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Abstract

Urban scene parsing is a basic requirement for various

autonomous navigation systems especially in self-driving.

Most of the available approaches employ generic image

parsing architectures designed for segmentation of object

focused scene captured in indoor setups. However, images

captured in car-mounted cameras exhibit an extreme effect

of perspective geometry, causing a significant scale dispar-

ity between near and farther objects. Recognizing this, we

formalize a unique Variable Resolution Transform (VRT)

technique motivated from the foveal magnification in hu-

man eye. Following this, we design a Fovea Estimation

Network (FEN) which is trained to estimate a single most

convenient fixation location along with the associated mag-

nification factor, best suited for a given input image. The

proposed framework is designed to enable its usage as a

wrapper over the available real-time scene parsing models,

thereby demonstrating a superior trade-off between speed

and quality as compared to the prior state-of-the-arts.

1. Introduction

Urban scene parsing is a fundamental task which can en-

hance the ability of a wide range of consequent artificial

decision making systems, more importantly in areas of au-

tonomous navigation (e.g. self-driving). Scene parsing, also

regarded as semantic segmentation, aims to assign category

label to each individual pixel for a given RGB image, usu-

ally captured by car mounted cameras. Understanding im-

ages at pixel-level granularity [9, 8] provides a much richer

representation to perform effective reasoning for various de-

cision making tasks requiring varied level of local precision

or global context information.

Acknowledging the significance of this problem a wide

range of deep convolutional neural network (CNN) based

solutions have been proposed [26, 5, 4], which has pushed

the benchmark performances to a significant extent. How-

ever, in the race of improving segmentation accuracy such
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Figure 1. A. Real time segmentation mIoU scores on Cityscapes

test set. Other Methods include: PSPNet [26], ResNet38 [22],

DUC [21], RefineNet [11], FRRN [18], DeepLabv2-CRF [5], Di-

lation10 [24], DPN [14], FCN-8s [15], DeepLab [4], CRF-RNN

[27], SQ [20], ENet [17], SegNet [1], ICNet [25], ThunderNet

[23] and Ours. B. An illustration of the proposed transformation

applied at two fovea regions to cater the issue of scale disparity.

approaches employ sophisticated deep architectures [26, 5]

which inevitably increases the computational cost to a sig-

nificant extent in terms of both number of operations and

parameter size. Recognizing this trade-off, there has been a

diversion to realize efficient scene-parsing solution wherein
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A. “merged region” problem B. “splitted region” problem
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Figure 2. Illustration of the “merged region” and “splitted region”

problem for farther objects and nearer objects respectively.

the objective is to improve the inference speed while at-

tempting to sustain a comparable accuracy [25, 17]. This is

a prime requirement towards practical deployment of scene-

parsing models on embedded systems with limited compute

power (see Figure 1A). Pushing the state-of-the-art perfor-

mance with a good trade-off between speed and quality re-

mains an open research problem (see Figure 1A).

One of the key differences between urban road scenes [6,

3] against indoor scene segmentation problems [28] can be

attributed to the extreme effect of perspective geometry as a

result of unobstructed vision in outdoor scenes. This effect

is also common ego-centric video feeds while navigating in

outdoor environments. The perspective projection from ac-

tual scene onto the image plane creates a significant scale

disparity between near and farther objects, though they are

of the same size in reality. Available scene parsing solutions

do not employ explicit modifications to cater this problem.

Similar architecture characteristics is used for both object-

focused [28, 13] and urban road scene segmentation [6]. As

a result such approaches yield poor performance on distant

objects as compared to the nearer ones. We also notice that

the nearby objects are usually distributed on the peripheral

region specifically in the car mounted camera feeds [10].

This implies an uneven distribution of information content

across the spatial map, with high density crucial informa-

tion concentrated at the central region (see Figure 1B).

While closely analyzing the failure cases of parsing ur-

ban road scenes, we notice two crucial shortcomings (see

Figure 2). a) The predictions of available parsing models

exhibit “splitted region” problem, wherein segmentation of

a large-scale object (a single segmentation class) situated in

the image periphery splits into island-like regions of varied

semantic categories. b) On the contrary, the predictions of

parsing models exhibit “merged region” problem especially

for farther objects concentrated in the central image region

in absence of distinctive details. For example, a rider on ve-

hicle (bicycle or motorcycle) is entirely segmented as either

a rider or the vehicle causing parsing errors (see Figure 2A).

Our contributions. Motivated by the above discussion, we

propose a novel scene parsing solution based on a care-

fully devised variable resolution transform (VRT) formal-

ization. We aim to undo the effect of perspective geome-

try, which is the root cause behind both the failure scenar-

ios discussed above (i.e. “splitted region” and “merged re-

gion”). The proposed variable resolution transform aims to

enhance the scale of farthest objects, while simultaneously

reducing scale of the peripheral ones. We draw motivation

from a key aspect of modeling image representation in the

human eye, while attending a particular object in the full vi-

sual scene [16]. In such a scenario, the representation of the

region close to the fixated point is mapped onto the fovea

with a considerably greater spatial resolution as compared

to the representation of the unattended peripheral areas. We

model this transformation using 2 distinct set parameters

which are named as a) the fovea point, i.e. the spatial lo-

cation of the fixation in the image plane, and b) the foveal

magnification factor, separately along the height and width

of the image plane. Besides this, we propose a novel Fovea

Estimation Network (FEN) which is trained to predict a sin-

gle most convenient fixation location alongside the associ-

ated magnification factors along both the spatial directions

best suited for a given urban scene image. In absence of

the ground-truth, we propose various strategies to obtain

an estimate of the most convenient fovea parameters which

would yield a significant improvement in the final parsing

performance. After obtaining the predictions for both the

natural image and the transformed image through a com-

mon parsing network, a perspective-aware aggregation of

these predictions is performed using a spatial weight-map

to weigh the predictions based on their reliability at indi-

vidual pixel locations. We evaluate the proposed VRT-Net

framework as a wrapper over the available real-time seman-

tic segmentation approaches, such as ICNet [25] and Thun-

derNet [23] on two benchmark datasets, Cityscapes [6] and

CamVid [3]. In summary our prime contributions are:

• We formalize a unique variable resolution transforma-

tion technique based on the foveal magnification in hu-

man eye while fixating a particular point in a scene.

• We design a Fovea Estimation Network by utilizing the

initial layer of an off-the-shelf real-time scene parsing

model, where the additional parameters are trained to

output a single set of most convenient VRT parameters

maintaining an optimal computational overhead.

• The proposed framework can be used as a wrapper

over the available real-time scene parsing models fol-

lowed by an end-to-end fine-tuning, where the final

prediction is obtained as a perspective-aware aggrega-

tion of parsing results from both the natural and the

transformed image.

• The proposed framework demonstrates a superior

trade-off between speed and quality as compared to the

prior state-of-the-art approaches.
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Figure 3. An exemplar grid image on left to demonstrate the effect of the proposed Variable Resolution Transformation for varying fovea

point (top row) and magnification factors (bottom row).

2. Related Work

With the availability of large-scale labelled datasets

for scene segmentation, there has been a tremendous

progress towards developing efficient scene parsing solu-

tions. Among them, the Fully Convolutional Network

(FCN) [15] and DeepLab models [4] have achieved have

pushed the benchmark performances to a significant extent

via efficient realization of deep convolutions architectures.

Several approaches employ conditional random fields [12,

27] to further enhance the parsing performance. An effi-

cient fusion of multi-scale representations has proven to be

another effective technique for outdoor scene parsing as a

solution to the huge spatial scale variance. (ICNet) [25]

is a parsing model that uses multi-resolution branches of

the images i.e. high, medium and low for parsing. Im-

ages at different resolutions are parsed separately with deep

and shallow convolution Networks. Final results are pro-

duced after merging each of these feature using a cascade

feature fusion box. Pyramid Scene Parsing Network (PSP-

Net) [26] employs a different variant of multi-scale fusion

where the features obtained from the image are pooled at

different scales via a pyramid pooling module.

As a different approach certain recent works propose to

explicitly address the extreme effect of perspective geom-

etry, specifically for outdoor scene parsing. FoveaNet [10]

propose to fist obtain a fovea region which is used to ob-

tain a zoomed image cropped around the fovea. Both the

original and the cropped images are parsed using a shared

scene paring CNN. And finally the results are fused to ob-

tain the final segmentation output. In our proposed method,

we avoid cropping the localized fovea region by perform-

ing Variable resolution transform directly on the full image

and use a common architecture to parse both image and the

fovea-localized region. This is more effective in undoing

the perspective issue as it preserves the full image context

thereby leading to an improved parsing performance.

3. Proposed Architecture

Our proposed architecture process the images through

three important stages which are pre-processing, scene-

parsing and post-processing. Pre-processing stage identifies

the fovea point(s) in the input image using Depth Estima-

tion Technique [7] or a Grid-Search technique, and then per-

forms Variable Resolution Transform using the found fovea

point. This stage is responsible for addressing changes in

the perspective view. Scene-parsing stage then parses the

input image and the transformed image to produce their re-

spective segmentation maps. Finally, post-processing stage

merges the two segmentation maps to produce the final re-

sult. Here we explain the involved components in detail.

3.1. Variable Resolution Transform (VRT)

Variable Resolution Transform (VRT) [2] is a technique

that is used in image compression applications. In this

case, we aim to formalize a nonlinear spatial transformation

which allows us to magnify the regions close to a fixation

point while compressing the resolution towards the periph-

ery. This transformation is parameterized by, a) spatial lo-

cation of the fovea point represented as pi : (fx, fy), and

b) magnification factor αi : (αx, αy). Here, the magni-

fication factor decides the extent of spatial magnification,

separately along both the spatial dimensions (see Figure 3).

Let, (x, y) denotes spatial-index of the original image in a

H ×W lattice. And, (x̂, ŷ) denotes the spatial-index of the

transformed image. The distance of an arbitrary pixel loca-

tion (x, y) from the fovea-point (fx, fy) is represented as,

dx = x− fx, dy = y − fy (1)

A logarithmic nonlinear transformation defines the map-

ping, [(x, y) → (x̂, ŷ)], as realized in the following equa-

tions. x̂ = fx + dvx, ŷ = fy + dvy where; (2)

2051



Candidate magnification-factors
(for both         and        )

VRT

VRT
Inverse 

VRT

Inverse 
VRT

weight-map

A. B. Candidate fovea-points for the 
Grid-search approach

Index (i) → 

A
lp

ha
 v

al
ue

 →
 

Figure 4. A. Variable Resolution Transform(VRT) applied on a raw image and its segmentation map. Below we show the spatial weight-

maps obtained using Chebyshev (left) and L2 (right) distance in equation 6. We have used L2 distance in our computation. B. The figure

depicts the process of selecting candidate fovea-points and magnification factors for the Grid-search approach discussed in Sec. 3.2b.

dvx = ln (dx ∗ αx + 1) ∗ sfx

dvy = ln (dy ∗ αy + 1) ∗ sfy
(3)

Here, sfx and sfy control scaling of the transformed im-

age. Moreover, sfx and sfy are set to maintain a fixed pre-

defined spatial size of the transformed output image, i.e.

sfx = dvmax
x /(ln (dmax

x ∗ αx + 1))

sfy = dvmax
y /(ln

(

dmax
y ∗ αy + 1

)

)
(4)

The above equations convey how a pixel at a distance

(dx, dy) from the fovea in the original image is moved to

a distance (dvx, dvy) form the fovea in the transformed im-

age. The above defined spatial transformation is also invert-

ible (i.e. [(x̂, ŷ) → (x, y)] using following equations,

dx = (exp (dvx/sfx)− 1)/αx

dy = (exp
(

dvx/sfy
)

− 1)/αy

(5)

We obtain a spatial weight map, M in the original image

space, depicting spatial information loss in a cyclic recon-

struction of the original image (see Figure 4).

M̂(x̂, ŷ) = dist( 0, ∆[(x̂, ŷ) → (x, y)](x̂,ŷ))

M(x, y) = M̂([(x, y) → (x̂, ŷ)](x,y))
(6)

3.2. Fovea Point Estimation

Identification of fovea point is central towards address-

ing the issue of perspective geometry. We propose to use a

Fovea Estimation Network (FEN) for this purpose. Given

an input image FEN estimates both the fovea point (fx, fy)
and the magnification factor (αx, αy). However, in absence

of a reliable ground-truth for the above transformation pa-

rameters, we propose two different strategies to prepare su-

pervised training samples for the FEN.

a) Depth-based fovea estimation. In first strategy we fix

the magnification factor to some empirically chosen appro-

priate value, i.e. (αx, αy) = (0.004, 0.004), thereby keep-

ing fovea point as the only parameter to be estimated. We

found the above value as the mode over a set of candidate

values (see Figure 4), when tested for an improved parsing

performance on a subset of training dataset. We rely on a

monocular depth estimation network [7] to obtain a depth

map for each image in the training dataset. Following this,

the fovea point is obtained as a pixel-location with the max-

imum depth value. For cases where the maximum depth

value is obtained at multiple pixel-locations, we perform a

weighted (i.e. depth-value) mean of the pixel locations to

realize the fovea-point. We train the FEN network by treat-

ing these fovea-points as ground-truth for the correspond-

ing input image. However, fixing the magnification factor

limits the capability of the proposed variable transformation

technique. Different images require different level of mag-

nification or zooming to reliably parse the distant objects.

Further, the choice of maximum depth as the fovea-point

is not optimal. In certain scenarios, the maximum depth is

attended on background regions such as tree, road, or sky,

instead of attending a distance object of interest such as car,

pedestrian, rider, etc.

b) Fovea estimation via grid-search. Acknowledging

the above shortcoming, we argue that the fovea-point and

the magnification-factors must be selected in a way which

would surely improve the final segmentation performance.

Following this analogy, we adopt a greedy approach to ob-

tain the most reliable ground-truth for the transformation
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Figure 5. An overview of the proposed framework. In top branch, the raw image is taken as input to the Fovea Estimation Network (FEN)

to obtain the parameters required for the transformation. We reuse the Scene parsing model in FEN which also outputs a segmentation map

of the original input image. In another branch, the transformation module (VRT) uses the estimated parameters to obtain a transformed

image. This image is passed through the scene parsing model whose output is transformed back to the original image space via a inverse

transformation (IRT). Both the segmentation estimates are merged using the spatial weight map to obtain the final segmentation result.

parameters. Given a pre-trained scene parsing model, we

setup the full-framework (see Figure 5) using pre-selected

values for (fx, fy, αx, αy) by skipping the fovea estima-

tion network. We compute mIoU score with respect to the

ground-truth to greedily select the best suited values for

(fx, fy, αx, αy), for each training samples.

Though grid-search is adopted to prepare the training

samples, we formalize a strategy to reduce the search space.

Given a input image of size 2048×1024, we first search for

the best fovea-point out of a predefined set of candidate lo-

cations as shown in Figure 3B. The fovea-point candidate

set is a 48×24 grid close to the central region of the im-

age, following the general nature of perspective effect. Each

point is spaced 32 pixels both vertically and horizontally.

We consider each candidate point as the fovea, while fix-

ing the magnification factors as (αx, αy) = (0.004, 0.004).
We select the point with maximum mIoU as the fovea-point

ground-truth. After fixing the fovea-point, we search for the

best magnification factor which further improves the mIoU

metric. We first vary αx over the 9 candidate values (see

Figure 3B) while fixing αy as 0.004. Following this, we fix

both fovea-point and αx to select the best suited αy among

the 9 candidate values. This is performed for each image

in the training sample to obtain the corresponding ground-

truth tuple, (fx, fy, αx, αy).

Training FEN. Training samples for FEN consists of an in-

put image along with four labels namely fx, fy for fovea

point and αx, αy for magnification factor. In FEN, we have

a feature extractor network followed by multiple CNN lay-

ers and finally an output layer. We use a pre-trained scene

parsing model (ICNet) as feature extraction network whose

last layer logit is of size of size 256×512×19 (19 chan-

nels for 19 classes of cityscapes). This output is cropped

from the center (see Figure 5) according to the position

of the candidate fovea-locations shown in Fig 4B. The

cropped spatial maps of size 200×312×19 is upsampled to

192×384×19 before passing it as input to a shallow CNN

(3 convolution layers with kernels of size 3x3 and output

channels 64, 64, 19 respectively) to estimate the transforma-

tion parameters. In the last layer (19 channels), we use the

channels 1-9 to predict αx as multi-class classification over

the 9 candidates via softmax nonlinenarity. Similarly, chan-

nels 10-18 is dedicated to predict αy via another softmax

nonlinearity. Here, the last channel (spatial size: 48×24)

predicts probability of the spatial location to be selected as

a fovea-point via sigmoid nonlinearity.

Before formalizing the loss function to train the newly

introduced shallow CNN, we define a spatial weight map

as, W (x,y) = exp(−
√

|fx − x|2 + |fy − y|2/β). Here, β
controls temperature of the spatial weight map. This softly

allows the spatial coordinates close to the (fx, fy) to have

a better estimate of the magnification factor as enforced by

the following loss function.

L =
∑

(x,y)

(W (x,y) ∗ (LCE(z
(x,y)
[1:9] , αx) + LCE(z

(x,y)
[10:18], αy))

+λLBCE(z
(x,y)
[19] ,✶(fx,fy)(x, y)))

In the above equation, z represents the last layer out-

put after applying the respective non-linearities. LCE and

LBCE represent multi-class cross-entropy and binary cross-

entropy objectives respectively. Here, ✶ represents the in-

dicator function which is active when (x, y) matches with
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Figure 6. Parsing results for images from Cityscapes validation indicating the fovea region (first row, in green box), the final merged

segmentation results through the proposed VRT-Net and magnified segmentation performance on a patch centered at the fovea point.

Fovea Region ICNet Ours GT Fovea Region ICNet Ours GT

Figure 7. Qualitative comparison of parsing performance specifically on recognizing important small-scale objects such as traffic sign,

pedestrian etc. Note that, the prediction results obtained from ICNet [25] often misses the crucial traffic sign objects by miss-classifying it

as one of the background categories.

the ground-truth (fx, fy), thereby providing a label for the

binary cross-entropy.

3.3. Proposed scene parsing framework

Our proposed architecture is shown in Figure 5. Our

model works in three stages. Firstly, given a raw image as

an input it finds the fovea points (fx, fy) and the magnifica-

tion factor (αx, αy) using the techniques discussed above.

Following this, one branch performs VRT using the esti-

mated (fx, fy, αx, αy) to obtained the transformed image

which is passed to the scene parsing model to obtain the cor-

responding segmentation map. We perform inverse resolu-

tion transform (IRT) on this segmentation output to obtain

the segmentation map back into the original image space,

denoted as St. Additionally, we obtain another segmenta-

tion output, So directly from the original image which is

already computed as an intermediate representation of the

Fovea estimation network (see Figure 5). Note that, the

transformation module also outputs a spatial weight map,

M which is later used to fuse both the segmentation outputs

to obtain the final segmentation result, Sf . We compute it

as,

Sf = (1−M) ∗ St +M ∗ So

As the transformed image undoes the effect of perspec-

tive projection, the segmentation estimate for regions close

to the fovea is more reliable in the corresponding output,

i.e. St. And conversely, segmentation estimate, So is com-

paratively more reliable at the peripheral regions. The fused

result leverages advantages of both the estimation to realize

an improved parsing performance.

4. Experiments and Results

To evaluate the efficacy of the proposed scence parsing

framework, we perform experiments on two widely used

datasets, viz. Cityscapes and CamVid.
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Table 1. Validation results (per class) on Cityscapes dataset.
Model road sidewalk building wall fence pole tr. light tr. sign veg. terrain sky person rider car truck bus train mcycle bicycle

Trained Depth Info 97.2 81.5 90.2 40.0 47.2 56.6 64.5 74.2 91.0 57.4 93.1 78.3 58.9 92.1 65.2 80.0 58.1 66.2 74.8

Trained Grid Search 97.8 82.8 91.2 45.3 52.1 60.9 68.4 76.8 92.4 59.8 94.5 80.9 65.8 94.2 70.4 85.0 70.4 70.9 78.1

Table 2. Comparison of Test results on Cityscapes dataset. In

last 3 rows, Grid-Search and Depth-Info denote the adopted fovea

estimation approach as discussed in Section 3.2.

Method mIoU (%) Time (ms) Frame (fps)

SegNet [1] 57.0 60 16.7

ENet [17] 58.3 13 76.9

SQ [20] 59.8 60 16.7

CRF-RNN [27] 62.5 700 1.4

DeepLab [4] 63.1 4000 0.25

FCN-8S [15] 65.3 500 2

Dilation10 [24] 67.1 4000 0.25

ThunderNet [23] 64.0 10.4 96.2

ICNet [25] 70.6 33 30.3

VRT-ThunderNet

(Grid-Search)
69.1 11 90.9

VRT-ICNet

(Depth-Info)
73.1 34 29.4

VRT-ICNet

(Grid-Search)
75.2 34 29.4

Table 3. Comparison of Test results on CamVid dataset. In last 2

rows, Grid-Search and Depth-Info denote the adopted fovea esti-

mation approach as discussed in Section 3.2.

Method mIoU (%) Time (ms) Frame (fps)

SegNet [1] 46.4 217 4.6

DPN [14] 60.1 830 1.2

DeepLab [4] 61.1 203 4.9

Dilation10 [24] 65.3 227 4.4

ICNet [25] 67.1 36 27.8

Our-VRT-ICNet

(Depth-Info)
69.7 37 27.1

Our-VRT-ICNet

(Grid-search)
71.7 37 27.1

4.1. Results on Cityscapes dataset:

Cityscapes [6] dataset is a widely used dataset for bench-

marking semantic segmentation performance. The dataset

contains diverse stereo video sequences recorded in street

scenes from 50 different cities, with high-quality pixel-level

dense annotations for 5000 frames. These images are fur-

ther divided into 2975 for training, 500 for validation and

1,525 for testing. They consider 19 classes for evaluation,

which include the objects such as a car, pedestrian, cycle,

sidewalk, buildings, etc. We have used both ICNet and

ThunderNet as the baseline model for the scene parsing net-

work. A monocular RGB image is given as an input to the

model which outputs a pixel-level prediction map represent-

ing the semantic category of each pixel. We use the stan-

dard mean Intersection over Union (mIoU ) metric to eval-

uate efficacy of the proposed framework against the prior

approaches. IoU is defined as true positives divided by the

sum of true positives (tp), false positives (fp) and false neg-

atives (fn) for a given category and mIoU is the mean over

all the categories.

We also show per-class mIoU score on the standard vali-

dation set of Cityscapes in Table 1. Figure 6 depicts a qual-

itative comparison of the proposed approach against ICNet.

In Figure 6, the area marked on the raw images with the

green colored box is the region where fovea point is lo-

cated. On the right in fovea region column, we show the

zoomed view around the fovea point. Using the fovea point

and the magnification factor α, our model is able to focus on

distant small object thereby delivering an improved parsing

performance. For example, our model is able to distinguish

between the rider class and vehicle (e.g. motorcycle) class

which is not distinguished by ICNet. Evaluation results on

Cityscapes test set are shown in the Table 2.

4.2. Results on CamVid dataset:

Cambridge-Driving labeled video data (CamVid) is a

real-world dataset consisting of images taken using a car

mounted camera. The standard CamVid [3] dataset con-

tains images extracted from high resolution 10 min video

sequences. A small-fraction of pixels are labelled as void

in original dataset. To have a fair comparison, we use the

dataset split proposed by Sturgess et al. [19]. They parti-

tions the dataset into 367, 100 and 233 images for training,

validation and testing respectively. Total 11 categories were

used for evaluation. Table 3 contains quantitative compari-

son of the proposed framework against the prior arts.

5. Conclusion

We proposed a novel approach to improve urban scene

parsing performance by undoing the effect of perspec-

tive projection. We design an efficient Fovea estimation

network, which is trained to predict the most convenient

transformation parameters. Re-usage of base scene pars-

ing model for fovea estimation enables us to achieve im-

proved segmentation performance in an optimal computa-

tional overhead. Effectiveness of such transformations for

other dense prediction tasks remains to be explored.
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