96 − 26.67 23.28

Table 3: Ablation study of our method in terms of clustering

error (%) on Extended Yale B. The best results are in bold.

Measure DSC-L2 DSC-L1 MLRDSC (‖C‖
1

) MLRDSC

10 subjects

Mean 1.59 2.23 1.09 1.10

Median 1.25 2.03 1.08 0.94

15 subjects

Mean 1.69 2.17 0.98 0.91

Median 1.72 2.03 0.99 0.99

20 subjects

Mean 1.73 2.17 0.94 0.99

Median 1.80 2.11 0.94 1.02

25 subjects

Mean 1.75 2.53 1.13 1.13

Median 1.81 2.19 1.12 1.12

30 subjects

Mean 2.07 2.63 1.84 1.78

Median 2.19 2.81 1.35 1.41

35 subjects

Mean 2.65 3.09 1.49 1.44

Median 2.64 3.10 1.49 1.47

38 subjects

Mean 2.67 3.33 1.40 1.36

Median 2.67 3.33 1.40 1.36

named MLRDSC (‖C‖
1
), which replaces LC with ‖C‖

1
.

In this sense, MLRDSC (‖C‖
1
) can be seen as a generaliza-

tion of DSC-L1 (a variant of the DSC algorithm that utilizes

regularization term ‖C‖
1

[16]) to a case that leverages mul-

tiple connection layers to learn multi-level subspace clus-

tering representations. We perform experiments for differ-

ent number of subjects K on Extended Yale B dataset and

present the clustering results in Table 3. As the table in-

dicates, inserting the connection layers between the sym-

metrical layers of the encoder and decoder can consider-

ably improve the clustering performance of DSC-L1 algo-

rithm. Moreover, comparing the results of MLRDSC and

MLRDSC(‖C‖
1
) confirms the positive effect of incorpo-

rating the regularization term LC.

Sensitivity Analysis: we perform multiple experiments on

the Extended Yale B dataset with various choices of hyper-

parameters (λ1, λ2, λ3) to evaluate the sensitivity of the

proposed approach to the choice of these parameters. The

results of these experiments are reported in Table 4. Ob-

serve that the proposed approach exhibits a satisfactory per-

formance for a wide range of these hyperparameters which

demonstrates its generalization power.

Table 4: Sensitivity analysis of our method in terms of clus-

tering error (%) on Extended Yale B. Triplet (λ̄1, λ̄2, λ̄3)

corresponds to the parameter setting used to produce the re-

sults of Table 1.

λ
1

λ̄1 λ̄1 λ̄1 λ̄1 λ̄1 0.1λ̄1 10λ̄1

λ
2

λ̄2 0.1λ̄2 100λ̄2 λ̄2 λ̄2 λ̄2 λ̄2

λ
3

λ̄3 λ̄3 λ̄3 0.1λ̄3 100λ̄3 λ̄3 λ̄3

10 subjects

Mean 1.10 1.11 1.15 1.09 1.06 2.52 1.08

Median 0.94 0.94 0.94 0.94 0.94 2.03 1.09

15 subjects

Mean 0.91 0.92 0.99 0.92 0.94 1.28 0.97

Median 0.99 0.99 1.04 0.99 0.99 1.25 0.94

20 subjects

Mean 0.99 0.99 1.00 0.99 1.00 0.83 0.94

Median 1.02 1.02 1.02 1.02 1.02 0.86 1.02

25 subjects

Mean 1.13 1.13 1.14 1.13 1.14 1.51 1.13

Median 1.12 1.09 1.13 1.12 1.09 1.06 1.13

30 subjects

Mean 1.78 2.26 2.42 1.86 1.97 2.43 1.70

Median 1.41 1.35 1.41 1.41 1.41 1.46 1.35

35 subjects

Mean 1.44 1.45 1.45 1.45 1.45 1.45 1.50

Median 1.47 1.47 1.47 1.47 1.47 1.47 1.50

38 subjects

Mean 1.36 1.36 1.32 1.36 1.36 1.32 1.40

Median 1.36 1.36 1.32 1.36 1.36 1.32 1.40

6. Conclusions

This paper presented a novel spectral clustering-based

approach which uses a deep neural network architecture to

address subspace clustering problem. The proposed method

improves upon the existing deep approaches by leveraging

information exploited from different levels of the networks

to transform input samples into multi-level representations

lying on a union of linear subspace. Moreover, it is able

to use pseudo-labels generated by spectral clustering tech-

nique to effectively supervise the representation learning

procedure and boost the final clustering performance. Ex-

periments on benchmark datasets demonstrate that the pro-

posed approach is able to efficiently handle clustering from

the non-linear subspaces and it achieves better results com-

pared to the state-of-the-art methods.
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[20] F. Lauer and C. Schnörr. Spectral clustering of linear sub-

spaces for motion segmentation. In ICCV, 2009.

[21] C.-G. Li and R. Vidal. Structured sparse subspace clustering:

A unified optimization framework. In CVPR, pages 277–

286, 2015.

[22] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma. Ro-

bust recovery of subspace structures by low-rank represen-

tation. IEEE Trans. Pattern Anal. Mach. Intell., 35(1):171–

184, 2012.

[23] S. Luo, C. Zhang, W. Zhang, and X. Cao. Consistent and

specific multi-view subspace clustering. In AAAI, 2018.

[24] J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber. Stacked
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