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Abstract

Current approaches for person recognition train an en-

semble of region specific convolutional neural networks for

representation learning, and then adopt naive fusion strate-

gies to combine their features or predictions during testing.

In this paper, we propose an unified end-to-end architec-

ture that generates a complete person representation based

on pooling and aggregation of features from multiple body

regions. Our network takes a person image and the pre-

determined locations of body regions as input, and gener-

ates common feature maps that are shared across all the re-

gions. Multiple features corresponding to different regions

are then pooled and combined with an aggregation block,

where the adaptive weights required for aggregation are

obtained through an attention mechanism. Evaluations on

three person recognition datasets - PIPA, Soccer and Han-

nah show that a single model trained end-to-end is com-

putationally faster, requires fewer parameters and achieves

improved performance over separately trained models.

1. Introduction

Person recognition in unconstrained real-world scenar-

ios such as photo-albums, entertainment or surveillance

videos is a challenging problem. People often appear in

arbitrary poses and view points, and instances may be of

low resolution, blurred or severely occluded. Often, the

most discriminative facial region may not be visible com-

pletely. The state-of-the-art face recognition algorithms

when applied in such scenarios typically under-perform

and are not reliable [42]. It is therefore necessary to in-

corporate other complementary information in the form of

body [16, 18, 23, 42], context [15, 19, 20] or attribute level

cues [16] to improve the recognition performance.

Most existing approaches, including the ones mentioned

above follow a multi-step process, which consists of feature

extraction from multiple body regions followed by their ag-

gregation at the feature or decision stage. Several body re-

gions are regressed from head ground truth of an image and

a convolutional neural network (CNN) is trained for each

CNN	 CNN	 CNN	

Softmax	loss	

(a)	

FC	 FC	FC	

Softmax	loss	

(b)	

Softmax	loss	 Softmax	loss	

Figure 1: (a) Current approaches for person recognition fol-

low an ad-hoc scheme in which features are extracted from

several region-specific models and combined as two sepa-

rate process. (b) Our proposed unified end-to-end trainable

model that shares computations across multiple body re-

gions and produces compact person representation by adap-

tively aggregating several pooled features.

of these regions as shown in Figure 1(a). During testing,

features are extracted from region specific CNNs and the

results are combined.

There are two shortcomings with this approach. The first

is related to the training of an ensemble of models. It is not

only sub-optimal to train several region specific models that

are aimed at the same task of identity prediction, but is also

slower and require extremely large number of parameters.

For instance, PIPER [42] and naeil [16] train 107 and

17 models with ∼6 billion and ∼1 billion parameters, re-

spectively, corresponding to different body regions and at-

tributes. Clearly, such a solution with multiple models is not

suitable for memory-constrained applications. The other is-

sue is related to the fusion of features or classifier scores

obtained by multiple models. A stand-alone fusion scheme

based on naive strategies such as concatenation [4, 16] or

global weights estimated from validation sets [23, 42] may

not be effective as it weighs each body feature across all

the instances constantly irrespective of whether it is infor-

mative or not. In an ideal case, weights should be adaptive
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according to the quality of the region (illumination, resolu-

tion, visibility, etc.) and its discriminative ability.

In this paper, we propose an end-to-end person recogni-

tion architecture (N2NPR) in which a single convolutional

neural network is designed to produce a compact represen-

tation. Our architecture consists of three essential blocks

as shown in Figure 1(b). The first block takes a complete

person image as input and produces convolutional feature

maps. These feature maps are shared across multiple body

regions and hence require only a single forward pass to

compute. In the second block, features are pooled from

multiple locations of the shared feature maps according to

fixed and predetermined region of interest (ROI) inputs to

obtain an intermediate representation for each body region.

Finally, the aggregation block maps the pooled features into

a low dimensional space and combines them with adaptive

weights produced by the attention module. The parameters

of these modules can be trained in an end-to-end manner

with other network parameters.

We evaluate our proposed approach on three challeng-

ing person recognition datasets namely PIPA [16], Hannah

movie [28] and Soccer broadcast video [18]. Our results

suggest that a single end-to-end model produces recognition

performance that is significantly better than the previous

methods with large ensemble of models, even outperform-

ing the state-of-the-art approaches. We also show compar-

isons w.r.t parameter size and required computations, and

highlight how our model is better suited for practical appli-

cations.

The salient features and contributions are the following:

• We propose an end-to-end architecture that treats that

problem of person recognition as a whole to produce a

compact representation.

• We propose a unified framework based on a ROI fea-

ture pooling and a novel aggregation scheme to com-

bine features from multiple body regions.

• Our N2NPR model achieves state-of-the-art perfor-

mance on three person recognition benchmarks with

least memory and computations.

2. Related Work

Face recognition and verification are the widely stud-

ied problems related to person identification. There is a vast

literature focused on hand-crafted features [2], metric learn-

ing [31], sparse representations [38] and current state-of-

the-art deep representations [6, 30, 35, 37].

Person recognition that uses face together with addi-

tional cues is another popular direction employed in uncon-

strained settings with cluttered background such as photo

albums and entertainment videos. In addition to face, vari-

ous domain-specific cues such as meta-data, clothing, skin

and hair [3, 32, 41], sub-titles [8], audio [36], camera pose

and timestamps [9] and sport jersey numbers [5] are ex-

ploited to improve the performance. The problem has re-

ceived increased attention in the recent years due to the cre-

ation of large scale person identification dataset PIPA [42].

Since its introduction, several approaches [16, 18, 19, 20,

23, 42] have been proposed for person recognition with ad-

ditional cues.

Recent solutions have focused on CNN representation

learning for different body regions and attributes. PIPER

[42] trains as many as 107 models with poselet patches,

naeil [16] uses features from 17 models optimized for

identity and attribute prediction tasks. Kumar et al. [18] on

the other hand learn pose-specific representations. Their in-

dividual pose models though are optimized jointly for mul-

tiple regions do not share any computations. A new loss

function is proposed in [23] instead of traditional softmax

loss that encourages large inter-class separations in the fea-

ture space. Several contextual relations that exist between

instances in family albums are exploited in [15, 19, 20].

Compared to these approaches, ours is a more practical so-

lution that uses a single end-to-end model and doesn’t re-

quire any contextual information.

Person re-identification deals with matching pedestri-

ans captured from non-overlapping camera views in video-

surveillance applications. Existing works primarily focus

on metric learning [11, 14] with hand-crafted [22, 25] or

deep learning [1, 43] based features to handle variations re-

lated to view-point, pose and appearance.

Deep learning has achieved tremendous success in the

recent years progressing immensely the “3R’s of computer

vision” [26]. Our work in particular draws inspiration from

ROI pooling [10, 12, 29] and aggregation techniques em-

ployed in image-set recognition [24, 39, 40]. We however

apply these two independent ideas to obtain person repre-

sentation in an end-to-end manner. The adaptive weights

are used to obtain image-set representations by aggregating

individual image features. In these approaches, a scoring

module generates the weights that are indicative of the vi-

sual or content quality of the individual images in the set.

This is particularly useful in video face recognition where

the impact of noisy predictions made by blurred or poor

quality faces are reduced with adaptive weights. The at-

tention schemes have also been applied to sequential tasks

[33] and multi-modal feature fusion [27].

We finally note that our approach has some resemblance

to bilinear pooling technique [21] employed in fine-grained

visual recognition where the features from multiple regions

of an object are pooled and converted to a single vector rep-

resentation.
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Figure 2: Our proposed end-to-end person recognition architecture. The input person image along with locations of body

regions are passed through a convolution block to obtain shared feature maps. Multiple features are then pooled from various

body locations, converted into compact embeddings and aggregated through an attention mechanism.

3. End-To-End Person Recognition

Given a full person image, we are interested in correctly

predicting the person’s identity by combining multiple cues

such as head, upper body etc. As person recognition is

usually evaluated in open-set protocol where the instances

available during training are disjoint from gallery and probe

instances, CNNs are primarily optimized for representation

learning. However, training a separate CNN for every re-

gion as done in previous works [4, 15, 16, 19, 23, 42] is not

scalable when more regions have to be considered.

In our work, we focus on representation learning for en-

tire person image in a unified framework. Our objective

is to encode information from multiple body regions in an

efficient manner to produce a compact and powerful repre-

sentation with limited memory and computations.

3.1. Architecture

Our proposed end-to-end person recognition (N2NPR)

architecture is shown in Figure 2. The input to our network

consists of full body image of a person and pre-determined

bounding boxes (§ 3.2) of regions considered for identifi-

cation. It consists of three blocks namely: a convolution

block (§ 3.3) that produces shared convolution feature maps

for the input image, a ROI pooling layer (§ 3.4) that gen-

erates intermediate representations for each region, and an

aggregation block (§ 3.5) that produces region embeddings

and combines them with adaptive weights so as to produce

the final representation.

3.2. Body Regions

An important consideration in person recognition liter-

ature is the choice of body regions. Some of the choices

include poselets [42], predefined important body regions ei-

ther regressed from head [16, 18, 19] or predicted by object

detectors [23]. In this work, we consider face, head, upper

body and body, and compute these regions roughly from the

head ground-truths similar to [16]. Given head co-ordinates

(xh, yh, wh, hh), we obtain the co-ordinates corresponding

to face, upper-body and body regions as (xh + 0.1l, yh +

0.3l, 0.8l, 0.7l), (xh−0.5l, yh, 2l, 3l) and (xh−0.5l, yh, 2l, 4l),

respectively with l = min(wh, hh).

3.3. Convolution Block

The convolutional block which forms the backbone of

our network accepts the person image and produces shared

feature maps through a series of spatial convolution, relu

and pooling operations. It can be built upon any modern and

powerful deep CNNs such as Inception [34], ResNet [13]),

etc. To enable fair comparison with previous works that em-

ployed varied architectures (AlexNet [17] in [18, 42], Incep-

tion in [4], a combination of AlexNet and DeepFace [35] in

[42], Inception and ResNet in [23]), we consider two vari-

ants for the convolutional block - a simpler (AlexNet) and

more advanced (Inception) architecture. We however make

certain modifications for our purpose that are detailed later.

3.4. ROI Pooling

Based on the observation that body regions considered

above are highly overlapping (i.e. upper body also con-

tains head and facial regions) and CNNs operating on these

patches are optimized for the common goal of identity pre-

diction, it would be more efficient to share computations

across regions. It reduces the network parameters, train-

ing and testing times significantly as it avoids forward and

backward pass for every patch. Such computation sharing

scheme is already popular in object detection [10], classifi-

cation [21] and segmentation tasks [12]. Our experiments

demonstrate that region pooling is equally effective for full

body person identification, and can achieve performance on

par with separately trained models (§ 4.3).

Given shared convolutional feature maps and bounding
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box locations of different regions, pooling layer simply

takes the features inside the bounding box and applies adap-

tive average pooling to produce fixed size feature maps. The

window size required for pooling is adjusted according to

the ratio of each ROI region and the desired output size

which is 6 × 6 for AlexNet and 1 × 1 for Inception. Fol-

lowing [10], we perform ROI pooling after the last convo-

lution operation (Conv 5 for AlexNet and Mixed 7c for In-

ception) of the convolutional block. For a person image of

size (W ×H), the convolution block produces shared fea-

ture maps of size (∼W/17, ∼H/17). After pooling, it results

in intermediate representations d1 of size 2048 and 9216 di-

mensions, respectively for Inception and AlexNet networks.

3.5. Adaptive Feature Aggregation

Once the representations are computed for different body

regions, the next task is to combine them using a fusion

strategy. As described earlier, there are two commonly

employed approaches. The first is to combine features

through naive pooling strategies such as concatenation, max

or average pooling, and then to train an identity classifier

[16, 18, 19] on the aggregated feature. The second option is

to combine the prediction scores of several classifiers with

global weights obtained from a validation set [23, 42].

Fusion with such global weights will result in noisier

representation when instances have large variations in pose,

occlusion, etc. Instead we consider adaptive weights to

combine different features according to their quality such

as resolution, pose, occlusion etc. For instance, a frontal

head can be considered of relatively better quality and as-

signed high weight compared to other head instance that has

poor resolution, occlusion or appears in back-view.

We propose an aggregation mechanism to combine in-

termediate region features through attention and embedding

modules. These modules are used in conjunction with other

blocks described earlier, and have additional differentiable

parameters that can be learnt in an end-to-end manner.

Formally, given a set of n intermediate representations

S = {f1, f2, . . . , fn}, fi ∈ Rd1 corresponding to n body

regions of a person image following ROI pooling operation,

the final representation f is obtained as

f =

∑n

i=1
wiα(zi|fi, θi)∑n

i=1
wi

(1)

where wi are the attention weights and α is the embedding

function with parameter θi. The embedding function α es-

sentially projects the intermediate features fi to an embed-

ding space zi through two operations:

ei = Wifi + bi, (2)

zi =
ei

||ei||2
(3)

Figure 3: Examples showing adaptive weights of instances

obtained during training on PIPA. Notice how weights

shown below for head, face, upper body and body corre-

sponds to discriminative ability of the image patches.

where θi = (bi,Wi), bi ∈ Rd2 , Wi ∈ Rd1×d2 are the re-

gion specific parameters. The main purpose of the embed-

ding module is to transform shared features into a compact

embeddings with unit-norm. The parameters (Wi, bi) can

be viewed as region-specific “local experts” that learn the

mapping from shared feature maps to more discriminative

region representations.

Similarly, the attention module takes the features fi and

produces the scalar weights wi ([0-1]) required for aggrega-

tions by computing the dot product between fi and param-

eter qi. This can be denoted as

wi = σ(qTi fi), (4)

where qi ∈ Rd1 is the attention parameter that decide the

quality of each body region i.

The weights wi obtained for a few images during train-

ing are shown in Figure 3. It is clear from the examples that

the weights correspond to the discriminative ability of the

body regions. Whenever a particular region is occluded or

not clearly visible, the corresponding weights are small. For

images that have visible head region with near frontal pose,

the head and face weights are larger compared to other re-

gions. Also, upper body and body regions tend to get large

values only when the head is less informative (e.g., 2nd, 4th
and 8th images in the first row). As expected, the weights

of face and head region are highly correlated and so are the

upper body and body weights as they contain large overlap-

ping regions.
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Figure 4: Images from PIPA (top), movie gallery and probe

set (middle: left and right) and soccer (bottom) datasets.

4. Experiments and Results

4.1. Datasets

We consider three challenging person recognition

datasets based on family albums, movie and sport videos.

Few images from these datasets are shown in Figure 4.

People in photo-albums (PIPA) [42] consists of photo-

albums created from user-uploaded photos in Flickr web-

site. The images capture day-to-day lives and important

family events of people, as a result contain cluttered back-

ground, pose, lighting and resolution variations. It consists

of a total 37,107 photos containing 63,188 instances be-

longing to 2,356 users, which are further divided into four

sets namely train, validation, test and left-over splits. While

the train split is primarily used for training CNNs, recogni-

tion accuracies are reported on test set which consists of

6,443 gallery (fold0) and probe (fold1) instances be-

longing to 581 different subjects. We also evaluate on addi-

tional splits proposed by Oh et al. [16] that contain gallery

and probe instances from different albums, time and day.

Hannah movie dataset [18, 28] consists of face bound-

ing boxes of people appearing in full length movie “Hannah

and Her Sisters” movie [28]. Although originally created

for face detection, Kumar et al. [18] created a person recog-

nition protocol by creating another gallery set from IMDB

images. We follow the same protocol. The IMDB gallery

set consists of 2,385 images belonging to 26 prominent ac-

tors appearing in the movie and the probe set consists of to-

tal 159,458 instances belonging to 41 actors. Unlike PIPA,

the dataset has additional challenges due to motion blur, age

and domain mismatch between IMDB and movie instances.

Soccer dataset [18] consists of broadcast video frames

from World cup 2014 final game played between Argentina

and Germany. The dataset consists of 37 replay clips with

an average duration of 30 seconds. The soccer instances ex-

hibit heavy occlusion and body deformations due to the fast

movement of players during the game. It consists of 28 sub-

jects namely 13 Germany players, 14 Argentina players and

a referee. We use the same gallery/probe set created by [18]

for evaluation.The gallery set consist of 10 clips totaling

19,813 instances and the probe set consists of 27 clips total-

ing 51,051 instances. While the above datasets provide head

boxes, soccer dataset provides fully body ground-truths. We

therefore obtain head boxes with [7] to create a consistent

recognition setting.

4.2. Implementation

As mentioned earlier, we conduct our experiments with

AlexNet [17] and Inception-v3 [34] backbones whose re-

sults are reported with a suffix -A and -I. Unless oth-

erwise mentioned, we consider identical training parame-

ters for both the variants. We consider person crops of

size 600 × 300 and ensure that head has a dimension of

150 × 150. The dimension of embedding space d2 is fixed

to 1024 for all our experiments, including models trained

on individual body regions. We initialize the models with

ImageNet weights and pre-train on a subset of VGGFace2

[6] dataset to avoid overfitting. The pre-training dataset

consists of 863K samples obtained by randomly sampling

a maximum of 100 images for each class in the VGGFace2

dataset. We note that similar external data is used in the pre-

vious works [16, 18, 23]. We finally fine-tune the model on

PIPA trainset consisting of 29,223 instances. We augment

the dataset by random horizontal flipping during training.

Our implementation is based on PyTorch. We optimize

for softmax loss using stochastic gradient descent with a

batch size of 25. We set momentum to 0.9 and weight decay

to 0.0005. The learning rate is set to 5e−4 and 1e−3 for In-

ception and AlexNet backbones, respectively and decreased

by a factor of 5 after every 4 epochs. Models are trained for

10 and 20 epochs during pre-training and fine-tuning, re-

spectively. During testing, we extract deep features from

the original image and its horizontal flipped image and con-

catenate the feature for all the models. We train an SVM

classifier with gallery features with parameter c set to 1.

4.3. Ablation Study

We conduct ablation studies on PIPA test splits with In-

ception backbone and train four types of models - the base-

line models (A) trained on individual region inputs as in

previous works, models (B) trained for individuals regions

with ROI pooling of person images, end-to-end models (C)

and (D) trained without and with an embedding layer, re-

spectively for various fusion schemes. For end-to-end mod-

els, we consider two other fusion techniques based on aver-

age (Avg) and max (max) pooling along with our proposed
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Type Method Feature Original Album Time Day

Head h 86.14 80.12 72.56 58.98

Face f 82.98 78.78 70.14 55.19

(A) Upper body u 85.36 80.75 71.56 55.34

Body b 81.35 78.33 70.73 52.15

Fusion
h+f+u+b 89.18 83.65 76.13 60.95

h◦f◦u◦b 88.23 82.34 75.89 60.12

hp 84.45 77.62 72.32 57.50

(B) fp 81.16 76.25 71.85 55.93

RCNN up 85.83 80.17 70.44 54.11

bp 81.35 78.33 70.73 52.15

RCNN+Avg hp+fp+up+bp 85.62 81.04 73.77 58.75

(C) RCNN+max hp◦fp◦up◦bp 85.12 80.85 72.61 57.26

RCNN+Att hp⊕fp⊕up⊕bp 87.35 82.98 75.59 60.45

RCNN+Emb+Avg hp+fp+up+bp 87.90 83.04 76.44 59.19

(D) RCNN+Emb+max hp◦fp◦up◦bp 85.39 80.93 74.04 60.08

RCNN+Emb+Att
hp⊕fp⊕up⊕bp 89.68 84.75 79.25 63.74

(N2NPR-I)

Table 1: Ablation study showing the recognition accuracy (%) of various training and fusion techniques on PIPA test splits.

The subscript p refers to ROI pooled features and symbols +, ◦, ⊕ denote average, max and adaptive fusion, respectively.

aggregation technique (Att). We did not consider concate-

nation as it consumes more memory during training.

The results are shown in Table 1. As observed already in

previous works, we see significant improvement in overall

performance after combining features from multiple body

regions, irrespective of the training and fusion technique.

We further observe that the individual region features (B)

obtained through ROI pooling have similar performance

compared to features (A) obtained by models trained on

region (head, upper body, etc.) patches. End-to-end mod-

els have performance on par with the ensemble of models

(A) even with naive fusion strategies. Among the three fu-

sion strategies, max pooling produces the least performance

since it throws away information. The proposed technique

with adaptive weights outperforms the global weights of av-

erage pooling. Finally we observe that embedding layer that

learns region-specific mappings improve the performance

for all the fusion techniques.

4.4. Comparisons with Stateofthearts

While our primary objective is to show the effectiveness

of end-to-end person recognition over separately trained

models, we provide comparisons with recent state-of-the-

arts in Table 2 for completeness. We note that the key in-

gredients in these algorithms differ in their choice of archi-

tecture, use of contextual information, external data and loss

function. As a result, we mention system details of various

algorithms to make comparisons more meaningful.

We make the following observations from the table.

Approaches [15, 19, 20] modeling the contextual relations

among instances achieve good performance even with fewer

models. However, this is not the objective of our work.

Amongst approaches that focus on learning representations,

results are reported majorly with AlexNet [16, 18, 42] and

Inception [4, 23] architectures. With AlexNet backbone,

our results (N2NPR-A) are significantly better than PIPER

and naeil that train 107 and 17 models, and slightly worse

than PSM which trains 8 pose-specific models.

We achieve the best results except original split with

Inception backbone. Our single end-to-end model outper-

forms [4, 23] that train 4 models for each body region. Fi-

nally, we note that irrespective of the architecture choice,

our models require significantly less parameters compared

to the the previous approaches and hence is better suited for

practical applications.

4.5. Results on Video Datasets

We now show results on newly introduced Hannah and

soccer datasets for which we make comparison with two

previously reported results naeil and PSM [18]. We fol-

low the same protocol as [18], and report both frame and

track level accuracies. The track predictions are obtained

by majority voting of the labels. The results are shown in

Table 4 and Table 5 for movie and soccer dataset, respec-

tively. Both of our models outperform the previous methods

and achieve state-of-the-art results.

4.6. Training and Testing Time

N2NPR models are faster due to reduced number of for-

ward and backward operations. Table 3 compares training

(fine-tuning) and testing times of N2NPR-A with other ap-

proaches. We note that a similar conclusion can be drawn
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Figure 5: Visualization of “quality” of body regions for images from PIPA day split according to adaptive weights (wi). Each

row from top to bottom is obtained by sorting face, head, upper body and body weights, respectively. When face and head

regions are not visible, low weights (leftmost images in the first two rows) are assigned. Similarly, low weights are assigned

to upper body and body whenever the illumination is poor and images are blurred (leftmost images in the last two rows).

Method
Original

Accuracy

Album Time Day

Number of

models

Architecture /

parameters

Total

parameters
Context

Li et al. [20] 84.93 78.25 66.43 43.73 2 VGG (130M) ∼260M ✓

Li et al. [19] 88.78 83.33 77.00 59.35 2 deepid (15M) + A (60M) ∼75M ✓

RANet [15] 89.73 85.33 80.42 67.16 4 RN (25M) ∼100M ✓

PIPER [42] 83.05 - - - 107 A (60M) ∼6B ✗

naeil [16] 86.78 78.72 69.29 46.61 17 A (60M) ∼1B ✗

PSM [18] 89.21 82.73 74.84 56.73 8× 2 A (60M) ∼1B ✗

N2NPR-A 87.23 80.98 71.52 50.23 1 A (60M) ∼60M ✗

Liu et al. [23] 92.78 83.53 77.68 61.73 3 + 1 IN (20M) + RN (45M) ∼105M ✗

Zoom-RNN [4] 90.88 84.40 76.44 56.92 4 IN (20M) ∼80M ✗

N2NPR-I 89.68 84.75 79.25 63.74 1 IN (20M) ∼20M ✗

Table 2: Detailed comparison of approaches that evaluated previously on PIPA dataset. We compare the approaches in terms

of architecture choice, use of context, number of models and parameters. Our end-to-end model N2NPR-I achieves best

results on three splits without using any context. A, IN ,RN denote AlexNet, Inception and ResNet-50 architectures. M

and B indicate million and billion respectively. The numbers in bold and with underline indicate top result reported on the

dataset and our result.

for N2NPR-I. For all the other approaches that require

model ensemble training, we computed the total time based

on time required for training/testing each region. For pre-

vious approaches which use images of size 224 × 224, it

takes ∼1.5 milli-seconds (ms) for one image patch with

AlexNet architecture while our input image 600×300 takes

∼3.5ms for four body regions for one forward pass. Our ap-

proach which benefits from computation sharing across re-

gions runs faster than the previous approaches in both train-

ing and testing stages.
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Figure 6: Success and failure cases on (top) PIPA and (bottom) soccer datasets. The images in green and red are our success

and failure cases, respectively. Images in yellow and orange are the success cases where the improvement is obtained due to

high weights assigned to head and upper body regions.

Method
Train

time (hrs)

Train

speedup

Test*

time (ms)

Test

speedup

PIPER [42] 642 64x 160 32x

naeil [16] 102 10x 25 5x

PSM [18] 84 8x 20 4x

Liu et al. [23] 40 4x 60 12x

N2NPR-A 10 1x 5 1x

Table 3: Run time comparison of various approaches.

*Time measured on a GTX 1080 Ti GPU with 10 CPUs

Method Accuracy Accuracy

w/o tracks with tracks

naeil [16] 31.41 37.57

PSM [18] 40.95 44.46

N2NPR-A 41.66 47.75

Head (hp) 49.80 60.63

Face (fp) 40.53 44.82

Upper body (up) 46.84 52.96

Body (bp) 48.45 58.45

N2NPR-I 56.97 67.46

Table 4: Recognition performance (%) of various ap-

proaches on the Hannah dataset with AlexNet (top) and In-

ception (bottom) backbone.

4.7. Qualitative Results

We visualize how the weights obtained by attention

mechanism are indicative of the “quality” of body regions

in Figure 5. We sort the scores in ascending order for face,

head, upper body and body regions, and show their corre-

sponding person images. It is clear from Figure 5 that when-

ever face and head is not visible, low weights are assigned to

them. Similarly, upper body and body regions are assigned

lower weights when the illumination is poor or images are

Method Accuracy Accuracy

w/o tracks with tracks

naeil [16] 20.15 23.77

PSM [18] 20.48 24.31

N2NPR-A 22.62 29.07

Head (hp) 22.14 35.04

Face (fp) 24.26 39.32

Upper body (up) 26.34 37.32

Body (bp) 25.59 37.43

N2NPR-I 31.88 45.45

Table 5: Recognition performance (%) of various ap-

proaches on the Soccer dataset with AlexNet (top) and In-

ception (bottom) architecture.

blurred. We finally show few success and failure cases of

our approach in Figure 6. The failure cases shown here cor-

respond to severe occlusions and blur while the successful

cases show the effectiveness of the adaptive weights to fo-

cus on the discriminative aspects of a test image.

5. Conclusion

In this work, we propose a unified network architecture

for person recognition from multiple body regions. Our ap-

proach operates on full person images and produces shared

activation maps from which several features are pooled and

aggregated in an end-to-end manner. The fusion weights

produced by the attention modules correspond to the quality

of body region and thus produces better representations in

unconstrained scenarios. Our end-to-end approach outper-

forms previous approaches on various person recognition

benchmarks with least memory and computations, and and

hence is suited for practical applications.
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