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Abstract

In this paper, we propose a novel method to incorpo-

rate partial evidence in the inference of deep convolutional

neural networks. Contrary to the existing, top-performing

methods, which either iteratively modify the input of the net-

work or exploit external label taxonomy to take the partial

evidence into account, we add separate network modules

(“Plugin Networks”) to the intermediate layers of a pre-

trained convolutional network. The goal of these modules

is to incorporate additional signal, i.e. information about

known labels, into the inference procedure, and adjust the

predicted output accordingly. Since the attached plugins

have a simple structure, consisting of only fully connected

layers, we drastically reduced the computational cost of

training and inference. Also, the proposed architecture al-

lows propagating information about known labels directly

to the intermediate layers to improve the final representa-

tion. Extensive evaluation of the proposed method confirms

that our Plugin Networks outperform the state-of-the-art in

a variety of tasks, including scene categorization, multi-

label image annotation, and semantic segmentation.

1. Introduction

Visual recognition tasks, e.g. scene categorization or

multi-label image annotation, have attracted a significant

amount of research interest in recent years [26, 11, 28, 5].

One of the reasons, which sparked this attention was the

availability of evaluation datasets created for benchmarking

given visual tasks, such as ImageNet [2], VOC Pascal [4],

or COCO [17]. Although sensible for comparison purposes,

single-task evaluation protocols are often far from real-life

use-cases, where additional information, e.g. related to lo-
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Figure 1: Plugin Networks — neural networks attached to

the intermediate layers of a pre-trained convolutional neu-

ral network, allow exploiting partial evidence labels at the

inference to predict unknown labels with higher accuracy.

This simple, yet effective approach significantly reduces

training and inference time, while outperforming compet-

itive results on three challenging benchmarks.

cation or time of photo capture, is available.

The partial information (partial evidence) about an im-

age, which may be available during inference, can improve

the accuracy of pre-trained networks [11, 26]. More specifi-

cally, we assume that a set of labels corresponding to a given

image is known during inference, while the task at hand

is to improve the performance of the model on the origi-

nal task, e.g. image classification, object detection, and se-

mantic segmentation. This corresponds to a real life appli-

cation, where, for instance, we know that the image was

captured in a forest or in a cave, which drastically reduces

the likelihood of detecting a skyscraper. Similarly, infor-

mation that a given object appears in an image can greatly

improve its localization or segmentation. Since partial ev-

idence can be available in multiple forms and modalities,

the main prediction system, e.g. a convolutional neural net-

work (CNN), is trained to perform a general purpose predic-

tion with no assumption about the existence of partial evi-
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dence or lack thereof. Neural architectures such as CNNs

are not modular, thus any modification such as new inputs

(partial evidence) or new outputs (new tasks) are difficult to

apply without repeating the full training procedure. Other-

wise, phenomena such as the catastrophic forgetting may

occur. Our objective is to enable the model to incorpo-

rate additional available information without re-training the

main system while exploiting this information to increase

the quality of predictions.

Several methods were proposed in the literature to ad-

dress this problem, among them [11] and [26] are the most

recent. In paper [11] authors proposed to exploit external

taxonomy of the labels by modeling correspondences be-

tween scene attributes and categories, by feeding this data

into the main neural network at inference. On the other

hand, paper [26] introduces a feedback-prop approach that

iteratively modifies input and network activations to ensure

the response of the network corresponds to the distribution

of known labels. Although these methods provide effective

ways to exploit partial evidence, they require complex rea-

soning, that concerns relationships between labels or com-

putationally expensive iterative adaptation mechanism.

In this work, we reduce the complexity and propose

the Plugin Networks – a simple, yet effective main net-

work extension that allows incorporating partial evidence

during the inference. We show that by using a set of fully-

connected (FC) side networks attached to intermediate lay-

ers of the main network (see Fig. 1), we are able to not only

avoid costly optimization process but also exploit the as-

sumption about the existence of partial evidence in the of-

fline training stage. More specifically, the proposed Plugin

Networks, connected to the backbone neural network, ad-

just their activations at the time of inference, depending on

available known labels. Due to the simplicity of the Plugin

Networks, their training converges quickly, while remaining

robust to overfitting, as we show in this paper. The infer-

ence of the proposed model consists of a quick feed-forward

propagation of the main model. Plugin Networks offer

a significant speedup with respect to the state-of-the-art

feedback-prop method [26]. Last but not least, the proposed

Plugin Networks outperform all of the existing methods

on three challenging benchmark applications: hierarchical

scene categorization on the SUN397 dataset [28], multi-

label image annotation on the COCO 2014 dataset [17], and

semantic segmentation on Pascal VOC 2011 [4].

To summarize, our contributions are as follows:

• We propose novel neural network model extensions

called Plugin Networks, which allows us to take par-

tial information available during inference into ac-

count. Plugin Networks adjust the activations of the

pre-trained base network. They are fast to train and

efficient during inference.

• We show how to attach the proposed Plugin Networks

to different types of neural network layers and investi-

gate the influence of those variants on final results.

• We provide an extensive evaluation of the proposed

approach on three challenging tasks: hierarchical

scene categorization, multi-label image annotation,

and scene segmentation.

We make our code available for the public1.

In the remainder of this paper, we first give an overview

of related publications. In Sec. 3, we formally introduce the

proposed approach, explain how to use it, and discuss its

properties. Sec. 4 provides an extensive evaluation of our

method and we conclude this paper in Sec. 5.

2. Related Work

Using context in visual tasks: Exploiting additional con-

textual cues in visual recognition tasks gained a lot of at-

tention from the computer vision community [3, 6, 13].

Contextual information related to semantics was used to

improve object detection [20]. Social media meta-data

was also used in a context of multilabel image annotation

in [13]. Although, adding context proved to be successful in

increasing the quality of visual recognition tasks, all of the

methods mentioned above used the context in conjunction

with the input uni-modal (visual) image during the training

of the entire system. In this work, we propose a fundamen-

tally different approach since the context (in the form of

known labels) is learned only after the training of the main

model is finished, and our approach allows us to extend

this pre-trained model with additional information a pos-

teriori. Rosenfeld et al. [24] proposed a method where de-

tection and segmentation are conditioned on the presence

of a given object category. To achieve it, they propose to

use a set of linear modulators. This method shares common

features such as offline training with the Plugin Networks,

but a model capacity of linear modulators is not enough

to learn complex functions. This leads to more compli-

cated training procedures with data oversampling. Perez et

al. [22] proposed FiLM (Feature-wise Linear Modulation)

for visual question answering, where textual information

serves as a context to a CNN model. In particular, FiLM

introduces new layers (named FiLM blocks or Resblocks),

which are incorporated into the base model. FiLM blocks

are later modulated using an affine fusion operator. Plugin

Networks, on the other hand, do not introduce any alterna-

tions to the base model architecture and directly modulate

activations of the base model. Thanks to that, we do not

introduce so much noise as the FiLM Resblocks to the base

model, which results in more stable training.

Using label structure: Some authors proposed to model

the co-occurrence of labels available at training time to im-

prove recognition performance [19]. [1], on the other hand,

1https://github.com/tooploox/plugin-networks
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uses a special structure to store the relations between the

labels using a graph designed specifically to capture seman-

tic similarities between the labels. Other forms of external

knowledge can be found in [8] and [12], where they use

the WordNet taxonomy of tags to increase the accuracy of

their visual recognition systems. [13], [18] also used social

media meta-data to improve the quality of the results ob-

tained for image recognition tasks. Finally, [21] estimated

entry-level labels of visual objects by exploiting image cap-

tions. Contrary to our method, the approaches mentioned

above focus on finding the relationships between the labels

and driving the training algorithm to encompass those struc-

tures. In this work, we do not explicitly model any label

structures – the only input related to labels we give to the

network is a set of known labels related to an image with no

information about their relationship with the others.

Multi-task learning: Somehow related to our work is

the thriving area of multi-task learning. Motivated by the

phenomenon of catastrophic forgetting, multi-task learning

tries to address the problem of lifelong learning and adap-

tation of a neural network to a set of changing tasks while

preserving the network’s structure. In [16], Lee et al. aim to

solve this problem by the continuous matching of network

distribution. In [23], the same problem is solved through

residual adapters – neural network modules plugged into

a network, similarly to our Plugin Networks – which are the

only structures trained for the tasks while the base network

remains untouched. Although we do not aim to solve multi-

task learning problem in this work, our approach is inspired

by the methods mentioned above, which focus on designing

robust network architecture that can dynamically adjust to

additional data point sources unseen during training.

Inference with Partial Evidence: Finally, the most rele-

vant to the work presented in this paper are two methods

proposed by Hu et al. [11] and Wang et al. [26]. Both of

them address the problem of visual tasks in the presence of

partial evidence.

Hu et al. [11] tackle this challenge by proposing a Struc-

tured Inference Neural Network (SINN). The SINN method

is designed to discover the hierarchical structure of labels,

but it can also be used in a partial evidence setup if labels

in a given hierarchy are clamped at inference. However, the

SINN model, which uses CNN and LSTM to discover la-

bel relations, has a large amount of learnable parameters,

which makes model training difficult. To solve this issue,

authors use the positive and negative correlations of labels

as prior knowledge, which is inferred from the WordNet re-

lations. We compare our method with SINN and show that

we achieve significantly better performance with a much

simpler model.

The FeedbackProp proposed by Wang et al. [26], uses an

iterative procedure, which is applied at inference time. The

idea is to modify network activations to maximize the prob-

abilities of labels under the partial evidence. The method

does not require to re-train the base model. However, due

to the iterative procedure introduced at inference time, it

requires more computational effort. Also, they introduced

hyperparameters, like a number of iterations and learning

rate to the inference phase. Finally, in the case of Feed-

backProp, the partial evidence labels can only be a subset

of labels that the base model can recognize. Our method,

however, can accept any kind of labels as partial evidence.

Moreover, our method introduces negligible computations

and no extra parameters to the inference phase. The com-

parison shows that our method outperforms FeedbackProp

while being significantly faster at the inference phase.

3. Plugin Networks

In this section, we first introduce the Plugin Networks

and define them formally. We then describe how to attach

the Plugin Networks to the existing base network at the lin-

ear and convolutional layers.

3.1. Definition

Let’s assume that we have a CNN model F (x;w), where

x is an input image and w are the parameters. The model

F is already trained on some task (e.g. single or multi-label

classification, scene segmentation). The parameters w were

trained on input images X and input labels Y .

Now let us assume that some labels Ȳ are available and

known at inference time. In the following definitions with-

out loosing generality, we will assume that only one Plugin

Network is attached to the base model. We define the Plugin

Network model Fp with parameters wp as

r = Fp(ȳ;wp). (1)

The model takes the partial evidence ȳ ∈ Ȳ as an input. The

output r of the plugin can be attached to the output vector z

of some layer of the base model F :

z̃ = z⊕ r, (2)

where the sign ⊕ can have the following meaning:

• additive: z̃ = z+ r,

• affine: z̃ = raz+ rb, r = ra ‖ rb,

• multiplicative: z̃ = z ∗ r,

• residual: z̃ = z+ z ∗ r,

where ‖ is the concatenation operator.

In this way, the Plugin Network Fp adapts the output

vector z of the base model F under the presence of avail-

able partial evidence. The eq. (2) defines how the Plugin

Network Fp is attached to the base network F . Thus a joint

model can be defined as:

F̃ (x, ȳ;w,wpi
). (3)
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In general, several Plugin Networks can be attached simul-

taneously to a number of layers of the base model F .

Note that the output of a Plugin Network r can be at-

tached to either the output of a fully connected layer or

a convolutional layer. In the following sections, we explain

how both operations are performed in details.

3.2. Connection with Linear Layers

The Plugin Network, which is attached to the linear

layer, has to compute the vector r of the same dimension

as the vector z. Then the operator ⊕ in eq. (2) is well de-

fined. The adjusted vector z̃ is then processed by the fol-

lowing layers of the base model. The value z is the output

of a layer before a non-linear function (e.g. ReLU).

3.3. Connection with Convolutional Layers

When a Plugin Network is attached to a convolutional

layer, it adjusts the feature map obtained from a given con-

volutional filter. Thus, it has to compute vector r, which has

to be of the same dimension as the number of channels in

the tensor z. Then all the considered operators ⊕ in eq. (2)

have elementwise meaning:

z̃c = zc ⊕ rc =







z11 . . . z1j
...

. . .

zi1 zij







c

⊕ rc, (4)

where c indicates the number of channel.

Adding a scalar value to each channel of a feature map

greatly reduces the number of Plugin Network parameters

that have to be learned. Learning different values for each

element of a feature map requires w × h× c output values,

where w, h stands for width and height of a feature map,

respectively. Since we only add scalar value to each feature

map, we require only c output values from a Plugin Net-

work. Fig. 2 illustrates how Plugin Network is attached to

convolutional layers.

3.4. Plugin Network Architecture

Overall, the Plugin Networks can be generalized to any

model that can be trained with backpropagation. In our

case, the Plugin Network is a FC neural network. Each FC

layer is followed by a ReLU activation except for the last

layer. We chose a fully connected architecture because par-

tial evidence vector ȳ can be interpreted as a feature vector,

which is used to compute a non-linear transform of outputs

of the base model. This task can be well handled by a fully

connected neural network.

3.5. Training

The eq. (3) defines joint model of a base network F with

parameters w and the Plugin Network Fp with parameters

wp. In the training procedure, we are optimizing only wp

z  W  a 

a 

* r z  z   r +~
= =

σ(z)~=

Figure 2: If we add Plugin Network to a convolutional layer,

then each element of the output vector is added to a corre-

sponding channel of feature maps. For instance, if convo-

lutional layer has c channels, then output from the Plugin

Network has also c elements.

parameters. Thus the base model F is not altered. To op-

timize the parameters of the Plugin Networks, the original

loss function is used, i.e. the same loss function that was

used to train the base model.

3.6. Properties

One important property of the Plugin Networks is that

the function, which modifies a base model, is trained in

an offline phase (see Sec. 3.5). Thus, the testing phase re-

quires only a single feed-forward propagation through the

base model and the Plugin Networks. Thanks to the single

forward pass, our model is fast, and forward propagation

overhead of the Plugin Networks is negligible. Thus, our

method is significantly faster than the model proposed in

[26], where iterative optimization process is applied at the

inference phase.

4. Experiments

In this section, we evaluate the Plugin Networks on three

challenging computer vision tasks. We consider a hierar-

chical, multi-label classification and semantic segmentation

problems. To stay consistent with the previous work on

these subjects, we conduct the experiments in the same se-

tups as [11, 24, 26]. Therefore, we use SUN397 [28, 27],

COCO’14 [17] and Pascal VOC 2011 [4] datasets.

4.1. Hierarchical Scene Categorization

We apply our method on SUN397 dataset [28, 27]. The

dataset is annotated with 3 coarse categories, 16 general

scene categories, and 397 fine-grained scene categories.

Our task is to classify fine-grained categories, given true

values for coarse categories, as it was performed in Hu

et al. [11] and Wang et al. [26]. Thus, coarse categories

serve as the partial evidence. We follow the same exper-

imental setup as [11, 26]: we split the dataset into train,

validation, and test split with 50, 10, and 40 images per

scene category. To allow fair comparison to [11, 26], we

use the AlexNet [15] with Softmax trained on fine-grained

categories. It will serve as the base model for the Plugin
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Figure 3: Plugin Networks – fusion operators ablation study

on SUN397 dataset. Black dashed line marks state-of-the-

art.

Layer MC Acc

no plugin 53.15

conv1 54.08

conv2 53.88

conv3 53.75

conv4 54.30

conv5 54.86

conv3-5 56.88

Layer MC Acc

fc1 53.90

fc2 56.47

fc3 57.51

fc1-3 57.08

conv3-5, fc1-3 57.16

Table 1: Performance of the Plugin networks w.r.t. the num-

ber of plugins and layers at which they are attached to the

AlexNet. The comparison is done on SUN397 dataset. The

performance is better if the plugin is attached to deeper lay-

ers. Plugins attached to FC layers perform better. The most

effective is plugin attached to fc3 layer, although it outper-

forms models slightly where three and six plugins were at-

tached.

Networks. To evaluate our method, we compute mean aver-

age precision (mAP), multi-class accuracy (MC Acc), and

intersection-over-union accuracy (IoU Acc).

Ablation study: Plugin Network can be attached to differ-

ent layers of the base model. Furthermore, one can attach

more than one Plugin Network simultaneously. Now, we

analyze different combinations of the above choices. The

results (see Tab. 1) show that Plugin Network improves the

performance of the base model regardless to which layer it

is attached. On the other hand, the performance gain dif-

fers between chosen layers. Thus, a couple of observations

can be drawn. It is more effective to attach a Plugin Net-

work to an FC layer rather than a convolutional layer. Sec-

ondly, the Plugin Network connected to deeper layers tends

to obtain better performance. The results are aligned with

the intuition, that in case of the classification task, deeper

layers carry more abstract information. Thus, the Plugin

Network can converge to a better solution when attached to

deeper layers. Moreover, in the classification task, spatial

information is ignored. Thus modification of convolutional

layers, which carry spatial information, is less important.

Note, that in case of semantic segmentation task described

Layer
# of hidden layers

0 1 2 3 4

conv5 53.41 54.06 54.18 54.28 53.90

fc3 54.53 56.65 57.18 57.51 56.56

Table 2: Performance of the Plugin Network (MC Acc) with

respect to different number of hidden layers on SUN397.

We consider two cases. Former is the Plugin Network be-

ing attached to the conv5 layer, while the latter — attached

to the fc3 layer. The experiment shows that simple linear

transformation (no hidden layers) is not sufficient.

in Sec. 4.3, it is more important to modify convolutional

layers. These experiments show that the Plugin Networks

are generic and can solve various tasks. We do not observe

further performance improvements if more than one Plugin

Network is attached simultaneously. In the case of the clas-

sification task, the Plugin Network mainly learn the rela-

tionship between partial evidence and output labels. Thus,

fc3 outputs carry enough information to find such a rela-

tionship.

In the second ablation study, we consider different Plu-

gin Network architectures. We evaluate the number of hid-

den layers of the Plugin Network. We check from zero to

four hidden layers. The best results are obtained by the net-

work with three hidden layers, which is still a quite shallow

architecture that allows efficient training and does not add

significant overhead in the inference; see Tab. 2. The results

also show that a linear function (model with no hidden lay-

ers) has not enough capacity to adjust base model outputs.

In the third ablation study, we compare different fusion

operators from Eq. 2. The results show that the best per-

formance and convergence rate is obtained by the additive

operator, which is a particular case of the affine operator

where ra = 1; see. Fig. 3. Because we use the ReLU acti-

vation function, the translation operation performed by the

additive operator is sufficient to alter channel activation val-

ues by translating them to either positive or negative half-

plane. Scaling (in the multiplicative operator) can achieve

similar effect when ra ≈ 0, but negative ra may switch the

sign of activation values, resulting in amplification of un-

wanted responses. Finally, we can observe that all proposed

fusion operators achieve state-of-the-art results. In all fur-

ther experiments, we are using the additive operator, since

it achieved the best performance consistently.

In the final model, we use AlexNet CNN + Softmax as

the base model. The CNN was pretrained on the Places365

dataset [29]. The base model was chosen to allow a fair

comparison with [26, 11]. We use the Plugin Network with

three hidden layers, attached to the fc3 layer from the base

model. The model was trained for 15 epochs using the

Adam [14] optimizer with the Xavier initialization [7] with

learning rate set to 10−3, which was reduced to 10−4 and

10−5 after five and ten epochs.
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Figure 4: Visualization of results (best viewed in color). We pick five representative images from the SUN397 test set and

visualize the predicted fine-grained categories from our method. We compare them with the predictions from the base model

(CNN+Softmax). Correct predictions are marked in green, incorrect in red. Failure cases are shown in the rightmost column.

”PE” stands for partial evidence.

% of training examples

20 40 60 80 100

MC Acc 56.58 57.07 57.26 57.34 57.51

mAP 60.75 61.19 61.26 61.27 61.37

IoU 38.98 39.39 39.42 39.60 39.62

Table 3: Performance of the Plugin Network model trained

on a fraction of training data. The results show that model

trained even with 20% of available data, achieves state-of-

the-art performance on all metrics. The results are reported

on SUN397 dataset.

MC Acc mAP IoU Acc

Base model [26] 52.83±0.24 56.17±0.21 35.90±0.22

SINN [11, 26] 54.30±0.35 58.34±0.32 37.28±0.34

F. Prop (LF) [26] 54.94±0.42 58.52±0.34 37.86±0.39

F. Prop (RF) [26] 55.01±0.35 58.70±0.26 37.95±0.33

Base (Ours) 53.30±0.29 56.36±0.21 34.39±0.31

Plugin Net (Ours) 57.59±0.24 61.55±0.43 39.26±0.38

Table 4: Plugin Network performance on SUN397 dataset.

Our method outperforms the state-of-the-art on all reported

metrics. To allow fair comparison, we also show the perfor-

mance of the base model used in [26] as well as the perfor-

mance of the base model trained by us.

Training analysis: In Tab. 3, we report the performance

of our method w.r.t. to the percentage of available training

data. We trained Plugin Network with 20%, 40%, 60%,

and 80% percent of the training data. The results show that

our model achieves state-of-the-art performance even when

trained on 20% of the data.

Comparison with the state-of-the-art: In Tab. 4, we re-

port the performance of our Plugin Network. The results are

averaged over five runs to mitigate the randomness in val-

idation set sampling, also standard deviation is computed.

We report the performance of the base model, which does

not use partial evidence as a reference. We also report the

performance of SINN network [11] and FeedbackProp [26].

The results show that Plugin Networks outperform state-

of-the-art methods in terms of MC Acc, mAP, and IoU;

see. Tab. 4. Also, our method is easier to train than SINN

model and allows faster inference than FeedbackProp.

Observations: In Fig. 4, we show five images from the

SUN397 test set. For each example, we show: ground-truth

label for fine-grained category, both classification results

from the base and our model. We also report the coarse

category (partial evidence). The examples show that our

method can recover many errors thanks to the presence of

partial evidence information. For instance, in top left ex-

ample, partial evidence that “parking lot” belongs to “Out-

door man made” category helped to correct the classifica-

tion error. The base model classified example as “Anechoic

Chamber”, which belongs to “Indoor” category. If we look

at the “Anechoic Chamber” examples, one can notice that

cars in the parking lot can mimic patterns of the “Anechoic

Chamber” walls.

4.2. Multilabel Image Annotation

In the evaluation of our method for the multi-label image

annotation task, we use the COCO 2014 dataset [17]. It con-

tains 120,000 images, each annotated with five caption sen-

tences. Again, for consistency, we follow the same experi-

mental setup as [26]. Namely, we use the provided 82,783

training data instances as our training set, and randomly

split the remaining provided validation data into 20,000 val-

idation set and 20,504 test set images.

The task is to predict a predefined set of words explain-

ing an image. The words are referred as visual concepts in

Fang et al. in their visual concept classifier [5]. We define

them as the 1,000 most frequent words in the captions of the

COCO dataset. We use the same tokenization, lemmatiza-

tion, and stop-word removals as Wang et al. [26]. As a re-

sult, each image is annotated by a vector of 1,000 elements

corresponding to an occurrence of words in the captions.

For the task of reasoning under partial evidence, we ran-

domly divide the target vector into a fixed 500 known and

500 unknown classes. The model performance is measured

on the unknown set only, while the known set is used as

the partial evidence. The base network is first trained as
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Figure 5: Ablation study of Plugin Network attachment

layer. Base network is ResNet-18. Plugins are attached to

the 17th and 13th conv layers and the last FC layer. The plu-

gins architecture consists of two layered FC network with

500, and 2048 neurons. The solid black line indicates mAP

achieved by ResNet-18 w/o Plugin Network. Attachment to

the last fc layer only results in the highest improvement.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
Epochs

23

24

25

26

27

28

m
AP [500, 512]

[500, 1024]
[500, 2048]
[500, 512, 1024]
[500, 1024, 2048]
[500, 2048, 2048]
[500, 512, 2048, 2048]
[500, 1024, 1024, 2048]

Figure 6: Ablation study of Plugin Network architecture.

Base network is ResNet-18. Plugin network is attached to

the last layer. Numbers in brackets indicate the number of

neurons at consecutive layers. The solid black line indicates

mAP achieved by ResNet-18 w/o Plugin Network. If the

plugin has too many layers, it starts to overfit. We report the

highest performance by using a two-layered network.

in Fang et al. [5] on the multi-labeled task using the en-

tire 1,000 classes. It is done by minimization of the bi-

nary cross-entropy between the predicted and target vector

of concepts. For this experiment, for the base network, we

choose to use the ResNet-18 architecture [10] to stay con-

sistent with [26]. Additionally, we also make an ablation

study for deeper base network architectures: ResNet-50 and

ResNet-101.

Hyperparameters selection: The architecture of the plu-

gin has been chosen based on the validation scores from

Figs. 5 and 6. As indicated before, we first train the base

network on the given task. Then, we freeze the base net-

work’s weights and add a number of plugins. We train each

plugin for 36 epochs using the Adam [14] optimizer with

the Xavier initialization [7] with a starting learning rate of

1e−3, which decreases with the number of epochs to 1e−4.

no
plugin

FC,
RL4, RL3

FC,
RL4

FC

ResNet18 23.00 27.56 27.61 27.97

ResNet50 25.84 29.85 29.65 29.93

ResNet101 26.56 29.49 29.79 30.13

Table 5: Scores obtained when attaching plugins at different

places to different versions of ResNet. We consider attach-

ments to the last FC layer, end of the third residual layer

(RL3), and fourth residual layer (RL4). Plugins always

consist of 500 and 2048 neurons. For this task, we always

achieve the highest score when applying a single plugin to

the last layer of the base network.

mAP Inference time [s]

Base model [5] 23.00 25.64

F. Prop (LF) [26] 25.26 93.36

F. Prop (RF) [26] 25.70 103.27

Plugins (Ours) 27.97 25.72

Table 6: Results on the COCO’14. The baseline is ResNet-

18 trained for the multi-label experiment. Our method not

only achieves the state-of-the-art in means of the mAP but

also is the fastest during inference, being barely slower than

the base network.

During the hyperparameters selection, we verified all

combinations of attaching a plugin to the conv13, conv17,

and FC layers of the ResNet-18. We report that a single at-

tachment to the last FC layers results in the highest mAP.

Using any earlier layer still improves the baseline, but such

plugin overfits much easier. Using a combination of the FC

layer and any other convolutional layer leads to a lower per-

formance comparing to a single attachment to the FC layer;

see Fig. 5. These results are aligned with the conclusions

from Sec. 4.1.

In the next experiment, we search for the best architec-

ture of a single plugin. We consider different number of

layers and neurons in the Plugin Networks. See Fig. 6

for details. The highest score is achieved by using the

two-layered architectures with 500 and 2048 neurons, re-

spectively. The two and three-layered networks get to the

plateau after around 20 epochs, while the four-layered net-

works start to overfit.

Comparison with the state-of-the-art: We compare our-

selves to the Layer-wise Feedback-prop (LF) and Residual

Feedback-prop (RF) Inference proposed by [26]. Results

presented in this work are based on the open-sourced online

implementation2 provided by the authors of RF and LF. Due

to the random choice of the known and unknown labels, the

baseline may differ, but the overall gain stays similar. We

show that in terms of the mAP, we achieve the state-of-the-

art with a significant margin. Furthermore, as expected, the

inference phase is much faster compared to the Feedback-

2github.com/uvavision/feedbackprop
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Model # of plugins mean-IoU

Baseline 0 65.5

conv1-3 3 65.7

conv1-5 5 70.5

deconv1-3 3 71.1

deconv1-5 5 71.2

conv1-5, deconv1-5 10 72.2

Table 7: Scores obtained when attaching plugins at differ-

ent layers of the FCN architecture for the task of semantic

segmentation.

prop methods. Please refer to Tab. 6 for results.

Finally, we verify the usage of the Plugin Networks for

deeper architectures, such as ResNet50 and ResNet101;

see Tab. 5. We notice an improvement for each base net-

work. As for the ResNet-18, we achieve the highest score

when only one plugin is used at the last FC layer.

4.3. Scene semantic segmentation

In this section, we evaluate the Plugin Networks on

multi-cue object class segmentation task. We take fully con-

volutional network (FCN) [25] as a starting point. Next, we

experiment by adding several plugins to its architecture. For

the baseline we take the pre-trained FCN-8s model3 trained

on the SBD dataset [9]. We use the same dataset when train-

ing the Plugin Networks. We validate our models on the

Pascal VOC 2011 segmentation challenge dataset [4]. We

follow [25] and take Pascal VOC 2011 segval4 validation

split in order to avoid overlapping images between these

two datasets. Thus, our training and validation datasets con-

sist of 8498 and 736 images, respectively. Objects in the

image are assigned to one of 21 classes.

The base model (FCN-8s without plugins) results in IoU

score of 65.5%. For this scenario, we assume that we know

classes present in the image at the inference time, which

constitutes partial evidence. Therefore, our partial evidence

is a vector of 21 elements. The goal of the Plugin Network

is to improve the output segmentation masks of the base

network. We experiment with attaching several plugins to

the FCN-8s model. We report the results in Tab. 7. In con-

trary to findings from previous experiments, the Plugin Net-

works provide the highest increase in the IoU, when multi-

ple of them are used. We achieve the highest gain of 72.2%
of IoU when attaching five plugins into all of the convolu-

tional layers and all of the transposed convolutional layers.

We also outperform the previously proposed method [24],

which achieved 69.2%.

Using partial evidence through the Plugin Networks, we

are able to soften the wrong feature maps and strengthen the

expected ones. It results in major improvement of the base

3github.com/wkentaro/pytorch-fcn
4github.com/shelhamer/fcn.berkeleyvision.org

Figure 7: Examples of semantic segmentation masks pre-

dicted by the base model with and without Plugin Networks.

The images are taken from the Pascal VOC 2011 validation

set. In rows, we show different examples, and in columns,

from left to right: input image, ground-truth (all classes),

base model, FCN-8s with ten plugins. Our method shows a

clear improvement in the output segmentation masks.

network. When multiple objects are present in the scene,

the base model may have a problem to assign a proper la-

bel to a particular object consistently. As expected, when

the baseline network makes a mistake by assigning a wrong

label of a class that is not present in the image, plugins cor-

rect these with a correct class. The examples are shown in

Fig. 7. For instance, in the last row, the pixels belonging to a

bottle are inconsistently assigned to different classes by the

base model. Using the Plugin Networks fixes the problem.

5. Conclusions

In this work, we introduced the Plugin Networks – a sim-

ple, yet effective method to exploit the availability of partial

evidence in the context of visual recognition tasks. Plugin

Networks are integrated directly with the intermediate lay-

ers of pre-trained convolutional neural networks, and thanks

to their lightweight design can be trained efficiently with

low computational cost and limited amount of data. Results

presented on three challenging tasks and various datasets

show the superior performance of the proposed method with

respect to the state-of-the-art approaches.

We believe that this work can open novel research direc-

tions related to solving visual recognition tasks with partial

evidence, as our Plugin Networks are agnostic to the input

signal and can accommodate arbitrary modality of the input

data, including audio or textual cues. Therefore, their mul-

timodal nature can allow richer contextual cues to be taken

into account in the inference procedure, leading to more ef-

fective and efficient visual recognition models.
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