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Abstract

Modeling dynamics of human motion is one of the most

challenging sequence modeling problem, with diverse ap-

plications in animation industry, human-robot interaction,

motion-based surveillance, etc. Available attempts to use

auto-regressive techniques for long-term single-person mo-

tion generation usually fails, resulting in stagnated motion

or divergence to unrealistic pose patterns. In this paper, we

propose a novel cross-conditioned recurrent framework tar-

geting long-term synthesis of inter-person interactions be-

yond several minutes. We carefully integrate positive im-

plications of both auto-regressive and encoder-decoder re-

current architecture, by interchangeably utilizing two sepa-

rate fixed-length cross person motion prediction models for

long-term generation in a novel hierarchical fashion. As

opposed to prior approaches, we guarantee structural plau-

sibility of 3D pose by training the recurrent model to regress

latent representation of a separately trained generative pose

embedding network. Different variants of the proposed

frameworks are evaluated through extensive experiments on

SBU-interaction, CMU-MoCAP and an inhouse collection

of duet-dance dataset. Qualitative and quantitative evalua-

tion on several tasks, such as Short-term motion prediction,

Long-term motion synthesis and Interaction-based motion

retrieval against prior state-of-the-art approaches clearly

highlight superiority of the proposed framework.

1. Introduction

Human motion analysis has gained significant attention

in the past years [4, 39, 35, 30] as a result of the avail-

ability of huge MoCAP (motion capture) datasets (such

as CMU-MoCAP, DanceDB) and success of deep recur-

rent models [34, 2, 12] to analyze such highly non-linear

structured temporal patterns. However, almost all prior

*Equal contribution

Exemplar duet performance with complementary motion sequence:

Figure 1. Illustration of complex 3D human motion as a result of

coordinated complementary interaction between two characters in

an exemplar duet dance performance (a sample from the in-house

collection of Duet-Dance dataset). In last row, we show variations

in absolute facing-view direction depicting complex emotional in-

teraction beyond physical 3D pose.

approaches [25, 27, 9] completely ignore complex inter-

person motion interactions and focus solely on model-

ing 3D pose sequences of individual human characters for

long-term synthesis and motion forecasting. Though inter-

person action recognition has been studied in certain prior

works [38, 33], such methods are limited to simple short-

term actions like kicking, punching, hugging, etc. How-

ever, interactions in duet performances like Salsa, Samba,

Cha-cha, etc. are highly complex across both temporal and

spatial aspects as compared to the above discussed simple

motion interaction categories [6]. Directly extending avail-

able single-person motion modeling approaches for such

complex duet interactions delivers suboptimal results with-

out explicit design modifications [25]. Therefore, realizing

an effective framework capable of modeling such complex

spatiotemporal interactions among two human beings is a

highly challenging task with applications in diverse indus-

try domains, beyond graphical animation and video games.

Such systems would be capable of simulating motion pat-

terns of human looking virtual agents for applications in

Virtual and Augmented Reality frameworks.

Human motion is one of the most complex stochastic

temporal process. For a given short-term temporal pose pat-

tern, there exists a set of plausible future motion dynamics
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as a result of various external stochastic factors. There-

fore, long-term predictions in future may not match with

the samples from the dataset. Acknowledging this, there is

a clear distinction between quality assessment of a) short-

term prediction versus b) long-term synthesis. In literature,

a direct distance metric between the prediction and the cor-

responding ground-truth is used to benchmark models tar-

geting short-term prediction task. However, quantitative as-

sessment of methods targeting long-term synthesis is harder

as result of the inherent stochasticity in future dynamics.

Challenges. Broadly, challenges in long-term synthesis

can be attributed as follows:

a) Firstly, human pose in 3D is known to be highly struc-

tured [29, 28] as it is constrained by various kinematic fac-

tors like joint angle limits, relative bone-length constraints,

limits imposed by earth gravitation, etc. Therefore, the pre-

dicted 3D pose should be bounded by the structural feasi-

bility limits [1]. Most of the prior motion modeling ap-

proaches [25, 27, 10] ignore this simple yet crucial con-

straint, by aiming to directly regress the 3D joint locations.

Such approaches end up generating implausible pose pat-

terns during long-term synthesis as a result of recursive er-

ror accumulation [25].

b) Secondly, as compared to simple actions like walking,

running, hand-shaking, kicking, etc., long-term synthesis of

complex interaction-based acts like duet dance, martial arts,

etc. constitutes highly complex pose sequences (operating

close to the boundaries of kinematic structural limits as seen

in gymnastics), which are often highly non-periodic or re-

peated after a very high periodicity gap.

c) Thirdly, employing Recurrent Neural Networks

(RNN) in a fully auto-regressive setting [27, 5] has been

shown to result in motion stagnancy or convergence to un-

realistic motion patterns. The accumulation of feedback

error in an auto-regressive recurrent framework is one of

the major challenges in any sequence modeling task (not

specific to human motion synthesis) [9, 20]. Unrolling the

RNN for a much longer time-step by taking its own noisy

predictions as input conditioning inevitably derails the net-

work's learned capability [25], as a result of the input test

sequences being far away from the training set distribution.

Our contributions. In this paper, we aim to address

each of the concerns discussed by formalizing novel archi-

tectural modifications. Our major contributions in this pa-

per are outlined below.

a) Aiming to impose a strong structural constraint on 3D

pose estimation, we learn a view-invariant generative latent

representation after disentangling external global variations.

Following this, the recurrent model is restricted to regress

latent representations satisfying the predefined prior, which

guarantees generation of realistic 3D pose.

b) As opposed to prior arts, we leverage positive im-

plications of both auto-regressive and encoder-decoder re-

current architecture, by interchangeably utilizing two sepa-

rate fixed-length cross person motion prediction models for

long-term generation in a novel hierarchical fashion. As

a result, we are able to realize a model, which can perform

long-term generation of inter-person interactions for several

minutes (300+ Seconds) devoid of the issues related to mo-

tion stagnancy and divergence to unrealistic pose sequence.

c) Different variants of the proposed framework are eval-

uated through extensive experiments on several tasks, such

as Short-term motion prediction, Long-term motion synthe-

sis and Interaction-based semantic motion retrieval against

prior state-of-the-art approaches, which clearly highlights

superiority of the proposed framework.

2. Related work

In the past, the task of modeling multi-person social in-

teractions has largely been addressed for very simple hu-

man action categories [24] like kicking, pushing, punching,

etc. and human-human interactions [37]. Representations

such as relative joint distance [38, 14, 15] were employed

by these methods, which fail in cases of large variation

in relative distances between the two performers over time

(a common scenario in complex duet human interactions).

Moreover, none of these approaches are designed to address

long-term synthesis [25], which is the primary goal in the

proposed framework.

Recently, RNNs have shown significant progress in

various sequence modeling tasks, such as generation of

text [34], image captioning [36] and also generation of

hand-written characters [11, 13]. However, for human mo-

tion generations [4, 20, 18, 17, 22] one of the major chal-

lenges is to preserve the structural regularity among indi-

vidual joints in the generated poses thus avoiding unreal-

istic pose frames. Fragkiadaki et al. [9] propose to jointly

learn structural skeleton embedding along with the tempo-

ral motion sequence by employing an encoder-recurrent-

decoder (ERD) architecture. Jain et al. [20] proposed

structural-RNN, a spatio-temporal graph architecture to

effectively capture the interaction among skeleton joints

across the temporal dimension. Martinez et al. [27] em-

ploy a sequence-to-sequence architecture to model short-

term human motion forecasting. However, all the above ap-

proaches fail to generalize for long-term synthesis, as a re-

sult of motion stagnancy or convergence to unrealistic mo-

tion pattern [25] after just several seconds.

acRNN [25] proposed an auto-conditioned RNN frame-

work to explicitly address the problem of long-term synthe-

sis. Instead of only feeding in ground-truth instances, they

use sub-sequences of the network’s own outputs at periodic

intervals. Though acLSTM [25] demonstrates long-term re-

alistic motion synthesis, such architecture is not suitable for

modeling interaction-based complex motion patterns.
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Figure 2. Transformation for obtaining view-invariant skeleton pose followed by generative learning setup for obtaining the pose-

embedding representation. On the rightmost figure, we show how the learned embedding restricts estimation of implausible pose patterns

(red-box: implausible pose, green-box: plausible pose).

3. Approach

This section describes different components of the pro-

posed cross-conditioned recurrent network architecture. It

first provides details of the proposed pose embedding

framework to explicitly impose strong structural constraints

on the predicted pose sequence in the later stage. Next,

we detail different variants of the cross-conditioned recur-

rent architecture followed by a hierarchical auto-regressive

scheme for efficient long-term synthesis.

3.1. Learning pose embedding

The core objective behind separately training a pose

embedding representation is to disentangle enforcement of

structural constraints in the subsequent steps for the final

motion synthesis framework. While generating human mo-

tion, the model should completely restrain from generat-

ing unrealistic pose patterns. Moreover, the generated pose

should strictly follow the structural constraints [1] such as

joint angle limits, fixed bone length, limb interpenetration

restrictions etc. To realize this in the most effective form,

we plan to completely disentangle global variations from

the final pose representation.

View-invariant skeleton representation. Formally, let the

pose in Global coordinate system (G) for a skeleton sample

xG
t be, vjg(t) = [ajt , b

j
t , c

j
t ]
T , where j ∈ (1, .., J) with J be-

ing the total number of skeleton joints. A canonical direc-

tion, vnt is defined to uniquely represent view-invariant pose

coordinates, vjc(t). v
n
t is obtained as the vector perpendicu-

lar to the XY -projection of the line segment joining the left-

hip and right-hip point of vjg(t). Following this, the global

translation, dgt = [agt , b
g
t , c

g
t ]

T and azimuth view-angle, γg
t

(angle between vnt and the positive X-axis) is separated to

form a new set of joints vjc(t) = Rγg
t
× (vjg(t) − dgt ), with

Rγg
t

being the corresponding rotation matrix. Here dgt is

the coordinate of the pelvis point in G. To achieve scale-

invariance, we then normalize the bone lengths to that of a

chosen canonical skeleton, and convert vjc to local parent

coordinates for selected end-limb joints according to the

kinematic structure of human skeleton. We follow Gram-

Schmidt based approach inline with Akhter et al. [1] to ob-

tain the pose representation for limb joint locations in the

Local Coordinate System, L as, vjl (t). We denote it as, xt

(i.e. vjl (t) for j = 1, ..J), which effectively disentangles

difficulties of modeling global position, camera-view and

joint-location with respect to a single pelvis root.

Training of pose embedding network. We define encoder

Ep, decoder Dp and discriminator Discp following similar

architecture inspired from the kinematic tree of limb con-

nections [8]. The inference network, Ep takes the previ-

ously defined xt as input representation as shown in Fig-

ure 2B. Motivated from adversarial auto-encoder frame-

work [26], to effectively leverage both continuity of pose

embedding along with reduced reconstruction error, we em-

ploy an adversarial learning strategy inline with [23] against

a predefined prior distribution z ∼ U [−1, 1]32. We denote

the final pose embedding as zt = Ep(xt) for each time t.

3.2. Crossconditioned recurrent architecture

Before describing network architecture of the proposed

cross-conditioned recurrent network, we discuss pros and

cons of the two varied school of thoughts addressing se-

quence modeling problems.

a) Auto-regressive recurrent architecture. In general,

auto-regressive recurrent networks are the best candidate for

motion synthesis as utilized by various previous arts [27,

25]. Here a recurrent network can be interpreted as a func-

tion with hidden memory representation ht i.e. ABt+1 =
f(AB1:t, ht), where ABt+1 is a combined representation

of At+1 and Bt+1 at (t + 1)th time-step as shown in Fig-

ure 3A. Intuitively, ht stores important semantic informa-

tion till tth time-step, to help prediction at (t + 1)th time-

step. One can use LSTM [16] or GRU [7] based architecture

as special type of RNNs with improved training capability.

However, such approaches exhibit several short-comings, as

a result of error accumulation while unrolling for longer

time-steps [27, 25] during synthesis. Note that, such mod-

els are trained on ground-truth input sequence. However,

during testing they are expected to work on input sequence

obtained from the noisy prediction of the previous time-
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step. The discrepancy between prediction and ground-truth

sample distribution progressively derails the model from its

expected behavior, resulting in stagnated motion or diver-

gence to unrealistic pattern [25]. Previous approaches em-

ploying auto-regressive techniques [27, 9, 20] show similar

failure trends while generating long-term sequences beyond

1-2 seconds.

b) Encoder-decoder recurrent architecture. Aiming to

alleviate the above problems, certain prior approaches [19,

18] decided to use auto-encoder like architecture (convo-

lutional or recurrent) by employing separate encoder and

decoder model instead of a single RNN as used in auto-

regressive framework. However, such models can only

work for generation of a fixed-length sequence as a result of

the separate decoder architecture. Unlike auto-regressive,

here the decoder is trained to take the compact embed-

ding obtained from a fixed length sequence (encoded rep-

resentation), to predict a sequence of the exact same length,

without explicitly accessing the expected ground-truth se-

quence. Though such models are devoid of the shortcom-

ings exhibited by auto-regressive models (i.e. discrepancy

in training versus testing scenarios), they are not suitable

for long-term synthesis as a result of the restricted sequence

length constraint.

Our architecture. We plan to exploit the positive implica-

tions of both the above approaches i.e. a) fixed-length de-

coding and b) auto-regression, by formalizing the problem

as an alternating cross-motion prediction pipeline. Aim-

ing to effectively model duet inter-personal motion patterns,

we design a novel recurrent base-model which is not only

capable of predicting one's motion from the other but also

forecasts pose sequence of the predicted motion without ac-

cessing corresponding input from the other (see Figure 3B).

We refer the 3D pose sequence of person-1 and person-2

for m time-steps as [A1, A2, .., Am] and [B1, B2, .., Bm]
respectively. To realize this, we first introduce two sepa-

rate RNNs for prediction and forecasting, i.e. pRNN and

fRNN respectively. We refer the 3D pose sequence of

person-1 and person-2 for m time-steps as [A1, A2, .., Am]
and [B1, B2, .., Bm] respectively. As shown in Figure 3B,

pRNNA→B takes a sequence of A as input representation,

i.e. A1:m, while outputting the sequence of B, i.e. B1:m

at the corresponding time-steps. Following this, the hid-

den state of fRNNA→B is initialized through a two-layer

neural network transformation of the final hidden-sate of

pRNNA→B to forecast the future motion sequence of B for

n-steps, denoted as Bm+1:m+n. We refer this combination

of pRNNA→B followed by fRNNA→B as ccRNNA→B as

shown in Figure 3B. Note that, in certain duet dance forms

there is a notion of leader and follower, where one of the

two persons acts as a leader with the other person comple-

menting the first during transition in dance steps. Motivated

from this, we plan to model two separate recurrent models

A. Traditional approach B. Cross-conditioned Motion RNN, cc-RNN

Auto-regressive RNN

AB1 AB2 ABm

ABm+1

pRNNA→B 

A1 A2 Am

Bm+1B2 B3

Bm+1

fRNNA→B 

Bm+2 Bm+3 Bm+n

Bm+n-1

cc-RNN A→Bprediction of
raw joint 
coordinates

Pose-deoder, Dp 
Pose-encoder, Ep

Figure 3. A. Illustration of extending traditional motion modeling

framework for interaction-based duet motions. B. An overview of

the proposed ccRNN framework operating on the pose-embedding

using Dp and Ep (see Section 3.2).

for prediction of one's motion sequence from the other's, i.e.

ccRNNA→B and ccRNNB→A respectively.

3.2.1 End-to-end training on frozen pose embedding

As explained in Section 3.1, the forward kinematic trans-

formation T converts the raw joint locations in G to unit

vectors in local coordinates after disentangling translation

and view-angle as shown in Figure 2B. Similarly the in-

verse transformation T ′ performs inverse kinematics to ob-

tain the skeleton coordinates back in to the Global coordi-

nate system. We model the view-angle γ as a two dimen-

sional feature [sin γ, cos γ] (with tanh non-linearity) where

γ = tan−1 (sin γ/ cos γ) with unit magnitude normaliza-

tion, maintaining cyclic property of the angle prediction.

Unlike traditional approaches (black arrows in Fig-

ure 3A), in the proposed ccRNN architecture the RNN op-

erates on the pose embedding representation as both input

and output sequence, obtained from the frozen Ep and Dp

followed by T and T ′ transformations (blue and pink ar-

rows in Figure 3B). Essentially the effective input and out-

put sequence to ccRNN is represented as a tuple, [zt, dt, γt]
at each time-step t. Considering the fully differentiable

transformations Ep, Dp, T and T ′, we formalize a single

end-to-end loss directly on the output skeletons (i.e. vjg(t))

as, LA
i =

∑J
j=1
|vjg(t) − v̂jg(t)|. This greatly stabilizes

the training procedure by automatically balancing gradients

among the disentangled factors as opposed to having inde-

pendent losses with additional hyper-parameter for loss bal-

ancing. Note that, the tanh non-linearity on the logits pre-

dicting an estimate of zt, constraints the model to predict a

plausible human pose pattern as a result of the identical pre-

defined input prior distribution of Dp, during the generative

pose-embedding training (see Figure 2C).

Considering a particular canonical structure, we always

make γA
t ← γA

t − γA
0 , dAt ← dAt − dA0 and γB

t ← γB
t −

γA
0 , dBt ← dBt − dA0 to normalize both view-direction and

2727



ABn+1A-s A0

pRNNA→B fRNNA→B 

A1 Am Bm Bm+n-

1

B1 Bm
Bm+1 Bm+n

AB1 ABm-1

B2 Bn+1

seed

ABn

pRNNAB→B 

Bn+2 Bm

ABn+1AB1 ABm-1

B2 Bn+1

AB2

pRNNAB→B 

BmBn+2

AB1 ABm-1

B2 Bm

fRNNAB→B 

Bm Bm+n-

1

Bm+1 Bm+n

A. ccRNN-u (single i/p to pRNN)

B. ccRNN-v1 (no-chaining pRNN) D. ccRNN-v3 (full-chaining in pRNN)

C. ccRNN-v2 (half-chaining in pRNN)

AB→B AB→B 

AB1 ABT ABT+1 AB2T

B2 BT+1BT+2 B2T+1

B2T+1 B3T-1

B2T+2 B3T

AB→A AB→A 

ABT+1 AB2T AB2T+1 AB3T

AT+2 A2T+1A2T+2 A3T+1

A3T+1 A4T-1

A3T+2 A4T

AB→B AB→B 

AB2T+1 AB3T AB3T+1 AB4T

B2T+2 B3T+1B3T+2 B4T+1

A4T+1 A5T-1

B4T+2 B5T

AB→A AB→A 

AB3T+1 AB4T AB4T+1 AB5T

A3T+2 A4T+1A4T+2 A5T+1

A5T+1 A6T-1

A5T+2 A6T

E. Autoregressive ccRNN-syn

Loss =                               + 

Where,

A

B
0time T 2T 3T 4T 5T 6T

o/p of AB→B o/p of AB→B
o/p of AB→Ao/p of AB→A

Input seed
Input seed

Cross-person motion prediction for long-term synthesis:

fRNNAB→B 

Bm Bm+n-

1

Bm+1 Bm+n

fRNNAB→B 

Bm Bm+n-

1

Bm+1 Bm+n

pRNNAB→B 

Figure 4. Illustration of different variants of ccRNN framework followed by the proposed hierarchical autoregressive pipeline to regularize

the model for long-term synthesis (best viewed in color).

translation of A and B. In both Figure 3 and 4, At= xG
t for

person-1 and similarly Bt= xG
t for person-2.

3.2.2 Variants of cross-conditioned recurrent model

We analyze 4 different cross-motion prediction frameworks

as shown in Figure 4. Note that, for illustration we only

show ccRNNA→B , however we also train the other counter-

part i.e. ccRNNB→A for all the 4 variants discussed below

(i.e. for Figure 4A, 4B, 4C and 4D). The two-way cross

prediction models are required for effective long-term syn-

thesis as explained in Section 3.3.

ccRNN-u. Here we consider a single person as the input

sequence with a seed of s time-steps as shown in Figure 4A.

For the A→ B model, pRNN is used to regress the pose se-

quence of B, B̂1:m conditioned on the input seed of A (−s
to 0 time-step) along with the pose sequence of A at the

corresponding time-steps i.e. A1:m. Whereas fRNN is em-

ployed in a autoregressive setting with chained input from

past prediction (shown in red), even during training.

ccRNN-v1. Avoiding the use of seed-sequence, we plan to

model pRNN as AB → B unlike A→ B used in ccRNN-u.

This design structure is incorporated to reduce uncertainty

in the prediction of B from A, as here each prediction of B
is conditioned on the past dynamics of a combined repre-

sentation of both A and B (see Figure 4B).

ccRNN-v2, v3 and v4. One of the major short-coming of

both ccRNN-u and ccRNN-v1 is that, the pRNN employed

in both these architectures always takes ground-truth se-

quence as input, which makes them unsuitable for the hi-

erarchical auto-regressive framework. Note that, a suitable

candidate for the hierarchical auto-regression should sup-

port noisy predictions as input sequence to the correspond-

ing pRNN model, adapting it for the test scenario as re-

quired for long-term synthesis. Following this, we propose

two different variants of ccRNN-v1 denoted as ccRNN-v2

and ccRNN-v3 as shown in Figure 4C and 4C respectively.

Note that, the only difference here is the input to pRNN,

which is modeled as a half-chaining and full-chaining set-

ting for ccRNN-v2 and ccRNN-v3 respectively (see the red

lines in Figure 4C-D). We also define another model named

as ccRNN-v4, which is simultaneously trained on all the

three architectural settings at alternate training iterations i.e.

ccRNN-v1, v2 and v3 to realize a unified model suitable for

both short-term and long-term prediction.

3.3. Hierarchical autoregressive, ccRNN-syn

All the individual variants of ccRNN discussed above are

trained to operate on a sequence of fixed length for both

pRNN and fRNN. However, we plan to use them as building

blocks for a hierarchical auto-regressive framework, capa-

ble of synthesizing duet motion sequence for much longer

(ideally indefinite) time-steps. As shown in Figure 4E, we

require an initial seed (ground-truth) of A1:2T and B1:T to

start the hierarchical autoregression pipeline. We first ob-

tain a prediction of B̂T :3T (pink) using the half-chaining

architecture discussed for ccRNN-v2. Note that, B̂T :3T is a

temporal concatenation of B̂T+1:2T and B̂2T+1:3T as out-

put of pRNN and fRNN respectively (see the bar-plot at the

bottom of Figure 4E). Following this, the next AB → B
model takes the previously predicted B̂T :3T for further syn-

thesis of Â2T+1:4T . However, this model still have access

to some seed information i.e. AT+1:2T which will not be

the scenario for the synthesis of further time-steps. Such an

auto-regressive reuse strategy is repeated for 4 times with 2

time usage of both AB → A and AB → B during training

by constructing random mini-batches of 6T length as shown

in Figure 4E. To further regularize the model and to prepare

it for the test scenarios encountered in long-term synthesis,

we design a weighted loss function to fine-tune the model

with parameters initialized from the fixed-length training of

ccRNN-v4, as
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Lsyn. =

6T∑

i=2T+1

wi−TL
Ai +

5T∑

i=T+1

wi−TL
Bi ;wi = e1/2T

While training, we also consider the other counterpart,

where seed starts from a longer sequence of B i.e. B1:2T

with a smaller sequence of A i.e. A1:T to balance out all

cross conditional synthesis possibilities one can encounter

during testing. In this case, the above loss function is mod-

ified by replacing A with B and vice-versa. We denote this

model as ccRNN-syn in further sections of this paper.

4. Our DuetDance Dataset

Existing datasets such as CMU-MoCAP and SBU-

interaction only cater to model dynamics of comparatively

simpler (highly periodic) single-person activities such as

walking, running, exercising, etc. Aiming to address the

deficiency of training data for multi-person interactions, we

release a multi-person interaction dataset, which we refer to

as ’DuetDance’. Our dataset comprises of a variety of dance

performances, and encompasses long-term correlations be-

tween physical motions, and hence serves as a benchmark

to evaluate methods that aim to model multi-person interac-

tions.

We carefully curate dance tutorials on YouTube to col-

lect a diverse set of complex dances such as Cha-cha, Jive,

Rumba, Salsa, and Samba. To obtain the ground truth 3D

skeletons from the collected videos, we run LCRNet++ [31]

on each individual frame. Here, we outline the issues we en-

countered in the skeleton outputs and ways in which we ad-

dress them: (1) Person Tracking: While LCRNet detects

people in the scene, it does not track them throughout the

video. Tracking the identity of the two dancers however is

crucial for our task. We annotate the collected videos for the

male and female dancers across all frames. (2) Occlusion:

In cases of inter-person occlusion, LCRNet++ often detects

a single person as it does not capture any temporal consis-

tency in the data. We therefore automatically detect such

frames and adopt an interpolation technique to generate the

ground truth for the missing dancer. (3) Jitter: Addition-

ally, we found that a lack of temporal consistency leads to

the problem of motion jitter in successive frames. We apply

the savgol filter [32] on the pose sequence, to obtain smooth

ground truth motion.

5. Experiments

In this section, we present additional training details,

qualitative comparisons on long-term duet-dance synthesis,

and quantitative comparisons to state-of-the-art methods on

motion forecasting task. Furthermore, we evaluate robust-

ness of the learned motion representation on a cross-person

motion retrieval task.

Training Details. We make use of LSTMs implemented

in the tensorflow framework, with a hidden state size of

256. All videos are normalized to 30 fps with T = 10.

Our model converges in 300 epochs of training using the

ADAM backpropogation algorithm [21] with a learning rate

of 0.0001, and a batch size of 32.

5.1. Comparison against prior arts

Here, we outline the various distinguishing character-

istics of our method in comparisons to previous arts and

present quantitative comparisons on various tasks such as

Short-term motion prediction, Cross-person retrieval, and

Long-term synthesis.

Characteristic Comparisons. Table 1 depicts the differ-

ent tasks that our method addresses, in comparison to pre-

vious approaches. In contrast to previous methods which

separately address the task of learning a motion embedding

and performing long term motion synthesis, ours is the first

method that is capable of addressing both these tasks using

a single network as a result of the architecture, with mixed

characteristics of both auto-regressive and encoder-decoder

as discussed in Section 3.2.

Dataset Selection. To validate our model generalizabil-

ity for both simple as well as complex two person in-

teractions, we evaluate our method on a) our in-house

duet dance dataset, and the publicly available b) CMU-

Interaction dataset and c) SBU-Interaction dataset. Both

these publicly available datasets consist of simple inter-

actions such as shaking hands, walking together, kicking,

punching, etc as opposed to complex long-term interactions

present in duet dance forms.

Quantitative Comparison on short-term prediction. In

Table 2, we compare the different variants of ccRNN to pre-

vious methods such as [27, 25, 3] considering the task of

motion forecasting. For the short-term forecasting task, an

average prediction error (at the output of fRNN) on a held

out test set is obtained using the corresponding A→ B and

B → A variants of ccRNN-u and ccRNN-v1, whereas for

ccRNN-syn, AB → A and AB → B is entangled as dis-

cussed Section 3.3. The results in Table 2 portrays the supe-

riority of ccRNN, as a result of our carefully chosen design

choices. We also observe that, the imposition of structural

constraints via the pose embedding helps us gain a signifi-

Table 1. Characteristic comparison of ccRNN against the previous

motion modeling approaches.

Methods
Autoencoding

Methods [19]

Autoregressive

(acLSTM [25])

ccRNN

Ours

Motion Embedding X × X

Content-based Retrieval X × X

Long Term Synthesis × X X

Variable Length Synthesis × X X

Cross-person Retrieval × × X
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Table 2. Quantitative results on short-term prediction task. Here, we find that ccRNN-syn’s capability to perform long-term synthesis

comes at the cost of inferior motion forecasting performance when compared to the other variants.

DuetDance Dataset

Methods
Cha-Cha Jive Rumba Salsa Samba

80ms 320ms 640ms 80ms 320ms 640ms 80ms 320ms 640ms 80ms 320ms 640ms 80ms 320ms 640ms

Short Term Forecasting Methods

ERD [9] 0.17 0.45 1.33 0.20 0.39 1.44 0.24 0.66 0.98 0.15 0.61 1.21 0.22 0.51 1.22

seq2seq [27] 0.20 0.42 1.38 0.23 0.35 1.39 0.21 0.69 1.08 0.19 0.55 1.31 0.19 0.42 1.01

sch. smp. [3] 0.25 0.45 1.09 0.19 0.30 1.28 0.26 0.60 1.18 0.21 0.58 1.35 0.23 0.47 0.92

ccRNN-u 0.15 0.40 1.09 0.19 0.35 1.03 0.21 0.69 0.90 0.12 0.58 1.15 0.20 0.49 1.17

ccRNN-v1 0.09 0.32 0.97 0.14 0.29 0.92 0.09 0.56 0.82 0.07 0.44 0.97 0.11 0.37 1.02

Long Term Synthesis Methods

acLSTM [25] 1.22 2.10 2.92 1.44 2.56 3.02 1.09 2.33 2.54 0.98 2.76 3.23 1.02 2.35 2.88

ccRNN-v2 1.01 2.02 2.73 1.21 2.36 2.91 0.98 2.23 2.49 0.91 2.26 3.01 0.92 2.01 2.50

ccRNN-syn 1.14 2.06 2.86 1.30 2.42 2.98 1.05 2.28 2.53 0.96 2.52 3.19 0.98 2.20 2.68

SBU Dataset CMU Dataset

Methods
Kicking Punching Hugging Shaking Hands All classes

80ms 320ms 640ms 80ms 320ms 640ms 80ms 320ms 640ms 80ms 320ms 640ms 80ms 320ms 640ms

Short Term Forecasting Methods

ERD [9] 0.25 0.69 1.83 0.35 0.45 1.78 0.29 0.76 1.18 0.25 0.69 1.15 0.19 0.59 1.42

seq2seq [27] 0.21 0.55 1.65 0.31 0.48 1.95 0.33 0.66 1.18 0.29 0.59 1.01 0.29 0.52 1.51

sch. smp. [3] 0.25 0.45 1.09 0.19 0.30 1.28 0.26 0.60 1.18 0.21 0.58 1.35 0.23 0.47 0.92

ccRNN-u 0.23 0.64 1.49 0.39 0.41 1.63 0.31 0.73 0.98 0.20 0.57 1.01 0.24 0.55 1.10

ccRNN-v1 0.11 0.44 1.32 0.24 0.33 1.22 0.19 0.59 0.87 0.09 0.49 0.92 0.15 0.44 0.99

Long Term Synthesis Methods

acLSTM [25] 1.34 2.27 2.98 1.56 2.63 3.42 1.29 2.36 2.51 1.09 2.89 3.21 1.33 2.29 2.72

ccRNN-syn 1.28 2.15 2.53 1.41 2.49 2.82 1.15 2.29 2.48 0.98 2.53 3.11 1.05 2.14 2.66

cant advantage over the prior arts.

Quantitative Comparison on long-term synthesis. To

quantify the efficacy of the proposed ccRNN framework

against prior arts for the task of long-term motion synthe-

sis, we train a critic model (bi-directional LSTM with 256

hidden units) to discriminate between ground-truth versus

predicted motion sequence of 60 sequence length. The pre-

dicted sequences of both prior arts and different variants of

our method are taken as negative samples against the posi-

tive ground-truth sequences for training a critic model. Af-

Table 3. Quantitative results on long-term synthesis. Comparison

of critic accuracy for binary discrimination of real versus predicted

motion sequence of a chunk length 2 seconds taken around the

time-steps 1s, 5s, 10s and 20s. (classifier accuracy on real test

samples: 50.2%). A higher value indicates worse performance, as

the critic is able to discriminate between the real versus predicted

motion patterns.

Methods
Critic Accuracy

1s 5s 10s 20s

Short Term Forecasting Methods

ERD [9] 0.63 0.78 0.84 0.85

seq2seq [27] 0.64 0.77 0.82 0.83

sch. smp. [3] 0.62 0.79 0.84 0.84

ccRNN-u 0.56 0.70 0.77 0.83

ccRNN-v1 0.54 0.69 0.76 0.81

Long Term Synthesis Methods

acLSTM [25] 0.60 0.68 0.75 0.86

ccRNN-syn (w/o pose embedding) 0.58 0.65 0.72 0.79

ccRNN-syn 0.51 0.56 0.58 0.64

ter the critic training accuracy has saturated, we can make

use of it to ascertain the efficacy of our predictions. If a

certain set of predictions achieves a higher critic accuracy

then it means that the critic is easily able to classify the pre-

dictions as fake, whereas a lower accuracy (close to 50%)

would mean that the predictions are realistic enough to fool

the discriminator, Table 3 clearly shows our superiority on

long-term synthesis as ccRNN generates high-quality real-

istic non-stagnating motion patterns as compared to prior

arts. A qualitative analysis of our long-term generation re-

sults against acLSTM [25] is presented in Figure 5.

5.2. Application to CrossMotion Retrieval

To evaluate robustness of the learned motion embedding,

we setup two different skeleton retrieval tasks.

Retrieval settings Consider qα:α+T
a to be a given query

skeleton sequence taken as a chunk of frames from time

α(qa) : α(qa) + T of a video-index v(qa) which belongs to

a motion class denoted by mc(qa). The retrieval database

consists of all the complementary skeletons, Dr = db(i).
We consider, rb = argmindb

(||qa − db(i)||2) as the re-

trieved video-clip.

a) Motion-class retrieval First, we consider the task of

retrieving a video-clip of the same motion class as the query

sequence, from a database of video-clips. Here, we consider

a retrieval as True Positive if mc(qa) = mc(ra).

b) Semantic-motion retrieval Next, we consider the task

of retrieving a video-clip which has the most similar pose
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acLSTM, A
(Salsa)

acLSTM, B
(Salsa)

Motion plot

Facing-view
Angle (𝛄)

ccRNN-v4, A
(Salsa)

ccRNN-v4, B
(Salsa)

Motion plot

Facing-view
Angle (𝛄)

ccRNN-v4-syn, A
(Salsa)

ccRNN-v4-syn, B
(Salsa)

Motion plot

Facing-view
Angle (𝛄)

1 sec 2 sec 60 sec 61 sec

1 sec 2 sec 30 sec 31 sec 60 sec 61 sec

1 sec 2 sec

30 sec 31 sec

10 sec 11 sec 20 sec 21 sec

Figure 5. Qualitative comparison. Here, motion plot shows change in view-independent local pose between subsequent time-steps.

acLSTM. The purple dotted box indicates the estimation of implausible pose pattern beyond just several seconds (i.e. 10 sec). ccRNN-

v4. Without the hierarchical auto-regressive training our model produces stagnated local-motion beyond 30 seconds as shown in red-box.

ccRNN-v4-syn. After hierarchical auto-regressive training, our model produces complex inter-person dynamics beyond 60 seconds.

dynamics as the query. A retrieved-clip is considered as a

True Positive if v(qa) = v(rb), |α(qa)− α(ra)| < δ with δ
being the allowed time-shift. For this task, we set δ = 10.

Precision-Recall curves and AUC (Area under the curve)

numbers for these two tasks have been reported In Table. 6.

Our method outperforms the previous state-of-the-art meth-

ods by a significant amount as a result of the encoder-

decoder architecture using separate pRNN and fRNN.

5.3. Qualitative analysis of longterm synthesis

In Figure. 5, it can be observed that our model effec-

tively predicts the difference in view of the complemen-

tary dancer, in addition to the disentangled local pose sepa-

rately for two performers. Additionally, in comparison to

Motion-Class Retrieval

P
re

ci
si

on

Semantic-Motion Retrieval

P
re

ci
si

on

cmRNN-v4(0.66)
cmRNN-u  (0.63) 
acLSTM  (0.52)

cmRNN-v4 (0.74)
cmRNN-u  (0.69) 
acLSTM    (0.56)

Recall Recall
Figure 6. Cross Motion Retrieval on Duet-Dance dataset. Here,

AUC values have been indicated in brackets.

acLSTM [25] our model is devoid of motion stagnation

and estimation of unrealistic pose pattern. The compari-

son of ccRNN-v4 against ccRNN-v4-syn shows the utility of

the proposed auto-regressive regularization in maintaining

inter-person motion dynamics beyond several minutes.

6. Conclusion

We target duet-motions with synchronized complemen-

tary movements, where two actors perform nonidentical

motions. However, in multi-person scenarios, such pre-

dictions are either highly uncertain in the long-term (e.g.

random crowd movement) or highly identical (e.g. group

dance) and hence less interesting to analyze. Additionally,

in the absence of a publicly available dataset for model-

ing long-term multi-person interaction under the presence

of meaningful interaction based temporal patterns, we col-

lect a dataset in-house for studying duet-human motion in-

teractions. Moreover, our state-of-the art results on short-

term motion prediction, long-term duet-motion synthesis

and cross-person retrieval tasks validate effectiveness of the

proposed architectural setup. Probabilistic modeling, and

RNN based Adversarial losses could result in increased re-

alism, and is something that we plan to explore in future.
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