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Abstract

In this paper, we propose a new architecture named

Rotation-invariant Mixed Graphical Model Network (R-

MGMN) to solve the problem of 2D hand pose estimation

from a monocular RGB image. By integrating a rotation

net, the R-MGMN is invariant to rotations of the hand in

the image. It also has a pool of graphical models, from

which a combination of graphical models could be selected,

conditioning on the input image. Belief propagation is per-

formed on each graphical model separately, generating a

set of marginal distributions, which are taken as the con-

fidence maps of hand keypoint positions. Final confidence

maps are obtained by aggregating these confidence maps

together. We evaluate the R-MGMN on two public hand

pose datasets. Experiment results show our model outper-

forms the state-of-the-art algorithm which is widely used in

2D hand pose estimation by a noticeable margin.

1. Introduction

Hands play a central role in almost all daily activities

of human beings. Understanding hand pose is an essential

task for many AI applications, such as gesture recognition,

human-computer interaction [31], and augmented/virtual

reality [19, 27]. The task of estimating hand pose has been

investigated for decades, however, it still remains challeng-

ing due to the complicated articulation, high dexterity and

severe self-occlusion.

To address these problems, one possible way is to resort

to multi-view camera systems [16, 24, 28]. However, such

systems are expensive and not practical. Meanwhile, with

the popularization of low-cost depth sensors in recent years,

a large number of RGB-D based approaches have been pro-

posed for 3D hand pose estimation [2, 10, 12, 22, 35, 36,

42]. Nonetheless, RGB cameras are still the most popu-

lar and easily accessible devices. Researchers have started

performing 3D hand pose estimation directly from RGB

images [3, 4, 11, 14, 21, 25, 30, 43]. Many proposed ap-

proaches involve a two stage architecture, i.e., first perform-

ing 2D hand pose estimation and then lifting the estimated

pose from 2D to 3D [3, 21, 25, 43], which makes 2D hand

pose estimation itself still an important task. In this paper,

we investigate the problem of 2D hand pose estimation from

a monocular RGB image.

The research field of 2D hand pose estimation is related

closely to that of human pose estimation. Spurred by devel-

opments in deep learning and large datasets publicly avail-

able [22, 28], deep convolutional neural network (DCNN)-

based algorithms have make this field advance significantly.

Convolutional Pose Machines (CPM) [40] is one of the most

popular and well known algorithms for human pose estima-

tion, and it has been widely applied in 2D hand pose esti-

mation [28] yielding the state of the art performance.

Although the deep convolutional neural networks have

the power to learn very good feature representations, they

could only learn spatial relationships among joints or key-

points implicitly, which often results in joint inconsis-

tency [17, 29]. To model the correlation among joints

explicitly, several studies investigate the combination of

Graphical Model (GM) and DCNN in pose estimation. In

most of the studies [29, 33, 41], a self-independent GM is

imposed on top of the score maps regressed by DCNN. The

parameters of the GM are learned during end-to-end train-

ing, then these parameters are fixed during prediction. How-

ever, pose can be varied in different scene, a fixed GM is

unable to model diverse pose. This shortage could be even

worse in hand pose estimation. In [7], image-dependent

pairwise potentials are introduced, however, the model does

not support end-to-end training and the pairwise potential is

restrained to quadratic function.
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In this paper, we propose a novel architecture for 2D

hand pose estimation from monocular RGB image, namely,

the Rotation-invariant Mixed Graphical Model Network (R-

MGMN). We argue that different hand shapes should be

associated with different spatial relationships among hand

keypoints, resulting to graphical models with different pa-

rameters. Also, a powerful graphical model should have the

ability to capture the same shape of the hands when viewed

from a different angle, i.e., the graphical model should be

rotation-invariant.

The proposed R-MGMN consists of four parts, i.e., a ro-

tation net, a soft classifier and a pool which contains several

different graphical models. The rotation net is inspired by

the Spatial Transformer Networks [15]. The goal of the ro-

tation net is to rotate the input image such that the hand

would be in a canonical direction. Then, the soft classifier

outputs a soft class assignment vector (which sums up to

1), representing the belief on possible shapes of the hand.

Meanwhile, the unary branch generates heatmaps which

would be fed into the graphical models as unary functions.

After that, inference is performed via message passing on

each graphical model separately. The inferred marginals

are aggregated by weighted averaging, using the soft assign-

ment vector. This procedure could be viewed as a soft se-

lection of graphical models. The final scoremap is obtained

by rotating the aggregated marginal backwards to align with

the original coordinate of the input image.

We demonstrate the performance of the R-MGMN on

two public datasets, the CMU Panoptic Dataset [28] and

the Large-scale 3D Multiview Hand Pose Dataset [13]. Our

approach outperforms the popularly used algorithm CPM

by a noticeable margin on both datasets. Qualitative results

indicate our model could alleviate geometric inconsistency

among hand keypoints even when severe occlusion exists.

The main contributions of this paper are summarized as

follows:

• We propose a new model named R-MGMN which

combines graphical model and deep convolutional

neural network efficiently.

• Instead of only having one graphical model, the pro-

posed R-MGMN has several independent graphical

models which can be selected softly, depending on in-

put image. And it could be trained end-to-end.

• Our R-MGMN could alleviate the spatial inconsis-

tency among predicted hand keypoints greatly and out-

perform the popularly used CPM algorithm by a no-

table margin.

2. Related Work

2.1. Human pose estimation from single RGB image

Studies on hand pose estimation have been benefit-

ing from that on human pose estimation for a long time.

Since DeepPose [34] pioneered the application of DCNN

in pose estimation, DCNN-based algorithms have domi-

nated the field [39]. For example, the network proposed

by Sun et al. [32] has achieved the state-of-the-art score

in many human pose estimation datasets [1, 20]. Early

DCNN-based algorithms try to regress the 2D coordinates

of keypoints [37, 6]. Later algorithms estimate keypoint

heatmaps [40, 23, 8], which usually achieve better perfor-

mance. The main body of DCNN mainly adopts the high-

to-low and low-to-high framework, optionally augmented

with multi-scale fusion and intermediate supervision. How-

ever, the structure information among the body joints cap-

tured by DCNN is implicit. Some approaches try to learn

extra information besides heatmaps of joint position to pro-

vide structural constraints, i.e. compound heatmaps [17]

and offset fields [26]. Nonetheless, these methods still

could not fully exploit structural information.

2.2. Hand pose estimation

Recently, most studies of hand pose focus on 3D hand

pose estimation, which is much more challenging than body

pose estimation, due to self-occlusion, dexterity and artic-

ulation of the hand. The mainstream approaches usually

resort to either multi-view camera system [16, 24, 28] or

depth data [2, 12, 35, 36, 42]. Nevertheless, There is also

a rich literature on 3D hand pose and reconstruction from

single color image using deep neural networks [3, 4, 11, 14,

21, 25, 30, 43] . Some studies fit their 3D hand models from

the estimated 2D joint locations [3, 21, 25, 43]. Thus the ac-

curacy of 2D hand pose estimation has a great impact on the

performance of 3D hand pose.

Among a variety of DCNN-based models, CPM [40] is

commonly used in 2D hand pose estimation [28, 38, 43].

This architecture estimates the score maps via intermedi-

ate supervision and the most likely location is selected as

the maximum confidence of the corresponding position in

the confidence maps. In this paper, we choose CPM as the

baseline for comparison with our proposed model.

2.3. Graphical model in pose estimation

Graphical model has also been exploited in solving hu-

man pose estimation tasks. By using GM, spatial con-

straints among body parts can be modeled explicitly.

Recently, there is also a trend to combine DCNN and

GM for pose estimation [33, 7, 29, 41]. The GM and the

backbone DCNN are trained either independently or end-to-

end via the combination of back propagation and message-

passing. However, studies in this field usually apply a GM

with fixed parameters, which limits its ability to model a

variety of pose, especially in hand pose estimation. The

most recent work in [18] proposes to generate adaptive GM

parameters conditioning on individual input images.
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Figure 1. Pipeline overview of the proposed Rotation Mixture Graphical Model Network (R-MGMN).

3. Methodology

3.1. Basic pipeline

The proposed Rotation-invariant Mixture Graphical

Model Network (R-MGMN) mainly consists of four com-

ponents, i.e., the rotation net, the soft classifier, the unary

branch and the pool of graphical models, as shown in Fig. 1.

The pipeline of the MGMN is given as follows.

• The rotation net regresses a rotation degree from the

input image.

• Then, using the obtained rotation degree, the image is

rotated such that the hand in the image would be in a

canonical direction (e.g. the hand is upright).

• After that two parallel branches follow.

Branch 1:

– A deep neural network referred to as unary

branch is applied onto the rotated image. The

output of the unary branch is a set of 2D

heatmaps which represent the confidence of the

hand keypoint positions.

– As unary potential functions, these 2D heatmaps

are fed into the pool of graphical models. Each

graphical model performs inference separately.

Then, the pool outputs several sets of marginal

probabilities of the keypoint positions.

Branch 2:

– The parallel branch contains a soft classifier

which outputs a weight vector whose entries sum

up to one.

• Aggregated heatmaps are obtained as the weighted av-

erage of the marginal probabilities, using the weight

vector.

• Rotate heatmaps backwards according to previous ro-

tation degree.

3.2. Model

Our R-MGMN could be broken down into two parts:

• The rotation part which controls the rotation of the im-

age and the backward rotation of the heatmaps.

• The MGMN, which performs handpose estimation on

the rotated images.

3.2.1 Image rotation

The rotation angle α is regressed from the rotation net RT
as

α = RT (I; θrt), (1)

where θrt is the set of parameters of the rotation net, I is

the input image. Then the rotated image is given by

Irt = frt(I, α), (2)

where frt is the rotation function.

3.2.2 MGMN

Given the rotated image Irt, the handpose estimation prob-

lem could be formulated by using a graph and it could be

solved via probabilistic tools.

Let V = {v1, v2, · · · , vK} denote the set of all the hand

keypoints, each of which is associated with a random vari-

able xi ∈ R
2 representing its 2D position in image Irt. And

let E represent the set of pairwise relationships among the

keypoints in V , to be more specific, (i, j) ∈ E if and only

if vi and vj (i < j) are neighbours. Then we could define
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a graph G = (V, E) with V being its vertices and E being

the edges. A basic probabilistic model of the handpose task

could be formulated by the following equation.

pbasic(X|Irt) =
∏

vi∈V

φ(xi|Irt)
∏

(j,k)∈E

ψ(xj , xk|Irt),

(3)

where φ(xi) ∈ R is usually called the unary function,

ψ(xj , xk) ∈ R is the pairwise function and X denotes the

positions of all hand keypoints, i.e., X = (x1, x2, · · · , xK)
.

The naive model in Eq. (3) could be generalized to a

mixed graphical model as

p(X|Irt) =

L∑

l=1

wl

∏

vi∈V

φl(xi|Irt)
∏

(j,k)∈E

ψl(xj , xk|Irt),

(4)

where L graphical models are aggregated together, wl is the

weight corresponding to the l-th graphical model.

Our proposed MGMN is obtained when the same unary

function is shared for all L graphical models, i.e.,

φl(xi|I) = η(xi|I), l = 1, 2, · · · , L (5)

where η(xi|I) is the output of the unary branch U with pa-

rameters θu in Fig. 1,

η(xi|I) = U(I, θu). (6)

The marginal probability p(xi|Irt) could be calculated

by summing up the marginal probabilities pl(xi|Irt) of each

individual graphical models, as validated by the following

equation,

p(xi|Irt) =
∑

∼xi

p(X|Irt) (7)

=
∑

∼xi

L∑

l=1

wl

∏

vi∈V

φl(xi|Irt)
∏

(j,k)∈E

ψl(xj , xk|Irt) (8)

=

L∑

l=1

wl

∑

∼xi

∏

vi∈V

φl(xi|Irt)
∏

(j,k)∈E

ψl(xj , xk|Irt) (9)

=
L∑

l=1

wl pl(xi|Irt), (10)

where
∑
∼xi

means to summing over all xk, k = 1, 2, · · · ,K

except xi. The marginal pl(xi|Irt) of each graphical model

could be calculated exactly or approximately using message

passing efficiently.

The marginal p(xi|Irt) could be taken as a confidence of

the joint vi being located at the specific position. For each

keypoint vi, a confidence map or score map Si, which is a

2D matrix, could be constructed by assigning the (m,n)-th
entry of Si to be

Si[m,n] = p(xi = (m,n)|Irt), (11)

where (m,n) is the 2D coordinate.

3.2.3 Inverse Rotation of Confidence Maps

The final confidence map of the keypoint vi’s position is

given by

SFi = frt(Si,−α), (12)

where α is given by the rotation net as in Eq. (1).

The predicted position of keypoint vi is obtained by max-

imizing the confidence map, as

x∗i = (m∗, n∗) = argmax
m,n

SFi [m,n]. (13)

3.3. Detailed structure of the R­MGMN

In this subsection, we would describe the detailed struc-

ture of each component of the R-MGMN.

3.3.1 Rotation Net

The rotation net consists of a ResNet18 and two additional

layers to regress the rotation degree α, as shown in Fig. 2.

ResNet18
FC

1000, 32
ReLu

FC

32, 1

Figure 2. Configuration of the rotation net.

The output of ResNet18 is a 1000-dimensional vector,

then it’s fed into two fully connected (FC) layers with a

ReLu function in between. Finally, a scalar representing

the rotation degree is obtained.

3.3.2 Unary Branch

The Convolutional Pose Machine (CPM) is adopted as our

unary branch. To be more specific, we follow the same ar-

chitecture used in [28]. The convolutional stages of a pre-

initialized VGG-19 network up to conv4 4 are utilized as a

feature extractor. Then, six cascaded stages are deployed

to regress the confidence maps repeatedly. Moreover, as in

[5], convolutions of kernel size 7 are replaced with 3 layers

of convolutions of kernel 3 which are concatenated at their

end.

3.3.3 Soft Classifier

For the soft classifier we adopt the ResNet-152 followed by

a softmax layer as in Fig. 3. The output dimension of the

ResNet-152 is set to be 20, which means we would like to

expect there are 20 clusters among the hands.
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ResNet-152 Softmax

Figure 3. Configuration of the soft classifier.

3.3.4 Pool of Graphical Models

There are L = 20 tree-structured graphical models inte-

grated in the pool of graphical models. Each of the graphi-

cal model shares the same structure, but every single graph-

ical model is associated with a different set of parame-

ters. Marginal probabilities are inferred on each individual

graphical model, and then aggregated via a weight vector

which comes from the soft classifier.

Belief propagation. Sum-product message passing is a

well known algorithm for performing inference on graphi-

cal models. It could calculate marginals of the random vari-

ables efficiently. During the inference, vertices on the graph

receive messages from and send messages to their neighbors

iteratively, as in the following equation,

mij(xj) =
∑

xi

ϕi,j(xi, xj)φi(xi)
∏

k∈Nbd(i)\j

mki(xi) ,

(14)

where mij ∈ R is the message sent from vertex vi to vertex

vj , which is the belief from the vertex vi on the position of

the j-th keypoint.

The message passing process in the above equation

would be performed several iterations until convergence

or satisfaction of some other stop criteria. The estimated

marginal distribution p̂i(xi) is given by

p̂i(xi) ∝ φi(xi)
∏

k∈Nbd(i)

mki(xi) (15)

=
1

Z ′
φi(xi)

∏

k∈Nbd(i)

mki(xi), (16)

where Z ′ is a normalization term such that the probabilities

sum up to 1.

Message passing on tree-structured graphs. When the

graph is tree-structured, the estimated marginal equals the

exact marginal. In our R-MGMN, tree-structured models

are utilized, as illustrated in Fig. 4. Each branch consisting

of four same-colored circles corresponds to a single finger.

By using a tree-structure, exact marginals could be in-

ferred very efficiently by only two passes of message pass-

ing. In the first step, starting from the leaf nodes, variables

pass messages sequentially towards the root node. Then in

the second step, messages are passed sequentially towards

the leaf nodes, beginning at the root node.

Message passing as 2D convolution. For each iteration,

the message mij(xj) in Eq. (14) could be rewritten as

mij(xj) =
∑

xi

ϕi,j(xi, xj)hi(xi), (17)

0

1

2
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4

5

6

7

8

9

10
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12
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16
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19

20

Figure 4. Tree-structured graphical model for hand keypoints.

where

hi(xi) , φi(xi)
∏

k∈Nbd(i)\j

mki(xi). (18)

If the pairwise potential function ϕi,j(xi, xj) only depends

on the relative position between the two neighboring key-

points, i.e.,

ϕi,j(xi, xj) = γi,j(xi − xj) . (19)

By compacting mi,j(·) and hi(·) into 2D matrices Mij and

Hi (this is reasonable since xi corresponds to a 2D loca-

tion), Eq. (17) is transformed to

Mij = Γi,j ⊛Hi , (20)

where Γi,j is a 2D matrix encoding the pairwise potential

function γi,j(xi−xj), and the notation ⊛ denotes convolu-

tion.

Thus, the set of parameters for each graphical model is

given by

Θgm = {Γi,j |(i, j) ∈ E or (j, i) ∈ E} . (21)

The whole set of parameters of the pool of graphical models

are

ΘGM = {Θgm

l | l = 1, 2, · · · , L} , (22)

where Θgm

l1
is independent of Θgm

l2
for l1 6= l2.

4. Learning

Since our R-MGMN contains several components, we

follow a step-by-step training procedure. First, the rota-

tion net is trained. Then, while keeping the rotation net

fixed, we train the unary branch and the soft classifier sep-

arately. After that, the parameters of graphical models are

learned while keeping other parts frozen. Finally, the whole

R-MGMN is jointly trained. More details are given as fol-

lowing.

4.1. Train Rotation Net

The rotation net is trained alone in the first phase of the

training. The aim of the rotation net is to rotate the input

image such that the hand in the resulted image is upwards,

1550



Figure 5. Illustration of the rotation. Left image courtesy to [28] .

i.e., the directional line connecting the 1-st keypoint and the

10-th keypoint is pointing upwards as illustrated in Fig. 5.

Almost no public dataset provides the ground truth ro-

tation degree directly, however, it could be obtained easily

given the ground truth positions of hand keypoints. The

ground truth rotation degree α* could be derived by calcu-

lating the directional angle between the vector v1 and v2,

where

v1 = x10 − x1, (23)

with x10 and x1 representing the positions of the keypoints,

and v2 is the unit vector whose direction is vertically up-

wards.

During training, squared error is used for the loss func-

tion, which is

Lrn = (α− α∗)2 , (24)

where α is the regressed rotation degree from the rotation

net.

4.2. Train Unary Branch

The unary branch is trained with the help of the rotation

net, while the rotation net is fixed during this training phase.

The unary branch is actually the convolutional pose ma-

chine, which produces and refines the confidence maps re-

peatedly. Rotated image is fed into the unary branch, which

outputs a set of confidence maps. These confidence maps

are then rotated back so as to be aligned with the original

coordinate of the input image before the rotation net.

Denote St
k ∈ R

hu×wu as the aligned output confidence

map of the k-th keypoint at the t-th stage of the unary

branch, the loss function used in this training phase is de-

signed as

Lunary =
T∑

t=1

21∑

k=1

||St
k − S∗

k ||
2
F , (25)

where T is the number of stages in the unary branch, S∗
k ∈

R
hu×wu is the ground truth confidence map of the k-th key-

point, and ||·||F represents the Frobenius norm. The ground

truth S∗
k is obtained by by putting a Gaussian peak at the

keypoint’s ground truth location.

4.3. Train Soft Classifier

Again, there is no ground truth class label for the clas-

sification subtask. Thus, we resort to unsupervised learn-

ing, especially the K-means clustering algorithm. To be fair,

only training dataset is utilized in this phase.

Given the pretrained rotation net in the first phase, we ro-

tate the images and the keypoints’ position labels according

to the estimated rotation degrees. Then, the K-means algo-

rithm is applied on the rotated images. The feature vector

used in K-means is obtained by concatenating the relative

positions of neighbouring keypoints. The number of the

clusters is set to be 20.

The training set is further split into 70/30, on which the

soft classifier is trained on. Standard cross entropy is used

for the loss function.

4.4. Train Graphical Model Parameters

Keeping all the other parts fixed, in this phase, we only

train the parameters of the graphical models, with the whole

R-MGMN. The loss function is

LGM =

21∑

k=1

||S̃k − S̃∗
k ||

2
F , (26)

where S̃k ∈ R
ho×wo is the k-th channel of the output of

the R-MGMN. Since the confidence map S̃k is actually a

normalized probability distribution, the ground truth S̃∗
k ∈

R
ho×wo is also normalized (S̃∗

k is the normalized version of

S∗
k from Eq. (25)).

4.5. Jointly Train All the Parameters

For the last phase, we use the same loss function as that

in training the graphical model paramters,

LJoint = LGM . (27)

5. Experiments

We verify our approach on two public handpose datasets,

i.e., the CMU Panoptic Hand Dataset (CMU Panoptic) [28]

and the Large-scale Multiview 3D Hand Pose Dataset

(Large-scale 3D) [9]. A comprehensive analysis of the pro-

posed model is also carried out.

5.1. Experimental settings

5.1.1 Datasets.

The CMU Panoptic dataset contains 14817 annotations of

hand images while the Large-scale 3D dataset contains

82760 anotations in total. The Large-scale 3D dataset pro-

vides a simple interface to generate 2D labels from the 3D

labels which come with the dataset. For both datasets, we

split them into training set (70%), validation set (15%) and

test set (15%). Since we focus on handpose estimation in

this paper, we crop image patches of annotated hands off
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Figure 6. PCK performance on two public datasets.

Threshold of PCK, σ 0.01 0.02 0.03 0.04 0.05 0.06 mPCK

CMU Panoptic Hand Dataset

CPM Baseline (%) 22.60 55.69 70.06 77.01 81.30 84.36 65.17

Ours 23.67 60.12 76.28 83.14 86.91 89.47 69.93

Improvement 1.07 4.43 6.22 6.13 5.61 5.11 4.76

Large-scale Multiview 3D Hand Pose Dataset

CPM Baseline (%) 38.27 81.78 91.54 94.84 96.39 97.27 83.35

Ours 41.51 85.97 93.71 96.33 97.51 98.17 85.53

Improvement 3.24 4.19 2.17 1.49 1.12 0.90 2.18
Table 1. Detailed numerical results of PCK performance.

the original images, thus leaving out the task of hand detec-

tion. A square bounding box which is 2.2 times the size of

the hand is used during the cropping.

5.1.2 Evaluation metric.

Probability of Correct Keypoint (PCK) [28] is a popular

metric, which is defined as the probability that a predicted

keypoint is within a distance threshold σ of its true location.

In this paper, we use normalized threshold σ with respect

to the size of hand bounding box, and mean PCK (mPCK)

with σ = {0.01, 0.02, 0.03, 0.04, 0.05, 0.06}.

5.1.3 Implementation Details.

All input images are resized to 368 × 368, then scaled to

[0,1] and further normalized using mean of (0.485, 0.456,

0.406) and standard derivation of (0.229, 0.224, 0.225).

Batch size is set to 32 for all training phases. Adam is

used as the optimizer, and the initial learning rate is set to

be lr =1e-4 for each training phase. The rotation net is

only trained for 6 epochs at the fist training phase. With

best models being selected basing on the performance of

the validation set, the unary branch and soft classifier are

both trained for 100 epochs, after which the parameters of

graphical models are trained for 40 epochs, and finally the

whole network are trained end-to-end for 150 epochs.

5.2. Results

The PCK performance of our proposed model on two

public datasets, i.e., the CMU Panoptic dataset and the

Large-scale 3D dataset, are shown in Fig. 6. It is seen

that our model outperforms the CPM consistently on both

datasets. Detailed numerical results are given in Table 1.

On CMU Panoptic dataset, our model achieves a sig-

nificant PCK improvement comparing to CPM. An abso-

lute improvement of 6.22 percent is observed at threshold

σ = 0.03. In average, the mPCK is improved by 4.76

percent. The experiment result on Large-scale 3D dataset

also validates the advantage of our model. At threshold of

σ = 0.02, there is a 4.19 percent improvement in PCK.

The reason why the improvement on Large-scale 3D

dataset is not as much as that on the CMU Panoptic dataset,

probably lies in the fact that annotation settings of these two

datasets are slightly different. In Large-scale 3D dataset, the

center of the palm is considered as the root keypoint instead

of the wrist. This would cause the reference vector v1 in
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Threshold of PCK, σ 0.01 0.02 0.03 0.04 0.05 0.06 mPCK improvement

CPM Baseline (%) 22.60 55.69 70.06 77.01 81.30 84.36 65.17 -

CPM + Single GM 22.58 55.78 70.14 77.05 81.34 84.41 65.21 0.04

CPM + Mixture of GMs 23.39 57.53 71.95 78.49 82.28 85.02 66.44 1.27

Rotaion + CPM 1 22.70 57.91 72.95 79.94 83.90 86.71 67.35 2.18

Rotaion + CPM 2 21.97 57.59 74.53 81.98 86.21 88.83 68.52 3.35

R-MGMN 23.67 60.12 76.28 83.14 86.91 89.47 69.93 4.76

Table 2. Numerical results for ablation study on CMU Panoptic Hand Dataset.

Figure 7. Qualitative results. First row: CPM. Second row: our model.

Eq. (23) to be relatively short, which in turn would cause

the calculated rotation degree to be prone to erroneous when

noise exists.

Qualitive results are shown in Fig. 7. Images in the top

row are the predicted results by CPM, while the bottom row

corresponds to the prediction of our model. The results

show that our proposed R-MGNM could greatly reinforce

the keypoints consistency, and generate much more reason-

able predictions than CPM.

Our model succeed to predict well even if the hand is

severely occluded, as in the 4-th column in Fig. 7. In this

example, half of the right hand is occluded by the left hand.

The CPM fails to recover many of the keypoints. How-

ever, our R-MGMN correctly recovers the index finger and

thumb, even they are totally occluded.

5.3. Ablation study

To understand the proposed model, ablation study is also

performed. Several experiments are conducted as follows.

• CPM+Single GM. In this experiment, we only keep the

unary branch and one single graphical model from the

R-MGMN. Both the rotation net and the soft classifier

are removed.

• CPM+Mixture of GMs. The rotation net is removed

from the R-MGMN.

• Rotaion+CPM1. Only keep the rotation net and the

unary branch, jointly trained using the loss function in

Eq. (25).

• Rotaion+CPM2. First train the rotation net, then

jointly the train the rotation net and the unary branch.

All of the above experiments support end-to-end training.

Numerical results are given in Table 2. As indicated by the

results, adding a single graphical model on top of CPM has

very little effect on the PCK performance. By adding a mix-

ture of graphical models, there is an improvement of 1.28

percent in mPCK. Properly tuned, the rotation net would

help improve the performance by 3.35 percent. By inte-

grating the rotation net and the mixture of graphical models

together into our R-MGMN, final improvement of 4.76 per-

cent is achieved.

6. Conclusion

A new architecture called Rotation-invariant Mixed

Graphical Model Network (R-MGMN) is proposed in this

paper. The R-MGMN combines the graphical model and

deep convolutional neural network in a new way, where a

pool of graphical models could be selected softly depend-

ing on input image. The R-MGMN could be trained end-

to-end. Experiment results validate that the proposed R-

MGMN outperforms the widely used CPM algorithm on

two public datasets. Ablation study is also performed to

see the functionality of each part of the R-MGMN model.
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