
Unsupervised Cross-Dataset Adaptation via Probabilistic Amodal 3D Human

Pose Completion

Jogendra Nath Kundu∗ Rahul M V∗ Jay Patravali∗ R. Venkatesh Babu

Video Analytics Lab, CDS, Indian Institute of Science, Bangalore, India

jogendrak@iisc.ac.in, rmvenkat@andrew.cmu.edu, jaypatravali@gmail.com, venky@iisc.ac.in

Abstract

Despite remarkable success of supervised deep learning

models for 3D human pose estimation, performance of such

models is mostly limited to constrained laboratory settings.

Such models not only exhibit an alarming level of dataset

bias, but also fail to operate on unconstrained videos in

the presence of external variations such as camera mo-

tion, partial body visibility, occlusion, etc. Acknowledging

these shortcomings, firstly, we aim to formalize a motion

representation learning framework by effectively utilizing

both constrained and artificially generated unconstrained

video samples for datasets with 3D pose annotation. With-

out ignoring the inherent uncertainty in pose estimation for

the truncated video frames, we devise a novel probabilistic

amodal pose completion framework to enable generation of

multiple plausible pose-filling outcomes. Secondly, to ad-

dress dataset bias, the probabilistic amodal framework is

re-utilized to design novel self-supervised objectives. This

not only enables adaptation of the model to target unan-

notated datasets (wild YouTube videos) but also encour-

ages learning of generic motion representations beyond the

available supervised data even in unconstrained scenarios.

Such a training regime helps us achieve state-of-the art per-

formance on unsupervised cross-dataset pose estimation,

with a significant improvement in partially-visible uncon-

strained scenarios.

1. Introduction

Understanding visual content from unconstrained inter-

net videos [23] is an important yet challenging problem.

Such videos involve extensive variations in camera motion

(such as zooming, panning, translation etc.), which make

them highly diverse and challenging for machine-analysis

as compared to the standard video datasets for pose-based

action recognition or retrieval [44, 10]. Surely, one can-

not rely on approaches utilizing low-level motion cues [45]
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Figure 1. In contrast to deterministic methods such as LCR++ [43],

our probabilistic model generates multiple plausible pose se-

quences (specifically for the invisible body-joints, i.e. the upper-

body) for a given unconstrained video with partial-visibility.

in such wild scenarios due to the inherent difficulty in

disentangling the camera motion from the motion elicited

by the object of interest. In this work, we focus on ex-

traction of human motion representation from such uncon-

strained videos. We also aim to improve generalizability

of such motion representations across diverse motion cate-

gories and in-the-wild datasets beyond the standard labora-

tory setting [10, 55].

A simple approach would be to consider such videos as

a set of images [53], which can be directly processed by

image-based pose estimation approaches [29, 43]. How-

ever, there are many limitations to this approach. a) Firstly,

datasets with 3D pose [10, 28] information are either limited

to laboratory setting or limited in size and diversity. Hence,

neural networks trained on such datasets [42, 38, 31, 6]

yield impressive performance within the same dataset but

do not generalize to unknown motion and camera positions.

b) Secondly, for images with occlusion or truncated bound-

ary [43] (in absence of full-body (FB) visibility), most of

the available pose estimation methods fail as a result of their

dependency on intermediate 2D joint estimation. Though

certain recent approaches [43] address this by hallucinating

a plausible 3D pose considering visibility of the upper-body

(UB), they do not take into account uncertainty in the lower-

body pose and other diverse scenarios such as only head and

only lower-body (LB) visibility. As a result, such approach
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lead to temporally inconsistent results with drastic transi-

tions such as FB-UB-LB or FB-LB-FB in an unconstrained

scenario. c) Thirdly, treating a video as a set of images re-

strain the model from exploiting temporal coherency, which

is an important motion cue.

Aiming to effectively address the above limitations we

employ the following design choices. Motivated from re-

cent works focusing on learning a generative pose embed-

ding representation [18, 19], we plan to model a latent

skeleton representation called pose-vec, after disentangling

the camera-view and translation to learn a view agnostic

representation. A CNN is trained to directly regress the

pose-vec latent code from a given input image independent

of the camera view. Devoid of the dependency on inter-

mediate 2D pose estimation [42, 29], this approach is eas-

ily extendable to truncated images. However, uniqueness

of 3D pose for such samples do not carry over as a result

of uncertainty in 3D joint locations belonging to the invisi-

ble body-parts. We aim to explicitly model this uncertainty

by formalizing it as a conditional distribution over three

important factors viz. a) position of visible joints at that

time instance, b) full-body motion dynamics. By casting

it as a probabilistic framework, we plan to predict multiple

plausible pose-filling outcomes for a given video sequence

with minimal full-body frames in an unconstrained setting

(see Fig. 1). This is realized for datasets with 3D pose

annotations, by experimentally simulating random video-

graphic variation from videos collected using multi-view

static-cameras [10, 28]. To accomplish this, a structured

simulation pipeline is designed by analyzing the factors in-

volved in a video capturing process [23]. However, it is not

straightforward for datasets beyond the lab environment in

the absence of 3D pose annotation.

Researchers have explored several self-supervised [4, 37,

33] and unsupervised [52, 4] approaches to improve gener-

alization of available models to unseen environments [21,

20]. In this paper, we plan to formalize a self-supervised

learning framework for human pose estimation particularly

targetting unconstrained videos with no access to pose an-

notations (e.g videos collected from Youtube). By effec-

tively exploiting the temporal coherency, we also seek to

obtain a unified model which can yield highly generaliz-

able motion representation. For instance, motion represen-

tation of a dance performer from a TV broadcasted video

(with frequent scene-change and other camera movements)

should semantically align with the representation from any

other video consisting some other dancer imitating the exact

same dance steps. The proposed pose estimation pipeline is

specially designed to address this as a result of the pose-

vec being absolutely invariant to diverse videography shifts

(even shifts of camera-views).

As a novel direction, we designed several self-

supervision strategies by exploiting the videography aug-

mentations in a very judicious manner. Motivated by

self-supervised approaches which configure correspon-

dences between image pairs by simulating know synthetic

warps [34, 48, 12, 41], we plan to use the videography

augmentations to simulate similar correspondences among

full-body frames between two video-clips, which would

have the same pose representation. Though such a strategy

seems effective for full-body frames from a target unanno-

tated dataset, it fails to form such correspondence sets for

frames with partial-body visibility. As discussed before,

instead of ignoring the uncertainty in pose for such trun-

cated frames, we formalize a workaround by introducing

a random-vector, which can effectively model this uncer-

tainty in a probabilistic framework [18, 57]. Following this,

we acquire an absolutely certain correspondence pair even

for such truncated frames without disturbing the genera-

tive probabilistic setup. The above strategies greatly enrich

our self-supervised approach by enabling the model to learn

pose or motion representations that are robust to diverse un-

constrained scenarios.

To clearly highlight merits of the proposed learning

pipeline, we evaluated our model against state-of-the-art ap-

proaches on the pose estimation task. Through extensive ex-

periments on multiple annotated and unannotated datasets,

we demonstrate state-of-the-art transferable representation

against the previous arts.

2. Related work

Representation learning. Classical auto-encoder frame-

work [50, 9, 2] has been widely used as a base setup in

variety of tasks to extract meaningful semantic informa-

tion from raw unlabelled input data [17]. Recently, self-

supervised learning has emerged as a new direction in unsu-

pervised representation learning [22, 37, 54]. Furthermore,

representation learning from videos has also gained sub-

stantial attention considering the fact that human learns cru-

cial visual representation by seeing moving objects in the

environment [36, 30, 52]. Other set of works focus on cross

modal information for representation learning [35, 11].

Amodal completion. Humans have the ability to perceive

invisible or occluded object parts as a result of general ob-

ject representations in the brain [32]. Amodal completion

of object instances [24] from static images has been stud-

ied extensively in recent past [7, 58, 24, 13]. However to

the best of our knowledge ours is the first work to extend

the concept of amodal perception for temporally coherent

motion dynamics.

Human pose estimation from monocular image. Prior

works using deep CNN for estimation of 3D pose from

RGB image can be divided into two broad classes; viz. a)

direct estimation of 3D joint locations [25, 46] and b) 2D

heat-map projection followed by 3D pose estimation [28,

31, 26, 56]. To improve generalization on wild images,
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adaptation from synthetic data [49, 49] or green-screen

composition setups [28, 29] have been explored. Several ap-

proaches have successfully exploited structural [1, 29, 31]

and temporal regularity [29, 56] as as an additional cue to

further improve pose estimation performance [26]. Joint an-

gle limit [1], bone length constraint [29] and relation be-

tween 3D interjoint distance and 2D inter-joint matrix [31]

etc. are utilized as structural cues to enforce plausible 3D

pose estimation. Some approaches [29, 56] utilize tempo-

ral smoothness in estimated 3D pose for consecutive video

frames as an additional information to regularize sequential

3D pose estimation.

3. Approach

In this section we discuss different components which

are proposed to effectively learn a generalized motion rep-

resentation targeting unconstrained in-the-wild videos.

3.1. Viewinvariant pose embedding

The core objective behind separately learning a pose

embedding representation [18] is to avoid enforcement of

structural constraints in the subsequent stages of the motion

modeling pipeline in a view-invariant setting. Moreover,

while generating 3D pose, the model should completely re-

strain from generating unrealistic pose patterns.

View-invariant skeleton representation. Formally, let the

pose in Global coordinate system (G) for a skeleton sam-

ple xG
t be, vjg(t) = [ajt , b

j
t , c

j
t ]
T , where j ∈ (1, .., J) with J

being the total number of skeleton joints. A canonical direc-

tion, vnt is defined to uniquely represent view-invariant pose

coordinates, vjc(t). v
n
t is obtained as the vector perpendicu-

lar to the XY -projection of the line segment joining the left-

hip and right-hip point of vjg(t). Following this, the global

translation, d
g
t = [agt , b

g
t , c

g
t ]

T and azimuth view-angle, γ
g
t

(angle between vnt and the positive X-axis) is separated to

form a new set of joints vjc(t) = Rγ
g
t
× (vjg(t) − d

g
t ), with

Rγ
g
t

being the corresponding rotation matrix. Here d
g
t is

the coordinate of the pelvis point in G. To achieve scale-

invariance, we then normalize the bone lengths to that of a

chosen canonical skeleton, and convert vjc to local parent

coordinates for selected end-limb joints according to the

kinematic structure of human skeleton. We follow Gram-

Schmidt based approach inline with Akhter et al. [1] to ob-

tain the pose representation for limb joint locations in the

Local Coordinate System, L as, v
j
l (t). We denote it as, xt

(i.e. v
j
l (t) for j = 1, ..J), which effectively disentangles

difficulties of modeling global position, camera-view and

joint-location with respect to a single pelvis root.

Training of pose embedding network. We define encoder

Epose, decoder Dpose and discriminator Discpose follow-

ing similar architecture inspired from the kinematic tree of

limb connections [5]. The inference network, Epose takes

the previously defined xt as input representation as shown

in Fig. 2A. Motivated from adversarial auto-encoder frame-

work [27], to effectively leverage both continuity of pose

embedding along with reduced reconstruction error, we em-

ploy an adversarial learning strategy in line with [19]. We

denote the final pose embedding as zt = Epose(xt).

3.2. Data augmentation and pretraining

To simulate random unconstrained video augementa-

tions from static-camera feed, we perform smooth scale and

focus variations with acceptable random parameter setting

assuming orthographic projection. Besides this, time varia-

tions are also incorporated with fast and slow camera move-

ments to simulate diverse unconstrained patterns as found

in in-the-wild videos. By utilizing the output of a full-body

tracker and 2D joint projection annotations (if available),

we define a 1D sequence α0:T capturing the proportion of

visible body-part in the time interval 1 to T . Following

this a temporal binary masking sequence is computed as

m0:T = α0:T > 0.7. However for samples with 2D pose

annotation, we define a binary mask of J dimensions mJ
0:T

indicating visibility of individual joints.

Dataset selection. Here we discuss various datasets used

in the proposed method to clearly explain the further train-

ing pipeline. Firstly, we consider two datasets with ground-

truth 3D pose annotations i.e. Human 3.6M [10] and

MPI-INF-3DHP [28], which is represented as Dunsim.
sup. =

DH3.6 ∪ D3DHP . Here unsim. stands for un-simulated

frames without the videogramphic augmentations. Sec-

ondly, we choose two datasets without ground-truth 3D

pose annotations i.e. MADS [55] and an in-house collec-

tion of 4 hours YouTube videos, which is represented as

Dunsim.
unsup. = DMADS ∪ DY Tube. The corresponding uncon-

strained simulated data is represented as Dsim.
sup. and Dsim.

unsup.

respectively (see Table 1). We use the standard test-split of

MADS dataset with and without random videographic aug-

mentations, i.e. Dunsim.
test and Dsim.

test respectively as the test

data for evaluation as it comes with the corresponding 3D

pose ground-truth. Note that all these chosen datasets con-

tains diverse disjoint motion or action categories to effec-

tively highlight generalizability of the learned representa-

tion to unseen motion types.

Pretraining of CNN on Dunsim.
sup. We start from a Resnet-

50 based CNN with pretrained parameters from Vnect [29].

The last layers after the res-4f block are fine-tuned to di-

Table 1. Dataset notations and their usage with supervision (sup.).

Settings
Train Test

DH3.6 D3DHP DMADS DY Tube Dtest
MADS Dtest

Y Tube

Pose sup. X X × × - -

w/o sim. Dunsim.
sup. Dunsim.

unsup. Dunsim.
test Dunsim.

Y Tube

with sim. Dsim.
sup. Dsim.

unsup. Dsim.
test Dsim.

Y Tube

Usage for pre-training For self-supervision For testing
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rf~P(rf)

C
N

N ra~P(ra)

zm
MD (decoder)N

Dmd (disc.)

C.  Motion forecasting model

zm

MF(uni-LSTM)

Dmf (disc.)
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si
bi
lit
y

Dpose

Epose

Simulate video 
augmentation

ME (encoder)

B. Videographic augmentation C. Probabilistic amodal-completion using motion embedding 

A.  Learning Pose Embedding

Resnet-50 Dpose

Dpose
Epose

A. Learning pose embedding

Figure 2. Overview-A) Architecture of pose embedding (Section 3.1) and CNN for pose estimation on the learned embedding space

(Section 3.1). Grid interpolation of the learned continuous embedding space is also illustrated alongside. B) An illustration of α
augi
0:T and

m
augi
0:T as defined in Section 3.2 to simulate the unconstrained scenarios. C) Architecture of probabilistic motion embedding (Section 3.3).

Table 2. A list of important notations used in this paper.

Notations Explanation (here RF denotes random factor)

I
noaug
0:T The original unsimulated video

I
augk
0:T kth random videographic augmentation

x
noaug
0:T Ground-truth 3D pose of I

noaug
0:T

e
noaug
0:T Pose prediction for I

noaug
0:T at the output of ME

ra RF modeling uncertainty in amodal completion

zaugiu Uncertain motion embedding for ith simulation

zm Certain motion embedding; zm = N(zaugiu , ra)

d
augi
0:T (ra) Pose prediction for I

augi
0:T with RF ra

r̂a Predicted RF at the output of discriminator Dmd
r

r̂augia

RF required to get an estimate of x
noaug
0:T at the

output MD as d
augi
0:T (r̂augia )

rectly regress the latent pose-vec representation, denoted

as zcnnt for a full-body input image It. However, instead

of having a direct loss on zcnnt , we enforce a loss on

xcnn
t = Dpose(z

cnn
t ) against xt (see Fig. 2A) with frozen

parameters of all the networks involved in the pose embed-

ding framework (i.e. Dpose and Epose). We denote this loss

function as L(xcnn
t , xt) = |xcnn

t − xt|. This is observed to

improve performance considering the fact that, a direct loss

on zt enforces different weightage to the pose-vec depend-

ing on whether it is lying at a high-density or low-density

region in the learned embedding space.

3.3. Learning temporal motion embedding

Aiming towards learning a general purpose motion rep-

resentation, we plan to encode motion of short video snip-

pets (short enough to be independent of action related cues).

Before elaborating the individual modules, we provide a list

of important notations with short descriptions in Table 2.

3.3.1 Probabilistic amodal motion completion

To leverage the temporal regularity from short video-clips

(3 seconds), we introduce two bidirectional RNNs (Bi-

LSTM) denoted as ME and MD. As shown in Fig. 2B, ME

takes a sequence of CNN features denoted as fCNN
0:T =

CNN(Iaugk
0:T ) as the input representation. And it outputs a

sequence of 3D pose denoted as e
augk
0:T or e

noaug
0:T (for kth

simulation and un-simulated video respectively), through

the frozen Dpose (shown as orange arrows in Fig. 2).

To effectively address the uncertainty in prediction of

pose representation for frames with partial-visibility, we

plan to model it as a conditional distribution over a com-

bined representation of past and future motion, i.e. a trans-

formation of the final bidirectional hidden representation of

ME denoted as zaugiu (uncertain motion embedding for ith

simulation). With zm being the corresponding certain mo-

tion embedding (see Fig. 2B), we aim to model the ran-

domness in P (zm|zaugiu ) by introducing a random vector

ra drawn from fixed prior P (ra), i.e. zm = N(zaugiu , ra).
Here, MD is designed as a bidirectional recurrent decoder,

which decodes back the 3D pose sequence denoted as

d
augi
0:T (ra) (through the frozen Dpose) from the certain mo-

tion embedding zm obtained using a randomly drawn ra.

Motivated by the training approach incorporated by

BiHMP-GAN [18], we define a conditional discrimina-

tor with two output heads, Dmd
r and Dmd

w as shown in

Fig. 2B. Conditioned on the given uncertain motion vec-

tor zaugiu , the discriminator manages two separate tasks.

Firstly, the output logit Dmd
w (daugi

0:T (ra); z
augi
u ) enforces

the minimization of Wasserstein distance [8] with respect

to the true distribution x
noaug
0:T for the same given zaugiu

conditioning. Secondly, Dmd
r (daugi

0:T (ra); z
augi
u ) retrieves

the particular r̂a vector which is used earlier to predict

d
augi
0:T (r̂a) = MD(N(zaugiu , r̂a)). Such a configuration also

provides a new direction to incorporate a direct content loss

L(daugi
0:T (raugia ), xnoaug

0:T ); r̂augia = Dmd
r (xnoaug

0:T ; zaugiu )
even for the partially-visible frames without the use of

masking (see Algo. 1). Here, r̂augia is the random factor,

which certainly outputs an estimate of x
noaug
0:T as one of the

plausible outcomes for the simulated input video-clip I
augi
0:T .
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Training phase-1: The parameters of ME, MD and N are

first trained using samples from both Dunsim.
sup. and Dsim.

sup. by

enforcing L only for the visible time-steps i.e. Lsup.
A =

L(eaugi
0:T , x

noaug
0:T )⊙mJ

0:T +L(daugi
0:T (ra), x

noaug
0:T )⊙mJ

0:T

Training phase-2: After the first training phase, parame-

ters of N, MD are finetuned along with the newly introduced

discriminator Dmd using an adversarial training framework

shown in Algorithm 1.

3.4. Selfsupervised learning

Here, we utilize the un-annotated data with and with-

out videographic augmentation (i.e. Dsim.
unsup. and Dunsim.

unsup. )

to improve generalizability of the motion modeling pipeline

for in-the-wild video samples. We formalize two probabilis-

tic introspection based self-supervised techniques to form

correspondence pairs of sequence of images which would

have the same pose-sequence representation.

3.4.1 Self-supervision for frames with full visibility

Motivated by image based approaches relying on known

synthetic warp-based augmentations [33], we plan to use di-

verse unconstrained camera simulations and temporal-shift

[30] to gather correspondence pairs, which would have the

same pose representation with full-body visibility. Suppose

that, augi and augj are two different videography augmen-

tations of the same video-clip, we impose correspondence

only for the common frames with full-body visibility repre-

sented as the logical-and operation of the corresponding 1D

visibility masks (see Fig. 3A), i.e.

Lunsup.
A1

= L(daugi
0:T (ra), d

augj
0:T (r′a))⊙ (maugi

0:T ∧m
augj
0:T )

ΘMD, ΘDmd : Parameters of MD and Dmd

for k iterations do

for m steps do
ra: Sample random minibatch ∼ P (ra)

Ldisc
adv = Dmd

w (daugi
0:T (ra); z

augi
u )

−Dw(x
noaug
0:T ; zaugiu )

Lr
rec = |ra − r̂a|; r̂a = Dmd

r (daugi
0:T ; zaugiu )

/* Parameter update for Disc. network*/

ΘDmd := argmin
Θ

Dmd

(Ldisc
adv + λrL

r
rec)

end

LX
content = |xnoaug

0:T − d
augi
0:T (raugia )|

Lgen
adv = −Dmd

w (daugi
0:T (ra); z

augi
u )

/*Parameter Update for Decoder MD*/

ΘMD := argmin
ΘMD

(Lgen
adv + λrL

r
rec + λcL

X
content)

end

Algorithm 1: Training algorithm for the proposed prob-

abilistic amodal limb completion.

ME

ME

r

N
MD

Dmd

t=1 t=Tt=tk t=tk+T+1

vi
si
bi
lit
y

A. Frames with full-visibility

B. For partially-visible frames

Figure 3. Schematic illustration of the self-supervised strategies

using the pretrained probabilistic MD and MF (see Section 3.4).

Here, ra and r′a are randomly drawn from P (ra). Similarly,

for the same video-clip we construct such correspondence

pairs with a different augmentation of the temporally shifted

sequence I
augk
tk:T+tk

(see Fig. 3A),

Lunsup.
A2

= L(daugitk:T
(ra), d

augk
tk:T

(r′a))⊙ (maugi
tk:T

∧m
augk
tk:T

)

We also configure the above two formulations for

un-simulated video-clips by replacing d
augi
0:T (ra) with

d
noaug
0:T (ra) and m

augi
0:T with a vector of all ones. However,

one must not construct such pairs for image sequences hav-

ing partial-visibility keeping in mind the uncertainty in 3D

pose estimate for such frames.

3.4.2 Self-supervision for partially-visible frames

Devoid of ignoring the partially-visible un-annotated video

frames, we formalize a workaround by effectively utiliz-

ing the probabilistic motion embedding framework. Note

that, along with the random unconstrained augmentations

we also have access to the corresponding un-simulated

full-body clips even for the un-annotated samples (i.e.

Dunsim.
unsup. ). Let e

noaug
0:T be the sequence of pose estimates

for the un-simulated clip I
noaug
0:T at the output of ME, and

d
augi
0:T (r̂augia ) is the sequence of pose estimates at the output

of MD where r̂augia = Dmd
r (enoaug

0:T ; zaugiu ) (see Fig. 3B)

and zaugiu = ME(Iaugi
0:T ). Hence forms a correspondence

pair, i.e. Lunsup.
B = L(daugi

0:T (r̂augia ), enoaug
0:T ). Note that,

this formulation is similar to LX
content in Algo. 1.

Training phase-3 (self-supervision): We define, Lsup.
B by

replacing enoaug with the supervised ground-truth xnoaug

in Lunsup.
B . The final unsupervised and supervised loss

functions are represented as, Lunsup. = Lunsup.
A1

+
Lunsup.
A1

+ Lunsup.
B and Lsup. = Lsup.

A + LX
content + Lsup.

B
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respectively. Considering complexity of entanglement of

multiple network components, we plan to adapt only the

parameters of ME along with the last layer of the CNN

for the un-annotated video samples. However, aiming to

realize a unified framework across varied datasets and un-

constrained videography setting, we incorporate a different

training regime avoiding mode-collapse and other general-

ization issues. Alternate batches of supervised (i.e. Lsup.)

and unsupervised (i.e. Lunsup.) training iteration is per-

formed with separate Adam [15] optimizers.

4. Experiments

In this section, we present a thorough evaluation of our

method for cross-dataset transfer of motion representation

to unconstrained and unannotated video-clips. We provide

a detailed ablation study of our self-supervised strategies

along with comparisons to prior pose estimation methods.

Further, we show qualitative results of probabilistic amodal

limb completion.

Datasets Adhering to the detailed supervision strategies

mentioned in Table 1 of Section 3.2, we use the simulated

and un-simulated version of Dtest
MADS for evaluation of the

cross-dataset transfer performance. Whereas, the simulated

and unsimulated version of the collected DY Tube dataset

(unlabelled) is used for qualitative comparison. Table 3

depicts the diversity of motion classes among the selected

datasets. It is to be noted that, the datasets based on labo-

ratory setting have limited number of human subjects with

fixed background scene. Therefore, keeping in mind the in-

the-wild unconstrained scenarios found in internet videos,

we ensured collection (i.e DY Tube) of diverse human sub-

jects (i.e. wearing diverse cloths in varied background) per-

forming varied forms of motion (i.e. different dance forms

such as western, modern, contemporary etc.). Maintaining

a common evaluation ground against the prior arts we use

the standard training split of Human3.6M [10], MPI-INF-

3DHP [28] in our training iteration (i.e Lsup.).

Implementation details We obtain human centered tight

crops of size 224×224, using the ground truth 2D pose

information for Dsim.
sup. , Dunsim.

sup. . However, for Dsim.
unsup

and Dunsim.
unsup , we obtain the detection bounding-box using

Faster-RCNN [40]. Assuming it as a full-body bounding

box we define the 1D α
augi
0:T and m

augi
0:T for simulated sam-

ples in Dsim.
unsup. Additionally, we normalize all videos to

a common FPS of 30 with T = 90. We use single layer

LSTM [3] with 512 hidden units for all the recurrent archi-

Table 3. Diversity of motion classes among the selected datasets

Dataset Dynamic Motion Classes

DH3.6 Eating , Smoking, Discussion, Walking

DY Tube Indian, Modern, Contemporary etc.

DMADS HipHop, Jazz, Sports, Taichi

tectures shown in Fig. 2.

4.1. Evaluation of the proposed approach

Evaluation metrics We evaluate ablations of our method

against the previous arts on two metrics i.e. PSS and

MPJPE. PSS-Score introduced in [16] assesses the full 3D

pose as a structure, rather than independently looking at

each joint. Hence, the metric is more robust as compared to

conventional metric, MPJPE. Essentially, a scale-invariant

performance score is obtained, by clustering the set of

ground truth poses using k-means (using 50 clusters), and

then computing cluster assignment accuracy. Maintaining a

common ground, we perform view and bone-length normal-

ization to the ground-truth pose as well as the view-variant

pose predicted by the prior arts.

Our ablations We test three variants of our method, to

validate different training phases. Our first baseline, is

one where the training stops after phase-1 and phase-2, be-

fore employing any self-supervised strategy. We denote

this baseline as Ours-noSS. Next, to validate the utility of

self-supervision for frames with full-visibility, we include a

baseline, where only Lunsup
A1

and Lunsup
A2

are enforced. We

call this baseline as Ours-SSA. Finally, to validate the utility

of the combined loss Lunsup. , we train Ours-SSAB, where

Lunsup
B is enforced in addition to Lunsup

A1
and Lunsup

A2
.

Selection of prior arts Though there are several 3D pose

estimation methods in literature, most of the approaches

do not exploit the temporal video information [43, 16, 47].

Some recent papers such as [14, 39] showed improved per-

formance on datasets such as Human3.6M by successfully

leveraging the temporal cue. Some relatively earlier works

such as VNect [29] employed post processing by impos-

ing the temporal regularity. However, note that the above

approaches do not handle pose estimation for partial vis-

ibility in an explicit manner as done by LCR++ [43] and

Vosoughi et al. [51]. Contrastingly, the proposed method

aims to leverage both temporal and partial-visibility in the

process of developing a probabilistic amodal limb comple-

tion framework. Therefore, to have a fair comparison, we

evaluate our approach against all the above discussed state-

of-the-art methods. However, these methods have to be re-

evaluated on our intended task (unsupervised adaptation),

as they do not report numbers on it. We therefore use the

publicly available implementation with pretrained weights

provided by the authors for [43, 29, 16, 47, 39]. Addi-

tionally, although the code for [51, 14] has not been made

public, owing to the simplicity of these methods, we reim-

plement them and reproduce their reported numbers.

4.1.1 Comparison of 3D pose estimation

As described in the Section 1, our primary goal of hu-

man motion representation learning has a lack of prior lit-

erature for us to perform a thorough quantitative compari-
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A. B.

C. D.

Figure 4. Qualitative results on probabilistic amodal limb completion on unconstrained in-the-wild dataset, Dtest
Y Tube(top panel A and B),

and Dtest
MADS (bottom panel C and D). The purple dotted line indicates examples where diverse predictions are obtained only for the joints

that are truncated in the given image. Here, r̂augia indicates the ra obtained by passing the ground truth pose sequence to the discriminator.

Notice that, our framework is capable of generating multiple plausible pose-filling outcomes particularly for the non-visible body-joints,

towards both beginning or end of the temporal-sequence as a result of the robust bi-directional motion representation.

Table 4. Comparison of cross-dataset 3D pose estimation results

on Dtest
MADS . All methods have no access to 3D pose supervi-

sion from Dtest
MADS(i.e. “cross-dataset”). For PSS (Pose Structure

Score) the higher (↑) the better, and for MPJPE the lower (↓) the

better. MPJPE here is abbreviated as MP.

Method

Dance Style

HipHop Jazz Taichi Sports Avg

PSS(↑) PSS(↑) PSS(↑) PSS(↑) PSS(↑) MP(↓)

Un-simulated Videos

Vosoughi et al. [51] 67.4 73.9 62.5 30.3 58.5 1.14

LCR++ [43] 84.3 86.3 43.7 29.4 60.9 1.04

VNect [29] 69.2 67.5 74.5 34.5 61.4 1.13

Kocabas et al. [16] 74.3 72.9 66.8 39.3 63.3 1.01

Sun et al. [47] 77.8 78.1 69.3 40.1 66.3 0.93

Tekin et al. [14] 82.3 81.7 70.2 37.9 68.0 0.95

Pavllo et al. [39] 83.2 82.3 70.4 40.5 69.1 0.93

Ours-noSS 83.4 83.1 72.3 42.1 70.2 0.90

Ours-SSA 86.2 85.2 75.4 46.7 73.4 0.84

Ours-SSAB 87.1 86.5 76.2 48.1 74.5 0.81

Simulated Videos

Sun et al. [47] 54.5 51.3 41.8 33.4 45.3 1.58

Kocabas et al. [16] 52.6 52.1 43.4 35.4 45.9 1.61

VNect [29] 54.5 54.8 60.1 26.6 49.0 1.26

LCR++ [43] 70.2 73.4 35.2 23.2 50.5 1.21

Vosoughi et al. [51] 66.4 64.2 58.9 32.1 55.4 1.19

Tekin et al. [14] 69.5 70.4 58.3 30.1 57.1 1.16

Pavllo et al. [39] 73.3 69.6 63.8 39.1 61.4 1.07

Ours-noSS 78.4 75.2 69.2 41.9 66.2 0.97

Ours-SSA 79.5 76.4 70.6 42.4 67.2 0.95

Ours-SSAB 82.8 80.4 72.4 45.1 70.2 0.90

son on this specific task. However, pose estimation perfor-

mance on datasets not seen during the supervised learning

phase (i.e cross-dataset transfer) can validate the utility of

our self-supervision strategies. We therefore choose to eval-

uate pose estimation performance on Dtest
MADS , a dataset not

used during the supervised learning phase. We follow two

strategies for evaluation. For un-simulated videos, the pose

estimates from e
noaug
t are compared against ground-truth

pose. Whereas, for simulated video, the metrics are com-

puted on the pose estimates from d
augi
t (ra). Considering

P
C
2

HipHop(MADS)
Taichi(MADS)

Jazz(MADS)
Sports(MADS)

Youtube Videos
Eating(H3.6m)
Walking(H3.6m)
Smoking(H3.6m)
Discussion(H3.6m)

PC1

Figure 5. PCA plot generated using Dtest
MADS ∪ Dtest

H3.6 ∪ Dtest
Y Tube

showing generalizability of the learned motion representation

across datasets with diverse action categories. Additionally, the

plot clearly shows that our model learns a common embedding

space for multiple datasets.

the uncertainty in 3D pose as a result of partial-visibility,

we follow the evaluation protocol described in [18], where

min-error and best-PSS is reported over a batch of 500 ran-

domly drawn, ra vectors. However, for the prior-arts, we

follow the protocol proposed by the respective works for

both simulated and un-simulated inputs. Results in Table 4

clearly highlights our superiority in cross-dataset transfer

against our baselines and prior-arts. More specifically, we

see a substantial improvement on simulated videos as a re-

sult of the proposed self-supervised strategy.

We further observe that addition of self-supervised loss

Lunsup
A leads to a small improvement in performance on

simulated videos, but a significant improvement on unsim-

ulated videos, due to the fact that this loss takes into ac-

count only the frames which have full visibility. In contrast,

as self-supervised loss Lunsup
B enforces self-supervision for

partially visible frames, we see that enforcing this loss leads

to a small improvement in performance on un-simulated

videos, but a significant improvement on simulated videos.
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4.1.3 Qualitative results

In Fig. 4, we present qualitative results on probabilistic

amodal limb completion. For this task, it can be observed

here that our model successfully reconstructs the visible

joints deterministically. At the same time, by varying the

random vector, ra we can generate diverse predictions with

high variance for the regions that are not visible. Refer to

the supplementary for a more quantitative validation of our

probabilistic model in the form of variance curves. Addi-

tionally, a PCA plot is shown in Fig. 5, that depicts motion

class separation in the learnt motion embedding space.

5. Conclusion

In this work, we present a novel method for cross-dataset

transfer of human motion representation. A probabilistic

framework is proposed which disentangles the uncertainty

inherent in unconstrained natural videos, and enables the

application of effective self-supervised losses. State-of-the-

art results on tasks such as pose estimation, particularly on

datasets not seen during training, substantiates our model’s

generalizability and robustness.
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