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Abstract

Effective analysis of hyperspectral imagery is essential

for gathering fast and actionable information of large areas

affected by atmospheric and green house gases. Existing

methods, which process hyperspectral data to detect amor-

phous gases such as CH4 require manual inspection from

domain experts and annotation of massive datasets. These

methods do not scale well and are prone to human errors

due to the plumes’ small pixel-footprint signature. The pro-

posed Hyperspectral Mask-RCNN (H-mrcnn) uses princi-

pled statistics, signal processing, and deep neural networks

to address these limitations. H-mrcnn introduces fast al-

gorithms to analyze large-area hyper-spectral information

and methods to autonomously represent and detect CH4

plumes. H-mrcnn processes information by match-filtering

sliding windows of hyperspectral data across the spectral

bands. This process produces information-rich features that

are both effective plume representations and gas concen-

tration analogs. The optimized matched-filtering stage pro-

cesses spectral data, which is spatially sampled to train an

ensemble of gas detectors. The ensemble outputs are fused

to estimate a natural and accurate plume mask. Thorough

evaluation demonstrates that H-mrcnn matches the manual

and experience-dependent annotation process of experts by

85% (IOU). H-mrcnn scales to larger datasets, reduces the

manual data processing and labeling time (×12), and pro-

duces rapid actionable information about gas plumes.

1. Introduction
The presence of methane gas (CH4) in the atmosphere

is understood to be a chief contributor to global climate

change. CH4 is a greenhouse gas with a Global Warm-

ing Potential (GWP) 86 times that of carbon dioxide

(CO2) [25]. CH4 accounts for 20% of global warming in-

duced by greenhouse gases [19]. Although CH4 has many

sources, oil and natural gas are of particular interest. Emis-

sions from this sector tend to emanate from specific loca-

tions, like natural gas storage tank leaks or pipelines leaks.

0Satish and Carlos co-authored this paper as equal contributors.

Figure 1: Overview of proposed method. From left-to-right: the hy-

perspectral image input (left), in sets of bands, are processed by multiple

matched filters (blue block). A bank of detectors is trained on outputs

from multiple matched filters (green block). The bank outputs are fused

by 2-layer perceptron (red block) to give the final prediction of the plume

red-overlay (right most).

These emissions exhibit plume-like morphology, which

makes distinguishing them from the background both fea-

sible and challenging. The Jet Propulsion Laboratory (JPL)

collected data using the Airborne Visible/Infrared Imaging

Spectrometer Next Generation (AVIRIS-NG) [13] to mon-

itor and investigate such emissions. AVIRIS-NG captures

information at wavelengths ranging from the visible spec-

trum to short-infrared spectrum (i.e., 380nm − 2510nm).

Information about CH4 is present as a small signal in the

2100nm to 2400nm range. Recent work produced algo-

rithms that detect the CH4 signal in the AVIRIS-NG im-

ages [22, 28]. However, the outputs from these detection

algorithms can be noisy and have spurious signals. Exten-

sive manual labor is still required to identify and delineate

the methane plumes. This work proposes a hybrid technique

that combines core concepts of conventional signal process-

ing and machine learning with deep learning. This tech-

nique addresses the limitations of existing methods, such

as computational complexity, speed, and manual process-

ing bottlenecks by harnessing the spatial information (i.e.,

plume shape) and spectral information to automatically de-

tect and delineate CH4 plumes in overhead imagery.

Aerial imagery is commonly used to identify sources of

CH4 i.e., point source region and estimate CH4 concentra-

tion in large areas [9, 10, 28, 30, 31]. Remote sensing in-

struments such as AVIRIS-NG have high spectral resolution

and are capable of detecting point sources of CH4.

Methane Detection. Retrieval of CH4 emission sources

from hyperspectral imagery is a recent topic of study in re-
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mote sensing [9, 10, 28, 30, 31]. Hyperspectral sensors, like

AVIRIS-NG, are not originally designed for gas detection

but are effective tools to observe gases due to their spectral

range. There are two existing methods to estimate column-

wise concentration of methane from AVIRIS-NG data. The

IMAP-DOAS algorithm [9] was adapted for AVIRIS-NG

[30]. This method uses Beer-Lambert law, where Differ-

ential Optical Absorption Spectroscopy (DOAS) describes

the relationship between incident intensity for vertical col-

umn and measured intensity after passing through a light

path containing an absorber [17]. CH4 retrievals are per-

formed between 2215nm and 2410nm. Other methods in-

volve matched filter approaches to estimate column concen-

tration of CH4 [10, 28, 31, 30]. The matched filter tests the

null hypothesis H0 (spectrum generated by the background)

against the alternative hypothesis H1 (spectrum including

the perturbation due to gas). The Cluster-Tuned Matched

Filter algorithm [31] is used to detect the presence of CH4

or strength of presence of CH4 signal. This method is com-

monly applied to data acquired by AVIRIS-NG but the re-

sults are noisy and prone to false positives.

Related Technical Work. Existing machine learning-

based hyperspectral image analysis methods mostly focus

on classification with a small portion dedicated to target de-

tection as reported in [11]. For instance, logistic regres-

sion is commonly used for land cover classification in re-

mote sensing application using pixel-wise classification [8].

However, this method is prone to false positives. The multi-

nomial logistic regression (MLR) [18], is a discriminative

approach that directly models posterior class distributions.

This type of classifier is specifically designed for the lin-

ear spectral unmixing process applications. Support vector

machines (SVMs) are the most used algorithms for hyper-

spectral data analysis [4]. SVM generates a decision bound-

ary with the maximum margin of separation between the

data samples belonging to different classes. Target detec-

tion have been performed using a SVM related algorithm

called support vector data description [26, 23]. This method

generates a minimum enclosing hypersphere containing the

targets. The main limitation of the method is that it does

not account any underlying distribution of the scene data

and fails to distinguish target from underlying background

distribution. Gaussian mixture models (GMMs) represent

the probability density of the data with a weighted summa-

tion of a finite number of Gaussian densities with different

means and standard deviations. GMMs cluster the hyper-

spectral data with connected component analysis to segment

the image into homogeneous areas [24].

Latent linear models find a latent representation of the

data by performing a linear transform. The most common in

hyperspectral imagery is PCA (Principle Component Anal-

ysis). The PCA linearly projects the data onto an orthog-

onal set of axes such that the projections onto each axis

are uncorrelated. It is widely used as a preprocessing tool

for hyperspectral analysis [7, 21, 32]. Ensemble Learning

is a supervised learning technique of merging the results

from multiple base predictors to produce a more accurate

result. It is applied successfully for hyperspectral classifica-

tion [16]. Kernelized PCA to reduce dimension followed by

deep learning methods is a potential solution to target detec-

tion [6, 33, 34]. The authors from [5] introduce a three di-

mensional end-to-end convolutional neural network (CNN)

to predict material class from the image patches (i.e., tile)

around the test pixel. Three dimensional CNN outperforms

the two dimensional CNN by directly learning the spatial-

spectral features as their filters span over both spatial and

spectral axes; however, it requires large training datasets.

Proposed H-mrcnn solution. The single-band CH4 array

is combined with the ground terrain information to train a

Deep Neural Network (DNN) based detector. The naive

DNN detector leverages the standard Mask-RCNN (Region

Convolution Neural Network) [14] to produce a binary seg-

mentation mask of CH4 plumes. Mask-RCNN is suited

for this problem as it looks for specific patterns in the un-

derlying distribution. The naive DNN detector method is

the basis of H-mrcnn. The raw data (432 bands) are pro-

cessed in sets of bands, where H-mrcnn generates a seg-

mentation mask (plume) for each set of bands. This ensem-

ble of detectors (H-mrcnn) captures different distribution

information from each set of bands. The detectors with in-

put from visible and near infrared wavelength range capture

the distribution of the underlying terrain. These detectors

learn to eliminate the potential confusers (same signature as

methane) such as hydrocarbon paints on large warehouses

or asphalt roads. The detectors trained on bands with wave-

length in short infrared regions capture the distribution of

the CH4 signature. The output mask candidates from the

detectors are fused by a simple 2-layer perceptron network

to decide a weight for each mask and its overlay. Learn-

ing methane signatures, confuser signatures, and plume and

confusers shapes helps to simultaneously predict reliable

plume shapes and eliminate the false positives.

Experimental results indicate that the ensemble and fu-

sion methods are effective representations and detectors of

CH4 plumes and their shapes. The decision mechanism

weights the contribution of each weak detector and pro-

duces an estimate of the gas presence or absence (overlap-

ping the CH4 detections from each detector in the ensem-

ble). Thorough literature search indicates that H-mrcnn is

the first solution that addresses the large-area hyperspectral

data analysis problem. It introduces new methods to de-

lineate and detect amorphous gas plumes using principled

statistics, signal processing, and deep neural networks.
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Technical Contributions and Innovations

1. A novel approach optimized for binary plume detec-

tion via ensembles, which better describe gas shapes.

2. Large-area data inspection and visualization tools.

3. A new and improved method to effectively use all the

432-bands (hyperspectral) data for rapid processing

and analysis of hyperspectral information.

4. An autonomous plume detector that estimates bi-

nary plume masks (methane plume vs. no methane

plume) and a ensemble method that estimates relative

plume enhancements representations (i.e., analog) us-

ing higher resolution per-band window information.

5. An effective template for an end-to-end method to an-

alyze and process “RAW” hyperspectral data for a spe-

cific gas signature. This study uses CH4 as an example

that is generalizable to other gas signatures.

The proposed H-mrcnn is a combination of an optimized

matched filter and Mask-RCNN that identifies the correla-

tion both in spectral and spatial domains respectively and

detects the presence and shape CH4 plume.

Extensive experimentation shows the performance of H-

mrcnn compared to traditional machine learning algorithms

such as logistic regression, SVM, meanshift with watershed

and linear latent models and state of the art deep learn-

ing based segmentation model Learn to Segment Every-

thing [15]. The proposed solution outperforms the compet-

ing methods in terms of detection accuracy and/or speed.

Collection of CH4 Data. Although the AVIRIS [12] and

AVIRIS-NG [13] sensors are not designed for detecting

CH4 emissions, and are used for high resolution map-

ping of natural CH4 seeps [22] and fugitive CH4 emis-

sions [28, 31, 2]. The quantification of gas presence in a

certain location is based on its atomic and molecular prop-

erties. The gases absorb a certain wavelength of light (an

absorption line spectrum). CH4 gas absorbs light in the

wavelength range 2200nm to 2400nm. The detection of

CH4 signal strength is based on its detected absorption (i.e.,

more methane yields a stronger signature).

Major challenges of plume representation and detection

is their rarity and the small-pixel footprint compared to

the large observed area. The occurrence frequency of the

plumes in this dataset relative to the image dimensions is

shown in Figure 2. This histogram shows that the highest

ratio in this dataset is only 1.12 percent. The most common

image-plume portion is less than 0.28% found in 36 images.

The proposed methods are developed and tested on two

datasets derived from AVIRIS-NG instrument: Dataset A is

a rectified 4-band dataset defined in [29]. The data contains

4-band datum with three bands comprising red, green, and

blue reflectance intensities and a fourth band comprising

Figure 2: Frequency count plot of the percent ratio of plume-pixels

to hyperspectral-pixels (rows and columns). The plot indicates that the

plumes are a very small portion of the image(i.e., small pixel foot-print).

Figure 3: Relation between dataset A (χA) and dataset B (χB). The

432-bands data from dataset B are processed through a matched filter

to yield dataset A. Detecting plumes using this information poor dataset

(Dataset A) is challenging. H-mrcnn addresses this challenge by modeling

terrain absorption using ensemble and decision fusion methods.

CH4 relative concentration in ppm per meter (parts per mil-

lion per meter); Dataset B is an unrectified, 432-band (i.e.,

raw data) dataset. It is acquired in VSWIR(Visible Short-

wave Infrared) range, measuring over 432 spectra of color

channels ranging from ultraviolet (380nm) to shortwave in-

frared (2510nm). The images are taken over large areas,

creating a three-dimensional data cube of radiance, where

two dimensions are the spatial domain (i.e., 2D-image) and

the third one is in the spectral domain (i.e., wavelength)

as shown in Figure 3, which visualizes the relationship be-

tween the two datasets. This data is collected in “Four Cor-

ner Area” (FCA), the geographical US-Mexico border.

The terrain types include plains, mountain regions,

large warehouses, vegetation, water bodies, deeply irrigated

fields, livestock farms, coal mines, and other CH4 emitting

areas. The aircraft with AVIRIS-NG instrument flies at a

height of 3km above the ground. There are multiple CH4

leakage candidate regions. The ground terrain also contains

a large number of confusers in CH4 detection, for example,

paints of hydrocarbons on the roof of warehouses. Paint ex-

hibits similar characteristics to CH4 and cause strong false

positives.

2. Approach
The proposed approach tackles two versions of CH4

plume dataset. Dataset A is the data pre-processed by

Jet Propulsion Laboratory (JPL)[29], where 432-band mea-

surements are processed into one single-channel array using

conventional match-filtering techniques with the CH4 sig-
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Figure 4: Sample terrain image (dimensions: 850×1300 pixels) from a

flightline (ang20150419t163741). The image has an area of approximately

8×10
5km2. It is reconstructed using the radiance values from the visible

spectra (400nm− 700nm) from Raw data (χB).

nature as the target. The conventional match-filtering tech-

nique takes 180 minutes per datapoint to process 432bands

into 1 single channel output. The optimized implementation

has reduced this processing time to 15 minutes per data-

point. The single channel array is stacked with three other

bands, each selected from the visual red, blue, and green

wavelengths. The proposed naive single-band solution uses

dataset A to evaluate and validate the initial findings and

tune a binary plume detector. Dataset B is the original 432-

band raw dataset. This dataset is used to design, develop,

and evaluate the proposed H-mrcnn solution, which is the

formalized naive single-band detector.

Methane Detection as a Segmentation Problem. Gas

emitting from a point source has a specific shape texture

as it moves through the atmosphere and differs from the un-

derlying terrain. The shape indicates the source or origin

of gas, as the gas emitting from a point source has spe-

cific plume-like morphology. Mask-RCNN is suited for

this problem as it looks for specific patterns in the under-

lying distribution. In this application it learns the terrain

and plume shape, which serves to enhance the detection and

eliminate ground terrain confusers(false positives).

2.1. JPL Dataset A (χA)
In dataset A, each data array represents a flightline of the

aircraft with the AVIRIS-NG instrument. Visualization of

sample image (3-bands, RGB) is shown in Figure 4. The

gas plume information is available in the fourth band in the

form of ppm×m (part per million per meter) values. The

value at each pixel represents the enhancement in CH4 con-

centration at that location. The ratio of plume to image pixel

counts is very small (i.e., small-pixel footprint).

Data Processing Pipeline. There are only 46 data points

(22000×1400×4) available to train. The neural network is

trained to generate segmentation map of the methane plume

and eliminate the false positives. The pre-process converts

the single band with CH4 information into two - the first

band is data point level normalization (local normalization)

and second band is whole dataset (46 data points) level nor-

malization (global normalization). The data is appended

to ground terrain information (greyscale) as the third band.

The local normalized band provides precise plume bound-

aries, see Figure 5(a). The white pixels represent plume and

black pixels are background. The global normalized band

provides the network with information about the range of

methane signal strength across the whole dataset, see Fig-

ure 5(b). The greyscale image provides terrain information

to the neural network, see Figure 5(c). Each processed data

point dimension is 22000 (rows) × 1400 (cols) ×3 (chan-

nels). The processed data points are tiled with sliding win-

dow in the spatial domain following sizes:

1. 1024× 1024× 3 with stride 512

2. 512× 512× 3 with stride 256

3. 256× 256× 3 with stride 128

4. 128× 128× 3 with stride 64

The sample tiles of size 512×512 are shown in Figure 5 for

band-1 (a), band-2 (b), and band-3 (c).

(a) (b) (c)

Figure 5: Components of the input 3-channel images to train and test the

naive single-band methane plume detector, where (a) Visualization of lo-

cally normalized pixel-intensities, (b) Visualization of globally normalized

pixel-intensities, and (c) Visualization of greyscale terrain.

Annotation Generation and Data Augmentation. The

annotation is available in dataset A. Training is only done

on image tiles, which have plume (the original image only

has a very small plume, as shown in Figure 2). The fine-

tuning process leverages the built-in data augmentation.

Fine-Tuning Mask R-CNN. The Naive Mask-RCNN is

a binary and fine-tuned plume detector. Its output is a seg-

mentation mask of CH4. The Mask-RCNN detector uses

ResNet-101 as the backbone. It builds a feature pyramid

and then a region proposal network (RPN) proposes regions

of objects (plume). Then, these proposals along with the

feature pyramid are used by another neural network that

produce mask (plume shape), class point), bounding boxes

for each instance of objects (plume). For more details on

the architecture, please refer to paper [14]. The default con-

fidence value for each predicted plume is 0.7 [1]. One mask

is predicted for each class. A sample prediction of plume

and its shape are shown in Figure 7 (a) & (c) for the pre-

dicted mask (red:black) and (b) & (d) (red:terrain) for the

prediction of methane overlayed on the terrain.

2.2. Raw Hyperspectral Dataset B (χB)

Matched filtering is a technique to differentiate between

the regions of interest and background pixels. In this case,
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the signal of interest is CH4 and the background is the

ground terrain. Let xB ∈ R
d be a sample from dataset

χB representing the background terrain pixel, where (xB is

a signal vector in the spectral domain and where each pixel

intensity value is the radiance value at a particular wave-

length). The spectrum is represented by ξ(xB), when the

gas is present. The linear matched filter is modeled as addi-

tive perturbation:

ξ(xB) = xB + ǫt,

where t is the gas spectrum or target signature and ǫ repre-

sents the chemical properties of the gas.

The matched filter is a vector α ∈ R
d and the output of the

matched filter is the scalar αT xB . The objective is to find a

filter α such that αT ξ(xB) is different from αT xB .

The methane gas spectrum, represented by t and αT t,

is the matched filter output. The terrain pixel vector and

matched filter output are represented by xB and αT xB , re-

spectively. The average Gas-to-Terrain-Ratio (GTR) is:

GTR =
|αT t|2

V ar(αT xB)
,

where V ar is the variance given by:

V ar(αT xB) = 〈(αT xB − αTµ)2〉 = αT Kα,

with covariance K and mean µ.

The magnitude of α does not affect GTR; therefore, opti-

mizing GTR means maximizing αT t subject to the constant

constraint αT Kα = 1. The Lagrangian multiplier λ is added

to loss function l:

l(α;λ, t,K) = −αT t + λ(αT Kα− 1).

Minimizing loss function l means maximizing GTR 1. The

loss is simplified by assuming u is:

u = 2λK1/2α− K−1/2t.

Then the loss function l is re-written as:

l(α;λ, t,K) =
1

4λ
(uT

u− t
T
K

−1
t)− λ.

The GTR is maximized when u = 0 [27], which yields:

α =
K−1t√
tT K−1t

.

Intuitively, the methane gas retrieval exploits the lin-

earized matched filter, where the background terrain radi-

ance is modeled as a multivariate Gaussian with mean µ

1see appendix B for more details

and covariance K. The matched filter tests the terrain with-

out gas (H0) against the alternative (H1), where the terrain

undergoes a linear perturbation by a gas signature t via:

H0 : xB ∼ N (µ, K), H1 : xB ∼ .N (µ+ αt, K).

In the CH4 case, α is a matched filter vector. The

column-wise background estimation assumes that most

background pixels do not contain the CH4 gas plume.

Therefore, the optimal discriminant matched filter [27] is:

α̂(xB) =
(xB − µ)T K−1t√

tT K−1t
.

The target signal t represents the change in radiance units of

the background caused by adding a unit mixing ratio length

of CH4 absorption. This method uses one uniform t and

does not require computing one for each data point. It is ap-

plied to dataset B along with the matched filter and neural

network detector modules. The main benefits of this ap-

proach include the ability to obtain maximum information

about the terrain, omit false positives, and achieve accurate

plume contours and shapes as demonstrated in § 3.

The sliding-window approach is used to sample the spec-

tral domain. This approach extracts maximum available

information about both the plume and the ground terrain

across the available wavelength range (380nm to 2510nm).

Data Processing Pipeline. Added benefits of using a

matched filter along with a neural network architecture is

the ability to process the data in its raw form. Each data

point is of size 22000 (rows) ×598 (cols) ×432 (band-

s/wavelength). This means that the files are massive in stor-

age size ranging from 45GB ∼ 55GB per file, which be-

comes a challenge. The raw data is not ortho-rectified, but

it is processed using an in-house optimized matched filter

over a set of bands. A sample data point xBi ∈ xB with

single-band matched filter output given by:

α̂(xBi) =
(xBi − µ)T K−1t√

tT K−1t
.

The data is processed by sliding a window along the

spectral domain with various window sizes and 50% stride.

The input data to the matched filter stage is 22000 ×
598×window-size. This yields 22000 × 598 × 1 (i.e.,

α̂(xBi)). This output is processed as described in § 2.1. The

3-band output (1-band: local normalized, 2-band: global

normalized and 3-band: greyscale terrain) is tiled using a

sliding along the spatial domain, which is the input to Mask-

RCNN. The solution is evaluated using the following:

1. window-size of 200 bands

2. window-size of 100 bands

3. window-size of 50 band
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2.3. Ensemble Processing Methods
This section describes the algorithms for match filtering,

spatial and spectral sliding-window, and fine-tuning DNN

detectors using hyperspectral data for plume representation

and detection. The multi-band match filtering process of the

432-band hyperspectral data is detailed in Algorithm 1.

Data: χB

Result: ortho-corrected matched filter output

(α̂ort(xBi)); i=0 initialization;

for xB in XB do

create memory map xB ;

while i less then Bands do

read(xBi) from band i to i+window-size;

for cols in xBi do

Compute K and µ of xBi;

α̂(xBi) =
(xBi−µ)T K−1t√

tT K−1t
;

end

α̂ort(xBi) =

mapping to ortho-corrected values(α̂(xBi));
i = i-stride;

end

end

Algorithm 1: Band-wise matched filter.

The output from the matched filter is tiled to deal with

the small-pixel footprint nature of the gas plumes in large-

area hyperspectral overhead imagery using Algorithm 2 to

produce sliding spatial and spectral data tiles.

Data: α̂ort(xBi), dimension : 22000× 1500× 1
Result: input imagejj
initialization;

for each file in α̂ort(xBi) do
α̂ort(xBi)jL = local normalization(jL)

α̂ort(xBi)jG = global normalization(jG)

gray(xBi)jT = greyscale terrain(jT);

Stack (jL, jG, jT ) together and create tiles of size

tilesize× tilesize× 3;

end

Algorithm 2: Data pre-processing.

The spatial and spectral tiles are used to train and fine-

tune an ensemble of weak detectors using Algorithm 3.

Ensemble Mask-RCNN. The processed output for each

set of bands is used to train a set of neural networks, we call

it Ensemble Mask-RCNN. Each neural network is learning

about different set of features, for example: bands sets in

the short infrared wavelength region (2200nm to 2500nm)

have more information about the presence of CH4. Recall

that the initial spectral band (400nm to 700nm) sets have

more information about terrain and that the matched filter

output is pixel-wise independent; therefore, Mask-RCNN

learns about the correlation between pixels that contain gas

Data: input imagejj
Result: binary mask of plume shape

initialization;

for i in sets(0-50, 25-75, 50-100.....) do

batch size = 1;

learning rate = 0.0001;

epochs = 50;

image per gpu = 1;

detection min confidence = 0.7;

load ground truth(*.png) refer [ 2.1];

load images(input imagejj);

trained weights = model.train(weights, images,

ground truth);

end

binary mask = model.predict(trained weights, imagejj);

Algorithm 3: Mask-RCNN training and fine-tuning.

information. This information is used to fine-tune one de-

tector (Mask-RCNN) for each set of bands. The output from

each detector produces a prediction about the plume shape.

The weak decisions are fed to a simple 2-layer perceptron

network to learn the contribution of each detector in the en-

semble and output a final estimate (as a weighted average

sum) of the plumes.

3. Experimental Results
The data is pre-processed on a machine with 16GB RAM

and 12 CPU cores. Each image in dataset A is 1∼2 GB in

size and processing all of the 46 data points in the dataset

takes approximately 45 minutes. The neural network fine-

tuning is using one Nvidia GTX 1080Ti GPU. The Mask-

RCNN is initialized with MS-COCO [20] weights. The

fine-tuning process takes about two hours. A sample mea-

surement of the terrain and the manually generated CH4

mask (ground truth data) are shown in Figure 6.

(a) (b) (c)

Figure 6: Visualization of a randomly selected datapoint. From left-to-

right the images are: the terrain (a), the manually created CH4 mask (b),

and the mask overlayed on the terrain (c).

The ground truth data file is generated by an expert an-

alyst who inspects each CH4 flightline and manually delin-

eates plumes and separates them from any non-plume arti-

facts. The manual approach is effective but does not scale,

since processing time and human work-hours are significant

performance bottlenecks.
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The following experiment compares the naive plume de-

tector with the ensemble detector. Qualitative results of the

ensemble based plume detection are shown in Figure 7 for

the observations collected from terrain shown in (a), with

the ensemble predictions shown in (c).

(a) (b) (c) (d)

Figure 7: CH4 detection output. The naive single-band mask-rcnn de-

tector is shown in (a) as a binary mask (plume vs. no plume) and the

detection overlayed on the terrain is shown in (b). The ensemble H-mrcnn

detector showing the contour mask of the predicted CH4 presence is shown

in (c). The mask overlayed weight is a concentration analog and the pre-

dicted mask overlayed on the overhead terrain image is shown in (d).

Baseline methods. Multiple traditional machine learning

approaches that are known to work well with target detec-

tion problems [11] and state of the art deep learning image

segmentation method [15] are tested on the same dataset

as the proposed methods. Logistic regression is commonly

used for land cover classification, multinomial logistic re-

gression (MLR) [18] is trained on dataset A, the model per-

formed poorly with IOU of just 5%. Support Vector Ma-

chines (SVM) have been successfully applied to hyperspec-

tral data analysis for target detection task. We trained a

SVM classifier inspired by [23, 26] on dataset B. For de-

tecting such tiny plumes, SVM performed with 25% higher

IOU than logistic regression. The poor performance of

SVM is due to the high rate of false positives detection.

Gaussian mixture models (GMMs) are also highly infected

by false positives. The evaluation is done in using the com-

plete 432 bands data. PCA on raw data followed by logistic

regression. This results in poor plume detection, which is

caused by the target to image ratio. Capturing 0.80, 0.85,

and 0.90 variance did not result in fully getting the target

variance into account. Meanshift with watershed algorithm

is highly influenced by the terrain and ignores the target.

The performance of H-mrcnn is compared against the in-

housed implementation of ”Learn to Segment Everything”

image segmentation algorithm [15]. This method outper-

forms the classical machine learning algorithms by overall

19% IOU. Results indicate that the method is capable of

eliminating more false positives than the classical methods.

However, the method is limited by number of training sam-

ples. Unlike in the H-mrcnn solutions, which uses the lim-

ited training samples to effectively detect gas plume shape

with an average 0.87 IOU.

Evaluation Metrics. The performance metrics for plume

detection are designed with the unbalanced and rarity nature

of small-pixel footprint plumes in large-area overhead hy-

PERFORMANCE COMPARISON WITH EXISTING METHODS

Category Method Precision Recall IOU F1

Time

to

Train

Classical

Machine

Learning

LogReg

[18]
0.52 0.06 0.05 0.11

30hrs

CPU

SVM

[23, 26]
0.92 0.3 0.29 .45

39hrs

CPU

GMMs

[10]
0.83 0.27 0.4 0.4

20hrs

CPU

Watershed

[3]
0.52 0.23 0.18 0.31

21hrs

CPU

432

Bands

PCA (.85)

+ LogReg
0.44 0.07 0.06 0.12

40hrs

CPU

PCA (.85)

+ SVM
0.84 0.33 0.31 0.47

70hrs

CPU

Deep

Learning

Segment

Everything

[15]
0.8 0.55 0.48 0.65

25hrs

GPU

H-mrcnn

(proposed)
0.96 0.91 0.87 0.94

30hrs

GPU

Table 1: Performance comparison of the proposed H-mrcnn method

perspectral imagery. The metrics include intersection-over-

union (IOU), which measures how predicted masks match

the manual mask; the euclidean distance between plume

centroids which represents how well the plume core is pre-

dicted; and the F1-score. The results include data sizes (in

number of tiles or detectors) to provide contrast between

accuracy and complexity. The overall processing time of

(180+7)minutes each datapoint: Dataset B processed by

(JPL) conventional matched filter to Dataset A and then

Mask-RCNN training, is reduced to (15+7) minutes by H-

mrcnn with an IOU increase from 0.832 to 0.879.

Plume Overlap. The performance of the proposed solu-

tion is evaluated based on the ratio of predicted plume area

overlapping with the human generated ground truth plume

area. The plume overlap provides a quantitative measure of

how well the proposed naive single-band method performs

on predicting the plume shape and location. The higher the

plume overlap, the better the prediction. The results sum-

marized in Table 2 show that the naive single-band detector

achieves maximum overlap at spatial pixel dimensions of

256× 256 with a stride of 128.

Distance between Centroids. The second metric is the

Euclidean distance between the centroid of the human gen-

erated ground truth plume and the predicted plume. The

centroid coordinates are the arithmetic mean position of all

the points in the plume shape. The smaller the distance bet-

ter the prediction. As show in Table 2 the predicted plumes

and ground truth coincide best with spatial dimension are

256× 256 with a stride of 128.

Plume Detection and Overlap. The following experi-

ments validate the use and design of the DNN-based naive

and ensemble detectors. The performance of the naive

single-band detector is shown in Table 2. The best perfor-

mance is achieved at spatial dimensions of 256×256 pixels

a stride of 128 pixels. At this resolution, the network is ca-

pable of properly representing the mask. The performance
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decreases with spatial dimension 128×128 pixels and stride

of 64, this is because the whole tile is a plume/mask. At this

ratio there is not enough information to effectively repre-

sent and learn the background. This results serves to design

the individual elements of the ensemble of detectors, where

each detector is tuned for specific spectral region using spa-

tial 256× 256 pixels tiles and 128 stride.

Naive Mask-RCNN (Dataset A)

Spatial

Dimension
IOU F1-score Distance Time #Tiles

1024x1024

(overlap 512)
0.590 0.742 23.96 90

150

(4 : 6)

512x512

(overlap 256)
0.769 0.869 13.24 150

500

(15 : 20)

256x256

(overlap 128)
0.832 0.923 5.83 270

200

(35 : 40)

128x128

(overlap 64)
0.762 0.865 22.36 420

7000

(100 : 125)

Table 2: Naive Mask-RCNN detection. Performance metrics for the

tile spatial dimensions for various pixel (window size) combinations with

50% overlap (stride). The metrics include IOU: intersection-over-union for

mask and ground-truth overlap; F1-score: plume detection performance

for unbalanced plume vs. no-plume datapoints; Distance: the estimated

centroid euclidean distance (plume’s first geometric moment); Time: is the

approximate processing time in minutes; the number of tiles generated by

each configuration is shown in # Tiles and (background:plume) ratio. Time

excludes processing time by JPL from Dataset B to Dataset A

Ensemble of Detectors. A bank of detectors predicts

plume shape. As shown in Table 3. The model best per-

forms when the set size in spectral domain is 50 bands in

a set with stride 25. The spatial dimensions are 256 × 256
with stride 128, which were learned from the naive detec-

tor. Using a spectral set of 50 allows the network to cover

the visible spectrum, i.e., 380nm to 650nm and learn about

the terrain. This information is used to reduce false posi-

tives. In addition, the ensemble uses individual wavelength

neighborhoods. The balance is critical as the number of de-

tectors and processing time increases exponentially making

the system inefficient. The final plume estimated is pro-

duced by 2-layer perceptron, which decides the weights for

H-MRCNN (Dataset B)

Spectral

Dimension
IOU F1-score Distance Time Bank

200 bands

(overlap 100)
0.645 0.772 16.71 90

∗/90+ 4

100 bands

(overlap 50)
0.706 0.814 4.24 810

∗/90+ 9

50 bands

(overlap 25)
0.854 0.921 4.12 1500

∗/90+ 17

Table 3: Bank of Detectors showing performance metrics for the tile

spectral dimensions for various band (window size) combinations with

50% overlap (stride). The metrics include IOU: intersection-over-union for

mask and ground-truth overlap; F1-score: plume detection performance

for unbalanced plume vs. no-plume datapoints; Distance: the estimated

centroid euclidean distance (plume’s first geometric moment); Time: is

the approximate processing time in minutes(includes processing of Raw

data), where the symbols * and + represent not-prarallelized and paral-

lelized processes, respectively; Bank is the number of detectors generated

by each configuration.

H-MRCNN with & without Ensemble Network

Ensemble

Detection
IOU F1-score Distance

Uniform Weight

for all

Predictions
0.854 0.920 4.120

2-Layer

Perceptron

(range: -1 to 1)
0.880 0.945 4.120

Table 4: Ensemble Detection Performance based on decision fusion

mechanism (Uniform vs. 2-layer perceptron). The metrics reported

include Intersection-over-Union between the true-labeled and predicted

masks (IOU); F1-score for binary incidence and detection of plumes; and

Distance: Euclidean distance between the centroids of true plume mask

and the predicted plume mask in pixels.)

each detector in detector bank. As shown in Table 3 row 1,

on assigning equal weights to all the detectors, the final pre-

dicted plumes have smaller IOU values. Using a network to

learn and estimate decision weights for each member in the

ensemble produces an accurate plume prediction.

4. Summary

This work introduces techniques that leverage pre-

existing deep neural network based detectors to formulate

a naive single-band detector. Also, this work further devel-

ops the findings from the design and evaluation of the naive

detector (i.e., data sampling parameters). It integrates spec-

tral sampling along with a newly improved and optimized

match-filtering algorithm to process large-area hyperspec-

tral data. The processed hyperspectral data is used to fine-

tune and construct an ensemble of detectors. Thorough ex-

perimental results indicate that the naive detector matches

the performance of human annotations by 83.2% for binary

detections. The ensemble approach outperforms the detec-

tion of the naive detector by 87.95% and better represents

the plume using the ensemble detections. The presented

solutions will enable the rapid processing and analysis of

gas plumes, removes the confusers (false positives), which

produces actionable information and response plans about

greenhouse gases in the atmosphere.

Future Work. Future work includes extensions of the H-

mrcnn to other gases. In addition, potential future direc-

tions include online learning and tuning for methane point

sources and diffused sources. As more data becomes avail-

able, the study will focus on time-series analysis of plumes

(e.g., plume dispersion, gas flux, life-span, and evolution).
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