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Abstract

A simple prior free factorization algorithm [9] is quite

often cited work in the field of Non-Rigid Structure from

Motion (NRSfM). The benefit of this work lies in its simplic-

ity of implementation, strong theoretical justification to the

motion and structure estimation, and its invincible original-

ity. Despite this, the prevailing view is, that it performs ex-

ceedingly inferior to other methods on several benchmark

datasets [14, 1]. However, our subtle investigation pro-

vides some empirical statistics which made us think against

such views. The statistical results we obtained supersedes

Dai et al.[9] originally reported results on the benchmark

datasets by a significant margin under some elementary

changes in their core algorithmic idea [9]. Now, these re-

sults not only exposes some unrevealed areas for research

in NRSfM but also give rise to new mathematical challenges

for NRSfM researchers. We argue that by properly utiliz-

ing the well-established assumptions about a non-rigidly

deforming shape i.e, it deforms smoothly over frames [27]

and it spans a low-rank space, the simple prior-free idea

can provide results which is comparable to the best avail-

able algorithms. In this paper, we explore some of the hid-

den intricacies missed by Dai et. al. work [9] and how

some elementary measures and modifications can enhance

its performance, as high as approx. 18% on the benchmark

dataset. The improved performance is justified and empiri-

cally verified by extensive experiments on several datasets.

We believe our work has both practical and theoretical im-

portance for the development of better NRSfM algorithms.

1. Introduction

Notation: The notation used in this paper is similar to

Dai et al. work [9] unless otherwise stated.

Non-rigid Structure from Motion (NRSfM) is a well-

known problem in geometric computer vision [5, 1, 9, 20,

18]. The goal of this problem is to reconstruct 3D struc-

ture of a deforming object using multiple frames. One of

the most popular way to solve NRSfM is the matrix fac-

torization approach. The matrix factorization approach to
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Figure 1: The method recovers 3D dimensional structure of the

deforming object over multiple frames. Our elementary but power-

ful changes provides a substantial improvement in the reconstruc-

tion accuracy than the previous results reported for “prior-free"

approach. The example images are taken from the recently re-

leased NRSfM Challenge Dataset [14]. Our reconstruction results

are nearly as good as the best performing algorithm without using

very complex and involved mathematical optimization [19].

solve this problem dates back to 2000 [5] with no satisfac-

tory solution in place until 2012. In the year 2012, Dai et al.

[8] proposed a ground-breaking approach to solve NRSfM.

This method for solving NRSfM is now considered as a

classical work in NRSfM [9]. In that paper, the camera mo-

tion is estimated by imposing the null space constraint and

the rank-3 positive semi-definite matrix cone constraint on

the Gram matrix (Qk). Further, nuclear norm minimization

of the reshuffled shape matrix (S♯) was introduced to prof-

fer stronger rank bound on the shape matrix for non-rigid

shape estimation. The striking part of their work is that it

not only challenged the myth of the inherent basis ambigu-

ity in NRSfM [33] but also supplied a practical “prior-free"

algorithm to solve NRSfM. Nonetheless, over years, it was

observed that their remarkable theory performs poorly on

benchmark datasets [22, 14]. In this paper, our goal is to

make “prior-free idea” work well on real world scenarios.
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Theoretically, the elementary idea of Dai et al. [9] con-

veniently encapsulates all the basic intuitions which are re-

quired to solve a general NRSfM problem. One may imme-

diately argue on its performance when the deforming shape

is composed of a union of low-rank subspace[19, 17, 36, 16,

15]. However, in this paper, we restrict our discussion to the

classical representation of a NRSfM problem [5], without

paying much attention to, how clustering benefits 3D re-

construction of the non-rigid object and other such notions

of compact data representation. The reason for this choice

is that the improvement in the performance of a classical

baseline shall benefit the methods built on top of it.

The main purpose of this work is to uncover some of the

unexplored mathematical intricacies in the prior free factor-

ization approach to NRSfM, and improve on the idea sup-

plied by Dai et al. [9]. Our exposition leads to the pos-

sible reasons for its inferior performance on the benchmark

datasets [1, 14, 31]. It is shown in this paper that the rotation

estimate using Dai et al. work [9] is not unique under the

same model complexity prior (K/rank), and they overlooked

to utilize full correction matrix space [4]. Our investigation

unveil the possibility of procuring motion that satisfies the

well-known assumption of smooth non-rigid deformation of

the object [27]. A simple search for the proper column-

triplet (triads [4]) for the correction matrix (Gk) based on

the smoothness of camera motion can indeed help improve

the accuracy of the algorithm. Further, we argue that the

weighted nuclear norm minimization of the shape matrix

(S♯) is a far better choice than its global trace norm mini-

mization. Lastly, due to our extensive analysis, we are able

to posit some unsolved issues in NRSfM under “prior-free”

idea which needs attention for further progress in this field.

In this paper, it is not claimed that we achieve state-of-

the-art results on the benchmark datasets using our new ap-

proach. However, we empirically show that we can get very

close to the best performing approaches and the difference

is not very great, without the employment of complex and

involved mathematical optimization [19, 22]. In this paper,

we also argue that the inferior performance of “prior-free"

method may not be due the proposed theoretical idea but be-

cause they overlooked some of the mathematical construc-

tion in their own formulation, and missed on properly uti-

lizing the well-known assumptions about non-rigidly mov-

ing object i.e., smooth deformation [27] and low-rank shape

[9]. Hence, the conclusion, understanding, and use of sim-

ple “prior-free” algorithm to NRSfM is not complete and

precise. Through this work, we try to amend and nullify the

prevailing perception about the “prior-free" approach, and

how it can be used to its maximum potential. We feel that

our paper touches some critical points which are essential

to establish a theoretical closure to some of the elementary

problems within the factorization approach to NRSfM.

Contribution: Firstly, our work postulates some rectifica-

tion to the usage of “Intersection Method" [9] to compute

camera motion. With the suitable example, we establish

that the generalization made on the rotation matrix estima-

tion by Dai et al. work [9] is not convincing and therefore,

the knowledge about the strength of “Intersection theorem”

is not completely exploited. Secondly, we provide an ana-

lytic solution to estimate suitable rotation using Intersection

theorem and conjecture some challenges associated with

it. Lastly, we propose a weighted nuclear norm minimiza-

tion problem to estimate non-rigid 3D shape. Our approach

shows a substantial improvement in the 3D reconstruction

accuracy (nearly 18%). Moreover, we observed perfor-

mance improvement in the case of noisy and missing tra-

jectories §4.2 (under minor adjustment) using our method.

In this work, our attempt is to make the baseline method1

more accurate, both in terms of understanding and perfor-

mance, subject to the mathematical simplicity. To achieve

this, we attempt to avoid the usage of complex mathematical

notions such as union of independent subspace, dependent

subspace representation [36, 19, 21], procrustean normal

distribution [22], kernelization [10] etc. Hence, it is simple

to understand the theoretical and practical justification of

our method. We show that by applying simple but powerful

logical and mathematical modifications to the prior free idea

[9], we can get close to or even perform better at times than

the best available algorithms on the benchmark datasets.

2. Representation and Motion Estimation

1. Classical Representation: Tomasi and Kanade fac-

torization method to structure-from-motion under ortho-

graphic camera projection appropriately summarizes the be-

havior of the 3D points over frames [30]. The relation be-

tween 3D shape, motion and its projection over frames was

defined as

W = RS (1)

where, W ∈ R
2F×P is the measurement matrix formed by

stacking all the image coordinates (x = [u, v]T) for ‘P’

points along ‘F’ rows i.e., total number of frames. R =
blockdiagonal(R1, R2, .., RF) ∈ R

2F×3F denotes the or-

thographic camera rotation matrix with each Ri ∈ R
2×3 as

per frame rotation. S ∈ R
3F×P represent the shape matrix

with each row triplet as a 3D shape. This representation was

later extended by Bregler et al. [5] to recover non-rigid 3D

shapes. More concretely,

W =





x11 . . .x1P

. . .

xF1 . . .xFP



 =





R1S1
..

RFSF



 =





c11R1 . . . c1KR1
. . .

cF1RF . . . cFKRF









B1
..

BK





⇒ W = R(C⊗ I3)B = ΠB
(2)

1By baseline, we mean the methods that solve NRSfM using its classi-

cal representation W = RS that have withstood the test of time [30, 5].
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The matrix ‘B’ and ‘C’ are composed of shape bases and

shape coefficients respectively, with ‘K’ as the number of

shape bases. ‘⊗’ denotes the kronecker product and ‘I3’ is

a 3 × 3 identity matrix. It is evident from the above for-

mulation that the rank of W ≤ 3K and also rank(S) ≤ 3K.

However, S is not a general rank 3K matrix but own a spe-

cial structure due to C⊗ I3 factor [9].

2. Null Space Representation of the Orthonormality

Constraint: An initial step in the factorization approach

to NRSfM is to perform a rank 3K decomposition of the

measurement matrix W via singular value decomposition

(svd) i.e. W = Π̂B̂. This is then followed by the estima-

tion of Euclidean corrective matrix ‘G’ to solve rotation and

3D structure. The main reason for such a procedure is due

to the fact that the singular value decomposition of ‘W’ ma-

trix is not unique as any non-singular matrix G ∈ R
3K×3K in

between the two matrices Π̂ and B̂ can form a valid factor-

ization. Mathematically,

W ≡ Π̂B̂ = (Π̂G)(G−1B̂) = ΠB (3)

Now, once we are able to solve G correctly, then rotation

and shape can be estimated using the above relations [5]. To

solve G, orthonormality constraints are imposed i.e. RiR
T
i =

I2. Representing the ith double row of Π̂ as Π̂2i−1:2i ∈
R

2×3K and Gk ∈ R
3K×3 as the kth column triplet of G, then

using Eq:(2) and Eq:(3) we can write

Π̂2i−1:2iGk = cikRi, ∀ i = {1, 2, .., F}, k = {1, 2, .., K}
(4)

Multiplying both sides by RTi from right side gives

Π̂2i−1:2iGkG
T
kΠ̂

T
2i−1:2i = c2ikI2

This leads to two linear equation constraint

Π̂2i−1QkΠ̂
T
2i−1 = Π̂2iQkΠ̂

T
2i, Π̂2i−1QkΠ̂

T
2i = 0

(5)

where, Qk ∈ R
3K×3K = GkG

T
k. Using the algebraic relation

vec(AXBT) = (B ⊗ A)vec(X), Dai et al. transformed these

constraints (Eq:5) to a null space representation as follows:

[

Π̂2i−1 ⊗ Π̂2i−1 − Π̂2i ⊗ Π̂2i

Π̂2i−1 ⊗ Π̂2i

]

vec(Qk) = Avec(Qk) = 0

(6)

Using the above form and previous work in NRSfM [33],

Dai et al. proposed the intersection theorem and supplied a

SDP solution to estimate the Qk matrix and the Euclidean

corrective matrix Gk using svd().

Theorem 1 Intersection Theorem: Under non-generate

and noise-free conditions, any correct solution of Qk must

lie in the intersection of the (2K2 − K) dimensional null-

space of A and a rank 3 positive semi-definite matrix cone

i.e. Qk must belong to

Gϵ	ℝ
3K×3K

G1 G) G3 GK

1: 3 4: 6 7: 9 3K− 2: 3K

Considered by Dai et.al.

(a)

Figure 2: (a) The column triplet (1:3) of euclidean corrective ma-

trix (Gk) used by Dai et al. work [9] shown in red shade. It is

stated with the notion that there is no loss of generality to choose

G1. However, choosing other column triplet may result in better

rotation and shape estimate as shown in Figure 4(a) and 4(b)

{Avec(Qk)} ∩ {Qk � 0} ∩ {rank(Qk) = 3} (7)

Dai et al. solution to rotation: They proposed that once

the Qk is solved, rather than solving for full Euclidean cor-

rective matrix G ∈ R
3K×3K, use svd() to extract rank 3 Gk.

The solved Gk ∈ R
3K×3 can then be use to find R (Eq:4)

up to sign (cik). The method quote “we adopt a simpler

approach that directly computes the camera motion R from

single column-triplet Gk without need to fill in a big and full

G matrix”. Naturally, this single column-triplet is chosen to

be the first column-triplet (G1) of the Gmatrix (see Fig:2(a)).

Now, such strategy give rise to few legitimate concerns

(a) When each column triplet {Gi}
K
i=1 qualifies for a suit-

able correction matrix, then why G1 has a high pref-

erence? Are we loosing useful information by such

unwarranted preference?

(b) Will each {Gi}
K
i=1 provide the same solution to the ro-

tation matrix?

(c) Generally, most real world deformations are smooth in

nature [27]. Whether such solution to rotation is good

enough for the smooth deformation assumption?

Dai et al. overlooked all these intrinsic issues to solve rota-

tion using their proposed intersection theorem.

Plausible Rectification: Our experiments show that Dai et

al. [9] solution to rotation estimation actually aborted the

useful information present in the G ∈ R
3K×3K. Each of the

‘K’ column triplets in G (i.e. Gk) gives a possible rotation

matrix which is different from each other (see Fig:(3)). Our

empirical evaluations on several datasets show that the first

column triplet is not always the best choice to estimate ro-

tation. Hence, the details provided by Dai et al. work [9] is

incomplete and there is a loss of generality with such pro-

cedure to estimate rotation under the well-known assump-

tion of smooth deformation [27]. Fig:(4(a)) and Fig:(4(b))

provides few statistical results with comparison for both ro-

tation and shape error estimate respectively. For clarity, we

also provide the column triplet index that gives the better

results for the corresponding data sequence and therefore,

provides few counter-examples to such generalization.

Theoretically and practically, this result is of significant
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