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Abstract

Deep convolutional neural networks (DCNNs) are pow-

erful models that yield impressive results at object classifi-

cation. However, recent work has shown that they do not

generalize well to partially occluded objects and to mask

attacks. In contrast to DCNNs, compositional models are

robust to partial occlusion, however, they are not as dis-

criminative as deep models. In this work, we combine DC-

NNs and compositional object models to retain the best of

both approaches: a discriminative model that is robust to

partial occlusion and mask attacks. Our model is learned

in two steps. First, a standard DCNN is trained for image

classification. Subsequently, we cluster the DCNN features

into dictionaries. We show that the dictionary components

resemble object part detectors and learn the spatial distri-

bution of parts for each object class. We propose mixtures

of compositional models to account for large changes in the

spatial activation patterns (e.g. due to changes in the 3D

pose of an object). At runtime, an image is first classified by

the DCNN in a feedforward manner. The prediction uncer-

tainty is used to detect partially occluded objects, which in

turn are classified by the compositional model. Our exper-

imental results demonstrate that combining compositional

models and DCNNs resolves a fundamental problem of cur-

rent deep learning approaches to computer vision: The

combined model recognizes occluded objects, even when it

has not been exposed to occluded objects during training,

while at the same time maintaining high discriminative per-

formance for non-occluded objects.

1. Introduction

In natural images, objects are surrounded and partially

occluded by other objects. Humans seem more robust to

partial occlusion than current deep models [25] (see our

studies in Section 4). One possible explanation is that it is

unreasonable to assume that all possible occlusion patterns

can be observed during training, because of their sheer num-

(a) (b)

(c) (d)

Figure 1: Object classification under occlusion with DC-

NNs and compositional models. (a) The DCNN missclassi-

fies the image as bicycle with low certainty. (b) The com-

positional model correctly classifies the image despite the

strong partial occlusion. Intuitively, it can identify the ob-

ject parts (colored rectangles in (b) and related parts from

the training data in (c)) and ignore regions of the image

which are inconsistent with the object model (d).

ber and variability. Hence, a major difference between com-

puter vision and other machine learning tasks is that in com-

puter vision we cannot assume that the training and test data

are sampled from the same underlying distribution. Thus,

when deployed in the real-world, a vision system must gen-

eralize well beyond the training data. For example it should

be able to recognize objects robustly in previously unseen

illumination conditions (daylight vs dawn), poses (walking

vs yoga) or partial occlusions. Prominent examples of vi-

sion systems failing to achieve this kind of generalization

include fatal accidents caused by driver-assistance systems

classifying a truck in an unusual pose as sky [2] or failing to

recognize a human that was partially occluded by a bicycle
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[1]. In this work, we address the task of classifying objects

under partial occlusion. We propose a compositional model

that can reason about partial occlusion, and hence is able

to recognize partially occluded objects even when it has not

been exposed to partial occlusion during training. Further-

more, we combine compositional models with a deep neu-

ral network into a model that is highly discriminative while

also being robust to partial occlusion.

Deep convolutional neural networks (DCNNs) are pow-

erful discriminative models that yield impressive results at

object classification [13, 16, 8]. However, recent work has

shown that DCNNs do not generalize well when objects are

partially occluded [19, 25] and when they are exposed to

mask attacks - adversarial examples where parts of the im-

age are masked out [5] (see also our experiments in Section

4). In contrast to deep models, compositional models have

been shown to be robust to partial occlusion [7, 10], even if

they have not seen partially occluded objects during train-

ing [19, 23]. Compositional models explicitly represent an

object in terms of parts and their spatial composition into a

whole. The key benefit of such a compositional representa-

tion is two-fold: 1) It makes possible to introduce an occlu-

sion model that deactivates parts of the model, if they do not

fit the data (i.e. if they are occluded by another object). 2)

The model can potentially explain its classification result in

terms of where it has detected an objects’ individual parts,

as well as, where the object is occluded. However, the ma-

jor limitation of compositional models is that they lack the

discriminative ability of deep learning approaches, because

they are optimized for modeling the whole data distribution

and not for discriminating between individual samples. In

this work, we propose to combine deep networks with com-

positional models, in order to get the best of both worlds, a

highly discriminative model that is robust to partial occlu-

sion and mask attacks. We make the following contributions

in this paper:

• Learning compositional models from DCNN fea-

tures. In contrast to previous work which learns com-

positional models form the image pixels directly, we

propose to learn them from DCNN features that are

robust to nuisances such as illumination, background

clutter and non-rigid deformations of parts. This en-

ables us to represented complex objects in natural

scenes, which is difficult to achieve with related ap-

proaches.

• Generalization of compositional models to 3D ob-

jects. We propose to model 3D objects with mixtures

of compositional models, where each mixture compo-

nent represents a particular viewpoint or 3D structure

of an object. Our experiments show that mixture mod-

els are superior in terms of classification performance

compared to single compositional models.

• Combining compositional models and deep net-

works. We propose to combine deep networks with

compositional models into a model that retains high

discriminative performance for non-occluded objects,

while also being able to generalize well beyond what

it has seen at training time in terms of partial occlu-

sion. In our experiments, the proposed model out-

performs a standard DCNN at classifying partially oc-

cluded objects by 13.9% on the PASCAL3D+ dataset

19.4% on MNIST digits and in absolute classification

performance.

2. Related Work

Classification under partial occlusion. In the context

of deep learning, Fawzi and Frossard [5] have shown that

DCNNs are not robust to partial occlusion generated by

masking out patches of the input image. In contrast to DC-

NNs, compositional models have been shown to be robust

to partial occlusion. In particular they have been success-

fully applied for detecting partially occluded object parts

[19, 23] and for recognizing simple 2D shapes under partial

occlusion [7, 11, 10]. In this work, we propose a composi-

tional model that can robustly classify 3D objects in natural

scenes under strong partial occlusion.

Compositional object models. Related works on com-

positional models for object classification [9, 26, 6, 3, 12]

have proposed to learn the model parameters directly from

image pixels. The major challenge for these approaches is

that their models need to explicitly account for nuisances

such as illumination and object deformation in order to be

robust to these nuisances. In this work, we propose to learn

compositional models from the features of a DCNN. DCNN

features at higher layers of the network have been shown to

be robust w.r.t. variation in the illumination, shape an ap-

pearance of an object [24, 20, 19]. Hence, learning compo-

sitional model in terms of DCNN features instead of image

pixels enables us to represent complex objects in natural

scenes, without needing to model the underlying physical

processes of the nuisances.

Combining compositional models and DCNNs. Liao

et al. [15] propose to integrate the principles of compo-

sitionality into DCNNs by using a regularizer that encour-

ages the feature representations of DCNNs to cluster dur-

ing learning. They show that the resulting feature clus-

ters resemble part detectors. Zhang et al. [22] show that

part detectors can be encouraged in DCNNs by restricting

the activations in feature maps to have a localized distribu-

tion. While these approaches have increased the explain-

ability of the DCNN predictions, they have not been shown

to enhance the robustness to partial occlusion. Related ap-

proaches propose to regularize the convolution filters to be

sparse [18], or to enforce the activations in the feature maps
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Figure 2: Overview of the proposed combination of DCNNs and compositional models. Our model has two branches, the

DCNN branch (left) is highly discriminative but less robust, while the compositional model branch (right) is robust but less

discriminative. Both branches are integrated during inference. The model first classifies the input image with the DCNN-

branch (1.). If the DCNN is uncertain about its prediction (2.), the test image is likely to be partially occluded. Hence, the

initial prediction shall be verified with the compositional model. The parts of the compositional model are detected from the

DCNNs feature map (3.) and combined (4.) into a robust prediction (5.).

to be disentangled for different objects [17]. The key lim-

itation of these approaches is that the compositional model

is not explicit, but rather implicitly encoded within the pa-

rameters neural network. Thus, the resulting models remain

black-box CNNs that are not robust to partial occlusion. In

our proposed model the compositional model is explicit.

Hence, it can be augmented with an occlusion model and

become robust to partial occlusion, while also being able

provide explanations of its’ predictions in terms of where it

perceives an objects parts and where it thinks the object is

occluded.

3. A Robust Model Combining Deep Networks

and Compositional Models

In this section, we discuss how to combine composi-

tional models and deep networks. We present a dictionary-

based compositional model including details of how the

parameters of the model can be learned from data in Sec-

tion 3.1. In Section 3.2, we discuss how the compositional

model can be made robust to partial occlusion. Finally, we

discuss how a compositional model can be combined with

a DCNN in Section 3.3.

3.1. A Dictionary­Based Compositional Model of
DCNN Features

Our long-term goal is to learn a generative model p(F |y)
of the DCNN features F for an object class y, but we make

simplifications (see next paragraph). We define a feature

map F l to be the output of a layer l in a CNN. A feature

vector f l
p ∈ R

C is the vector of features in F l at position

p, where p is defined on the 2D lattice of the feature map

and C is the number of channels in the layer. Note that

the spatial information from the image is preserved in the

feature maps, thus a position p on F l corresponds to a patch

in the image. We omit the subscript l in the remainder of

this section because the layer from which the features are

extracted is fixed in our model (e.g. l = 4 for the layer

conv4).

Learning dictionaries of DCNN features. Modeling

p(F |y) is difficult because the feature maps are high dimen-

sional and real valued. We propose to encode the feature

maps with a dictionary D = {d1, . . . , dK} that is learned

by clustering the vectors from the feature maps of all train-

ing image {Fn|n = 1, . . . , N}. We follow related work

on learning dictionaries of DCNN features and use k-means

for clustering [20, 19, 15]. In Figure 3, we illustrate some

components dk of the learned dictionary D by showing im-

age patches that strongly activate this component. As previ-

ously observed in [20, 19], the dictionary components acti-

vate image patches that are similar in appearance and often

even share semantic meanings. Note that the patches resem-

ble image patterns that frequently re-occur for a particular

class of images (e.g. Figure 3a & 3b for the class airplane).

Therefore, we refer to the components dk as parts.

Learning the spatial activation patterns of parts. We

encode the real valued feature vectors fp with a sparse bi-

nary vector bp by detecting the nearest neighbors of fp in the

learned part dictionary D using the cosine distance g(·|·).
Hence, the element bp,k = 1 if g(fp, dk) > δ. Intuitively,

bp encodes which parts of the dictionary D are detected at

position p in the feature map F . Therefore, we refer to the

resulting binary matrix B as part detection map. We found

that a threshold of δ = 0.45 causes bp to be sparse, while

also at least one component is active at every position p in

B. We define a generative model of the part detection map
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as Bernoulli distribution:

p(B|Ay) =
∏

p

p(bp|αp,y) =
∏

p,k

α
bp,k
p,k,y(1− αp,k,y)

1−bp,k .

(1)

Where αp,k,y is the probability that the part dk is active at

position p for the object class y, and thus bp,k = 1. Note that

parts are assumed to be independently distributed which

makes our model in spirit similar to bag of words models.

However, the important difference is that the spatial posi-

tion of the part detections are preserved in our model, hence

capturing the spatial structure of the object.

Mixture of compositional models. Using the compo-

sitional model in Equation 1 we can represent 2D objects

(e.g. MNIST) as spatial composition of part detections.

However, we are not able to represent 3D objects well (see

results in Section 4.2). The reason is that, due to indepen-

dence assumption between parts in Equation 1, the model

assumes that the spatial distribution of parts in B is approx-

imately the same. This assumption does not hold for 3D

objects, because e.g. by changing the 3D pose of an ob-

ject the relative spatial distribution of parts changes strongly

(e.g. the location of the tires of a car in the image change

between the side view and a frontal view). In order to re-

solve this problem, we introduce mixtures of compositional

models:

p(B|Ay;V) =
∏

m

p(B|Am
y )νm ,

∑

m

νm = 1, νm ∈ {0, 1}.

(2)

The intuition is that each mixture component m will repre-

sent images of an object that have approximately the same

spatial part distribution (i.e. similar viewpoint and 3D struc-

ture). We learn the parameters of the Bernoulli distributions

Am
y as well as the mixture assignment variables V using

maximum likelihood estimation while alternating between

estimating Am
y and V . This approach essentially assumes

that the variability of part detection maps within each a mix-

ture component is smaller than between the mixture compo-

nents. To initialize the mixture assignments, we use spec-

tral clustering with the hamming distance of the part de-

tection maps of all training images {Bn|n = 1, . . . , N}.

The intuition is that objects with a similar viewpoint and

3D structure will have similar part activation patterns, and

thus should be assigned to the same mixture component.

Figure 4 illustrates the resulting cluster assignment after ten

iterations with m = 4 clusters for different objects. Note

that objects with different viewpoints and spatial structure

(e.g. tandems) are approximately separated into different

clusters.

3.2. Augmenting the Compositional Model with an
Occlusion Model

In natural images, objects are surrounded and partially

occluded by other objects. Partial occlusion of an object

(a) (b) (c) (d)

Figure 3: Illustration of part models by visualizing image

patterns corresponding to the most likely feature vectors for

a dictionary component. Note the variability in illumina-

tion, appearance and background suggesting robustness to

these nuisances.

will change the part activation patterns in B such that parts

may be missing and other parts might be active at previously

unseen location. The compositional model as described in

Equation 1 does not take this into account and thus will be

distorted by partial occlusion (see experiments in Section

4.2). However, modeling all of these “other objects” ex-

plicitly is computationally infeasible, because of their sheer

number and variability. Hence, a common approach is to

use an occlusion model [10], where occluders are collec-

tively modeled as locally independent clutter. The intuition

behind an occlusion model is that at each position p in the

image either the object model Ay or a background model β

is active:

p(B|Θy) =
∏

p

[p(bp|αp,y)p(zp)]
zp [p(bp|β)(1−p(zp))]

1−zp ,

(3)

where Θy = {Ay;β;Z}. The binary variable zp ∈ {0, 1}
indicates if the object is visible at position p. The occlusion

prior p(zp) could be learned or alternatively be set manu-

ally (see Section 4). The background model is defined as:

p(b|β) =
∏

k β
bk
k (1 − βk)

1−bk . Here we assume that the

background model is independent of the position in the im-

age and thus it has no spatial structure. We estimate the

background model as β = 1
J

∑J

j=1 bj by sampling J part

detection vectors bj on a set of background images that

do not contain one of the objects of interest. The maxi-

mum likelihood estimate of the occlusion variables zp can

be computed efficiently due to the independence assump-

tion in the occlusion model (Equation 3). Figure 6 illus-

trates the positive values of the log-likelihood ratio between

foreground and background model
p(bp|β)

p(bp|αp,y)
. Note that the

model can localize the occluder well.

3.3. Combining Compositional Models and DCNNs

We combine the compositional model with the DCNN by

first classifying an input image with both of their branches:

ydcnn = argmax
y

p(y|I;W ), (4)

ycm = argmax
y

p(B|Ay;β;Z;V). (5)
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4: Visualization of mixture components obtained by performing clustering based on the part detection maps. Note

how for busses and bicycles images with different 3D viewpoint or different structure (tandem) are approximately separated

into different components (a-h), whereas MNIST images with different writing style are approximately separated.

Our experiments show that the branches have complemen-

tary strengths and limitations. While the DCNN is highly

discriminative for non-occluded objects, it performs poorly

at classifying partially occluded objects, and vice-versa for

the compositional model. Therefore, we combine both

predictions into a final classification y∗ that retains the

strengths of both branches, by setting y∗ = ydcnn when

p(ydcnn|I;W ) > τ and y∗ = ycm else. Here, W are the

parameters of the DCNN and τ is a threshold. The intu-

ition is that if the DCNN is uncertain about its prediction

(i.e. p(ydcnn|I;W ) is low), then the input image is likely

to be misclassified (e.g. due to occlusion) and hence should

rather be classified by the compositional model. Our ex-

periments demonstrate that this approach successfully com-

bines the complementary strengths of both branches.

4. Experiments

We evaluate our model at the task of object classifica-

tion on partially occluded MNIST digits [14] and vehicles

from the PASCAL3D+ dataset [21]. We simulate partial

occlusion (Figure 5) by masking out patches in the images

and filling them with random noise, textures, or constant

white color . For the PASCAL3D+ vehicles we additionally

use the images provided in the VehicleSemanticPart dataset

[20], where partial occlusion was simulated by superimpos-

ing segmented objects over the target object (Figure 5b).

Note that the objects used to simulate partial occlusion are

different from the objects that the model has to discrimi-

nate. We define different occlusion levels which correspond

to increasing amounts of occlusion based on the object seg-

mentation masks provided in the PASCAL3D+ dataset as

well as threshold segmentations of the MNIST digits. We

quantify how recognizable the occluded objects are by re-

porting the average performance of five subjects that were

asked to perform every type of experiment in Table 1 (total

of 920 human classifications).

Training details and parameter settings. We train and

evaluate our models on the standard train/test splits as de-

fined in the respective datasets. For the PASCAL3D+ data

we follow the setup as proposed in [20]. Thus, the task is

to discriminate between 12 objects during training, while

at test time the six vehicle categories are tested. If not dif-

ferently stated, the models are trained on non-occluded ob-

jects, while at test time they are exposed to objects with dif-

ferent levels of partial occlusion. The DCNN has a VGG-16

architecture [16] and was pre-trained for object classifica-

tion on the ImageNet dataset [4]. For training the compo-

sitional model, all images are resized such that their short

edge has a size of 224 pixels. We extract the features form

the pool4 layer of the DCNN. The mixture models have

m = 4 components. We learn 50 dictionary components

for each object class, thus the dictionary D has K = 500
for the MNIST dataset and K = 600 components for the
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(a) (b) (c)

(d) (e) (f)

Figure 5: Visualization of synthetic partial occlusions for

natural objects (a-c) and MNIST digits (d-f) with varying

amount of occlusion area: (a&d) 20-40% occlusion. (b&e)

40-60% occlusion. (d&e) 60-80% occlusion. We simu-

late different types of occlusion appearances: random noise

(a&f), natural objects (b), textures (c&e) or white color (d).

PASCAL3D+ dataset. We learn a background model β for

each of the four types of occluders and use a threshold of

τ = 0.6 for the combination of the two branches. For ex-

periments including an occlusion model, we use a prior of

p(z) = 0.7 that is the same for all positions p.

4.1. DCNNs Do Not Generalize Well Under Partial
Occlusion

The classification results in Table 1 show that the VGG

network does not generalize well under partial occlusion,

when it was not exposed to partially occluded objects during

training. For the PASCAL3D+ data, the DCNN achieves

a good performance for non-occluded objects and level-1

mask attacks. While for stronger levels of occlusion the

performance drops by more than 10%. Note that for natural

occluders the performance decrease is much higher at level-

1 and level-2 compared to mask attacks.

In large-scale datasets, we can expect that some amount

of partial occlusion will be present in the data. However, it

is well known that the variability in large datasets is often

biased. Thus, the location of the partial occlusions might

also be affected by dataset bias. We simulate this by train-

ing the DCNN with MNIST images with a combination of

non-occluded images and images where the occluders occur

only in the right half of the image at training time (VGG R),

while at test time they can occur all over the image. The

classification results in Table 2 show that the DCNN can

classify partially occluded objects well, when the partial

occlusion occurs at locations it has observed during train-

ing (Right-Half). However, it cannot generalize well when

the object is occluded at previously unseen spatial posi-

tions (Left-Half). We simulate an even more severe bias

by restricting the occluders to also have a biased appear-

ance (white masks only) in addition to having a biased lo-

cation (VGG R W). We observe that the performance drops

for previously unseen appearances (noise and textures) at

all locations in the image, while it increases for the occlud-

ers with the same appearance at previously unseen positions

(white masks in the left half). Hence, we observe a complex

relation between biases in the training data and the classifi-

cation performance that demands further studies.

Overall, our experiments show that DCNNs do not gen-

eralize well to previously unseen partial occlusion. How-

ever, it is important for computer vision systems to general-

ize away from the training data in terms of partial occlusion,

because in real-world applications computer vision systems

are almost always exposed to dataset bias in terms of partial

occlusions.

4.2. The Proposed Model Classifies Partially Oc­
cluded Objects Robustly

PASCAL3D+. The results in Table 1 show that our

proposed combination of compositional models and DC-

NNs outperforms the VGG network at classifying partially

occluded objects for all levels and all types of occlusion,

while retaining comparable performance for non-occluded

objects. For level-1 mask attacks the performance of VGG

and our combined model (CompOccMix+VGG) is com-

parable, while it becomes more prominent for level-2 and

level-3 attacks with a mean absolute performance gain of

4.9% and 29.9% respectively. The absolute performance

gain is even more prominent if the occluders are real objects

(level-1: 6.5%; level-2: 25.1%; level-3:44.5%). Note that

while our proposed model has not been exposed to partial

occlusion at training time it is still able to classify partially

occluded objects with exceptional accuracy.

MNIST. For the MNIST data we can observe simi-

lar generalization patterns as we have observed for PAS-

CAL3D+. Our model is able to classify the partially oc-

cluded digits better than the VGG network, with a mean

absolute performance gain of 12.1% for level-1, 25.7% for

level-2 and 27.5% for level-3 occlusions. Additionally,

when the occlusions during training have a bias in the spa-

tial positions and/or the appearance, our model generalizes

much better to previously unseen partial occlusions than

the VGG network (Table 2). Interestingly, the mixture of

compositional models (CompOccMix) also provides a per-

formance increase for the two dimensional MNIST digits

compared to a single compositional model (CompOcc). In

Figure 4, we show that each mixture focuses on a particular

writing style of a digit, suggesting that it can better approxi-

mate the distribution of handwritten digits and hence is able

to better discriminate between them.
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PASCAL3D+ Classification under Occlusion

Occ. Area 0% Level-1: 20-40% Level-2: 40-60% Level-3: 60-80% Mean

Occ. Type - w n t o w n t o w n t o -

VGG 98.6 96.8 94.9 96.0 87.9 89.2 84.2 86.2 66.3 50.2 43.8 45.8 42.7 75.6

Comp 94.6 86.7 93.0 93.0 93.3 59.0 85.5 86.5 87.6 22.5 60.7 63.8 78.1 77.3

CompOcc 89.4 90.4 89.2 88.6 89.2 85.3 86.6 84.8 87.8 70.0 77.4 72.0 84.2 84.2

CompMix 93.6 80.6 90.7 89.8 92.0 58.8 83.0 83.0 88.5 26.1 59.6 65.1 84.3 76.6

CompMixOcc 92.1 92.7 92.3 91.7 92.3 87.4 89.5 88.7 90.6 70.2 80.3 76.9 87.1 87.1

CompOccMix+VGG 98.3 96.8 95.9 96.2 94.4 91.2 91.8 91.3 91.4 71.6 80.7 77.3 87.2 89.5

Human 100.0 100.0 100.0 98.3 99.5

MNIST Classification under Occlusion

Occ. Area 0% Level-1: 20-40% Level-2: 40-60% Level-3: 60-80% Mean

Occ. Type - w n t w n t w n t -

VGG 99.5 78.5 63.0 69.3 54.2 39.4 41.7 23.5 17.5 17.3 50.4

CompOcc 89.7 77.7 76.9 77.8 67.6 66.2 67.6 42.5 40.6 42.5 64.9

CompMixOcc 92.9 82.4 81.4 82.1 71.8 70.9 72.5 43.2 40.8 44.0 68.2

CompOccMix+VGG 99.1 85.2 82.3 83.4 72.4 71.0 72.8 43.5 41.2 43.0 69.4

Human 100.0 92.7 91.3 64.0 84.4

Table 1: Classification results for PASCAL3D+ and MNIST with different levels of occlusion (0%,20-40%,40-60%,60-80%

of the object are occluded), different types of occlusion (w=white boxes, n=noise boxes, t=textured boxes, o=natural objects)

and human classification baselines.

Training with Occlusion Bias on MNIST 20-40%

Occ. Bias Left-Half Right-Half Mean

Occ. Type w n t w n t -

VGG R 76.2 71.7 73.6 97.5 97.4 97.3 85.4

CompOccMix+VGG R 83.3 82.0 83.0 97.3 97.1 96.9 90.0

VGG R W 80.8 63.9 67.4 97.1 93.4 93.8 82.7

CompOccMix+VGG R W 86.4 82.5 82.4 96.9 93.4 94.1 89.3

Table 2: Classification results when the occluders in the training images are biased to occur only in the right half of the image

(* R) and when additionally they are biased to have white color (* R W).

In summary, we observe that a combination of composi-

tional models and DCNNs generalizes much better to pre-

viously unseen data in terms of partial occlusion compared

to using a standard DCNN only, while having comparable

performance on data that is similarly distributed as the one

observed during training.

Ablation study. Table 1 contains a series of ablation

experiments on the PASCAL3D+ data. On average, sin-

gle compositional models (Comp) as well as mixtures of

compositional models (CompMix) perform as good as a

DCNN. While they perform worse for images without oc-

clusion and for level-1 occlusions, they are better for level-2

and level-3 occlusions compared to the DCNN. Hence, we

can clearly observe the complementary strength and weak-

ness of both types of models. When augmented with on

occlusion model (CompOcc and CompMixOcc) the com-

positional models clearly outperform VGG in absolute per-

formance by 8.6% and 11.5% respectively. Note that the

mixture of compositional models performs superior com-

pared to a single compositional model when they are aug-

mented with an occlusion model. The combination of the

VGG branch and the occlusion-aware mixture (CompOc-

cMix+VGG) improves the performance for all experiments

on partially occluded objects, while retaining comparable

performance to the VGG model for non-occluded objects.

Note the mutual benefit of integrating the two branches

which improves the performance compared to each individ-

ual branch.

Explainability. An inherent property of compositional

models is that it can explain the prediction result, in terms

of where it perceives which object parts and where it thinks

the object is occluded. We illustrate this property in Figure

6. For several test images we illustrate five parts which the

compositional model has detected with highest likelihood

(left) and shows some examples of image patches from the

training images which activate the part model most (center).

Using theses visualizations, the compositional model can

provide an intuitive explanation of why it perceives a certain

object in the input image.
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(a)

(b)

(c)

(d)

Figure 6: Illustration how a compositional model can provide explanations of its’ prediction in terms of where it perceives

the object parts (colored rectangles in the left image and related parts from the training data in the middle image) and where

it thinks the object is occluded (right). To generate the occlusion map, we plot the positive log-likelihood ratio between

background model and the compositional model.

5. Conclusion

Our extensive experimental results demonstrate that DC-

NNs cannot recognize partially occluded objects well, if

they have not been exposed to partial occlusion during train-

ing. Even if they have been exposed to severe occlusion

during training, they do not generalize well when the spatial

distribution or the appearance of the occluders was biased.

In order to resolve these fundamental limitations, we have

proposed to combine compositional models and DCNNs. In

this context, we made the following contributions:

Learning of compositional models from DCNN fea-

tures. Previous work focused on learning compositional

models from plain image pixels, which requires modeling

of complex physical processes such as e.g. local deforma-

tion or illumination. DCNN features are robust to such nui-

sances. Hence, learning compositional models form DCNN

features enables us to represent complex objects in natural

scenes, which is difficult to achieve with related approaches.

Generalizing compositional models to 3D objects. We

propose to use mixtures of compositional models for rep-

resenting 3D objects. Our experimental results show that

mixtures outperform single compositional models at object

classification.

Combining compositional models and deep net-

works. We combine compositional models and DCNNs and

demonstrate that they outperform a standard deep network

at object classification under partial occlusion by 19.4% on

MNIST digits and 13.9% on objects from the PASCAL3D+

dataset in absolute classification performance.
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