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Abstract

Deep networks have achieved excellent results in percep-
tual tasks, yet their ability to generalize to variations not
seen during training has come under increasing scrutiny.
In this work we focus on their ability to have invariance
towards the presence or absence of details. For exam-
ple, humans are able to watch cartoons, which are missing
many visual details, without being explicitly trained to do
so. As another example, 3D rendering software is a rel-
atively recent development, yet people are able to under-
stand such rendered scenes even though they are missing
details (consider a film like Toy Story). The failure of ma-
chine learning algorithms to do this indicates a significant
gap in generalization between human abilities and the abil-
ities of deep networks. We propose a dataset that will make
it easier to study the detail-invariance problem concretely.
We produce a concrete task for this: SketchTransfer, and
we show that state-of-the-art domain transfer algorithms
still struggle with this task. The state-of-the-art technique
which achieves over 95% on MNIST — SVHN transfer only
achieves 59% accuracy on the SketchTransfer task, which is
much better than random (11% accuracy) but falls short of
the 87% accuracy of a classifier trained directly on labeled
sketches. This indicates that this task is approachable with
today’s best methods but has substantial room for improve-
ment.

1. Introduction

Humans experience a high resolution world which is rich
in details, yet are able to discern small amounts of highly
relevant information from the world. Thus humans learn ab-
stractions that store important pieces of information while
discarding others. For example, Figure 2 shows how only a

subset of the visual details in a dollar bill are remember by
a person asked to produce a sketch without a reference.

The quality of the abstractions learned by humans may
be an important factor in the flexibility and adaptability of
human perception: we are able to understand objects and
our environment even as details change.

Disturbingly, a growing body of evidence shows that
while deep networks have visual perception which is com-
petitive with humans (at least in some cases), the abstrac-
tions learned by deep networks differ substantially from
what humans learn.

An exploration by [39] showed that deep networks cor-
rectly classify objects when only high-frequency compo-
nents of the image are preserved but fail completely when
only low-frequency components are preserved (the low fre-
quency version of image is a blurred version of that image).
This is the opposite of the inductive bias demonstrated by
humans.

The adversarial examples literature [35] has found that
neural network’s predictions can be changed by extremely
small (adversarially selected) perturbations which are im-
perceptible to human vision. At the same time these small
perturbations have either a very small effect on humans
(when given very little time to process an image) [8] or no
effect at all.

The BagNet project [3] explored using bags of local fea-
tures for Imagenet classification and found that such mod-
els could achieve competitive results. Additionally, they
found that if one performed style transfer on real images
[13] and retained the textures while scrambling the im-
age’s content, standard convolutional imagenet classifiers
retained strong performance. This is evidence that convnets
trained on datasets similar to Imagenet may learn primarily
from local textures while discarding global structure, indi-
cating a strong lack of detail invariance. On artificial im-
ages with the local texture from one image but the global
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Figure 1. The SketchTransfer task involves recognizing sketches
while only having access to labeled examples of real images and
unlabeled sketch images. This is a challenging task for today’s
state-of-the-art transfer learning algorithms.

shape and content of another image, imagenet classifier’s
nearly always prefer the class associated with the texture
rather than the content [14]. Additionally this can be par-
tially addressed and generalization improved by training on
artificially stylized examples in the imagenet dataset.

We create a dataset, which we call SketchTransfer, where
a neural network is evaluated on the quality of its abstrac-
tions learned without explicit supervision. More specifi-
cally, we constructed a dataset in which a model must be
able to classify images of sketches while only having ac-
cess to labels for real images. As an example of why this
task is difficult, consider sketches of dogs and cats. Many
of these sketches choose to focus on the face of the animal.
Oftentimes the only clear difference between a dog sketch

and a cat sketch is the shape of the ears, with dogs having
round ears and cats having pointed ears. While the shape of
the ears is a feature which is present in real images of cats
and dogs, a neural network may not pick up on this highly
salient feature.

While ideally a network could perform this task with just
real data and without any access to data points with miss-
ing details, this may make the task too difficult. To make
the task easier, we give the network access to unlabeled
sketches with the long-term goal of creating networks that
can perform well with as little sketch data as possible or per-
haps no sketch data at all (in practice we found the task is
challenging even with a substantial amount of sketch data).

An emerging view in machine learning is that a great
deal of learning is accomplished in a “self-supervised way”
by relying primarily on the structure in unlabeled natural
data as a form of supervision. A successful algorithm on the
SketchTransfer dataset could provide evidence that detail
invariance is also achievable without the use of explicit of
supervision of data with missing details.

Our new dataset, which we call SketchTransfer, provides
the following contributions:

e A new dataset for transfer learning, which is approach-
able with today’s state of the art methods but is still
very challenging.

e A demonstration that even well-regularized algorithms
fail to generalize across different levels of detail.

e A brief exposition of a few state-of-the-art approaches
to transfer learning and experiments with them on the
SketchTransfer dataset.

2. SketchTransfer

The SketchTransfer training dataset consists of two
parts: labeled real images and unlabeled sketch images. The
test dataset consists of labeled sketch images. To make the
task as straightforward as possible, we used the already pop-
ular CIFAR-10 dataset as the source of labeled real images.

We used the quickdraw dataset [23] as the source of
sketch images. This dataset consists of 345 classes and was
collected by asking volunteers to quickly sketch a given
class with a 20 second time limit. For the SketchTransfer
dataset, we rendered the QuickDraw images at a fixed reso-
lution of 32x32.

The quickdraw dataset contains many more classes than
CIFAR-10 and the classes are slightly different and gener-
ally more detailed. To solve this we defined a correspon-
dence between the classes in CIFAR-10 and a relevant sub-
set of the quickdraw classes (shown in Table 1). For exam-
ple we map the quickdraw classes “Car” and “Police Car”
onto the CIFAR-10 class automobile.
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Figure 2. On the left, a person’s sketch of a dollar bill from memory. On the right, the same person’s sketch with access to a reference. This
indicates that humans only remember and can perform recognition with only a small handful of salient aspects of data and have substantial

detail invariance. (Image credit: The empty brain [9])

One small issue is that CIFAR-10 contains a deer class
and QuickDraw doesn’t. Thus we elected to make our
SketchTransfer test set only have 9 classes, but for the con-
venience of researchers we keep the CIFAR-10 training set
the same (having 10 classes). Our final dataset of sketches
consists of 9 classes which correspond directly to CIFAR-
10 classes. This sketch dataset has a total of 90000 training
images and 22500 test images (10000 and 2500 per class
respectively).

Examples from both real and sketch images across all the
classes can be seen in Figure 1 and Figure 3. One important
property of SketchTransfer is that aside from sharing com-
mon classes, there is no explicit pairing between the real
images and the sketch images.

We received permission from the Google Creative Lab to
use the Quickdraw dataset [23].

3. Related Datasets

Datasets of human sketches make it possible for algo-
rithms to learn representations closely aligned with human
priors. Prior to QuickDraw [23], the Sketch dataset [7] of
20K hand sketches was used to explore feature extraction
techniques. A later work, the Sketchy dataset [33], pro-
vided 70K vector sketches paired with corresponding photo
images for various classes to facilitate a larger-scale explo-
ration of human sketches. ShadowDraw [25] used a dataset
of 30K raster images combined with extracted vectorized
features to construct an interactive system that predicts what
a finished drawing looks like based on a set of incomplete
brush strokes from the user’s digital canvas. In addition to
human sketches, ancient Eastern scripts also have sketch-
like properties. For example, [4] considered using an RNN
and VAEs to generate sketched Japanese characters. Under-
standing and recognizing these historical Japanese charac-
ters has become an important and widely studied problem
in the digital humanities field [5, 6].

In developmental childhood psychology, [27, 26] per-

formed a series of experiments in which they tasked chil-
dren of various ages with drawing sketches of certain
classes, and then studying the properties of the sketches us-
ing convolutional neural networks. Their main finding was
that visual features become more distinctive in the drawings
produced by older children and that this goes beyond differ-
ences in visuomotor controls. This provides some evidence
that for humans the deeper knowledge gained about objects
from growing older, is reflected in sketches.

Table 1. Class correspondences used to construct the sketch part
of the SketchTransfer dataset.

Cifar-10 Class QuickDraw Classes

Airplane Airplane
' Car
Automobile Police Car
Bird
Duck
Flamingo
Bird Owl
Parrot
Penguin
Swan
Cat
Cat Lion
Tiger
Deer n/a
Dog Dog
Frog Frog
Horse Horse
Cruise Ship
Ship Sailboat
Speedboat
Truck
Truck Firetruck
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Figure 3. Examples from all of the classes in the SketchTransfer
dataset, with real images from the class and sketch images from
the class.

4. Baselines

We evaluated several techniques on the proposed Sketch-
Transfer dataset. First we considered techniques which
only use the labeled source data (real images) including
the use of regularization. As these models don’t see the
sketches during training, we might expect that it would be
difficult for these models to generalize well on sketches.
For techniques which take advantage of the unlabeled data,
we primarily focus on methods which perform well on
existing benchmarks. One such benchmark is SVHN to
MNIST, which involves transfer learning between very de-
tailed color images of digits (SVHN) and plain black-and-
white digit images (MNIST) [28]. One key idea is to try to
make the model’s representations on source datapoints and
target domain datapoints more similar, which we discuss in
Section 4.3. Another key idea is to enforce a consistency
based objective on the target domain, which is also widely
used in semi-supervised learning [37]. The idea with this is
to discourage the classifier’s decision boundary from pass-
ing through regions where the data in the target domain has
high density (and thus encourage connected regions of high
density to share the same predicted label). Virtual adversar-
ial training (Section 4.4) and virtual mixup training (Sec-
tion 4.6) are both motivated by this notion of consistency.

4.1. Training only on Labeled Source Data

As the simplest baseline, we consider simply training
a network on the CIFAR-10 dataset and evaluating on
sketches.

4.2. Regularized Training on Source Data

One possible approach is to still only use the real labeled
images, but use regularization. A possibility is that this will
force the model to use the more salient features in the data
to predict on real images which will then be usable when
predicting on sketches. For example, Mixup [41], which
is a state-of-the-art regularizer for deep networks, uses the
linear interpolations of images and the corresponding inter-
polation of the labels for training (Equation 1).

T =Ax; + (1 — )\)Z‘j,
§=Ayi + (1= Ay,

Furthermore, [36] found that the use of Manifold Mixup
improves robustness to several classes of artificial image
distortions. In its original formulation, Mixup [41] is only
applicable to training with labeled data, although semi-
supervised [37] and unsupervised variants [1] has also been
explored lately.

ey

4.3. Adversarial Domain Adaptation

Domain adversarial training [12] consists of taking the
hidden representations learned by a network on a source do-
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main and a target domain and using an adversarially trained
discriminator d to make the representations g(x) follow the
same overall distribution. Since the discriminator is trained
on hidden states (for both source and target domains), it
does not require labeled data from the target domain.

mfln‘cy(fv Xsa ys) + /\dﬁd(g, X37 Xt)
La(g; Xs, Xi) = sup Ezna, [Ind(g(x))]
+ Esnn, [In(1 —d(g(x)))], (2

The adversarial domain adaptation objective (Equa-
tion 2) augments the usual classifier objective on source
data X and a hyperparameter \; is used to adjust the
weight of the adversarial loss, which aims to make features
g(z) look similar for examples from the source and target
distributions.

4.4. Virtual Adversarial Training

The virtual adversarial training (VAT) [30] algorithm is
based on the Consistency regularization principle [32, 24].
The central idea of this algorithm is to use predicted-labels
of unlabeled samples to generate adversarial perturbations,
and use these adversarial perturbations instead of random
perturbations for Consistency regularization. We always
used the FGSM attack for computing the virtual adversarial
perturbations [15].

Lv(fQX)Z]EINX maXDKL(f(x)Hf(x""T)) NE))

lIrll<e

Thus given some ball with a radius ||7|| < e around each
of the data points we encourage the change in the model’s
prediction f to be small (Equation 3).

4.5. Dirt-T

The Decision Boundary Iterative Refinement Training
with a Teacher (or “Dirt-T”) algorithm [34] starts with a
pre-trained model and considers an iterative refinement pro-
cedure to enforce the cluster assumption on the unlabeled
target data (the cluster assumption is the notion that deci-
sion boundaries are more likely to pass through regions of
low-density). Because this is only done on the target do-
main, it leads to high loss on the source domain, but also
allows for the possibility of distribution-shift between the
source and target domains.

4.6. Virtual Mixup Training (VMT)

The approaches which combine consistency regular-
ization with Mixup training [42, 36, 38] have shown to
achieve state-of-the-art results in semi-supervised learning

paradigm [37, 2]. VMT [28] extends these approaches in
the paradigm of Unsupervised Domain Adaptation by com-
bining Mixup training with the Domain Adversarial Train-
ing [12]. More formally, VMT [28] augments the loss func-
tion of Domain Adversarial Training and the entropy mini-
mization loss with the Mixup loss.

In the case of target domain, since the targets are not
available, similar to the [37, 2, 30], the pseudolabels of
the unlabeled samples are used for mixing. The mixing
of samples and pseudolabels are done as follows (where
A ~ Beta(a, a)):

53 = )\Il + (1 — )\)Z‘j,
g =A(zi) + (1 =N f(z)),

The Mixup loss function on pseudolabels (Equation 4),
which can be augmented with other losses, is given as fol-
lows:

“4)

Lon(f;X) = Egex DrL(g]f(2))] - 6)
4.7. Rotation Prediction

We can also consider adding self-supervised objectives,
with the intuition that solving this objective may require the
model to have a more thorough understanding of salient as-
pects than is required to predict the class. One such self-
supervised objective that we consider, due to its simplicity,
is randomly rotating input images by either 0 degrees, 90
degrees, 180 degrees, or 270 degrees, and having the model
classify the degree of rotation as a 4-way classification task
[10]. As this objective does not require labels, we can apply
it on both the real images and the sketch images.

4.8. CyCada and CycleGAN

The CyCada project [20] explored the use of the Cycle-
GAN algorithm [44] for transfer learning to new domains.
Essentially the CycleGAN consists of an encoder which
maps from the source domain to the target domain and a
decoder which maps back to the source domain. A discrim-
inator is used to encourage the encoded domain to follow
the same distribution as the target domain. Notably this can
be done without having access to paired examples from the
source and target domains.

5. Experiments

First we consider running all the baselines discussed in
Section 4 on the full SketchTransfer dataset, with 10000 un-
labeled images per class (or zero per class, for the baselines
which don’t use the unlabeled sketches). All numbers are
accuracies. We ran two identical trials of each experiment
with different random seeds and report the mean and stan-
dard deviation. The results of running with these baseline
algorithms is presented in Table 2.
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We note that our best result not using labeled sketch data
is the same combination of techniques which achieved the
best result in Virtual Mixup Training [28]. However on their
tasks involving MNIST to SVHN and SVHN to MNIST
transfer, this approach was able to almost match the perfor-
mance of a classifier trained on labeled examples from the
target domain. However on the SketchTransfer task there is
still a clear gap between the 59% obtained with only unla-
beled sketches and the 87% obtained by training on labeled
sketches.

5.1. Analysis

While we demonstrated in Table 2 that a model trained
only on real images performs better than average on
sketches, and this performance is improved by the use of
transfer learning with sketches, it gives little direct insight
into the nature of this improvement. To address this we con-
sidered two different analysis on the learned models. To
make this analysis as clean as possible, we only considered
our best model trained only on real images, our best model
trained on unlabeled sketches, and our best model trained
on label sketches. The best model was selected according
to the test accuracies in Table 2. All of these analysis were
performed on the test set.

First we considered a confusion matrix analysis, given
in Figure 4. The confusion matrix shows the distribu-
tion over predicted classes for each ground truth class. A
stronger diagonal indicates higher accuracy. We can see
that a model trained only on real images is most accurate
on planes, trucks, and ships. The confusion matrix for the
model trained with unlabeled sketches shows dramatically
better classification on the bird, cat, dog, frog, and horse
classes.

Additionally, we conducted an analysis where we col-
lected the k-nearest neighbors for test images using differ-
ent distance metrics (Figure 5). First, we considered a sim-
ple euclidean distance in pixel space, and this yielded ex-
tremely poor nearest-neighbors, with very low semantic and
class similarity. Next we used different encoders and ran it
until reaching an 8x8 spatial representation and used sim-
ple euclidean distance in this space. With a purely random
encoder, this yielded poor results. However, with networks
trained on real images, the quality of the nearest neighbors
was substantially improved in terms of semantic similarity.
We also observed that the network trained using transfer
learning on unlabeled sketches had even more semantically
relevant nearest neighbors.

6. Discussion

In this work, we propose the problem of whether a ma-
chine learning algorithm can develop representations of ev-
eryday things that can be mapped to human doodles, but
giving the learning algorithm access to unlabelled doodle

data. We could also consider an alternative approach where
we train an artificial agent to sequentially draw, one stroke
at a time, a given pixel image (such as CIFAR-10 samples)
and by constraining the number of brush strokes our agent
is allowed to make, we may be able to similar the biological
constraints of the human anatomy and thus also develop a
human doodle-like representation of actual images.

This approach has been explored in Artist Agent [40] and
SPIRAL [11] where an agent is trained to paint an image
from a data distribution using a paint simulator. Subsequent
works [43, 21] combined the SPIRAL algorithm with the
sketch-rnn [17] algorithm and enhanced the drawing agent
by giving it an internal world model [18] to demonstrate that
the agent can learn to paint inside its imagination. While the
aforementioned works train an agent with an objective func-
tion to produce doodles that are as photorealistic as possi-
ble, a recent work [31] trains an agent to optimize instead
for the content loss defined by a neural style transfer algo-
rithm [13], opening up the exciting possibility of training
agents that can produce truly abstract versions of photos.

However, the doodle representations of everyday objects
developed by humans are not merely confined to our con-
strained biological ability to draw objects sequentially with
our hands, stroke-by-stroke, but cultural influence is also at
play. The location meta-data from the original QuickDraw
dataset provided interesting examples of this phenomenon.
For instance, it has been observed that most Americans
draw circles counterclockwise, while most people in Japan
draw them clockwise [19]. Chairs drawn in different coun-
tries tend to have different orientations [22]. Snowman in
hotter countries consists of two snowballs, while for colder
countries consists tend to have three [29]. By giving our al-
gorithm actual unlabelled doodle data produced by humans
around the world, we give our machine learning algorithms
a chance to learn the true representation of objects devel-
oped by all of humanity.

7. Future Work

The idea of SketchTransfer is quite general and we iden-
tify a few ways in which it could be extended:

e While CIFAR-10 does contain realistic images, it is
limited in a few ways. First, the images are rather
small, being only 32x32. Second, the number of la-
beled images is relatively small. Third, they generally
only contain the object of interest and lack context,
both spatial and temporal. Selecting a dataset which
is stronger along any of these axis could be a useful
improvement to the SketchTransfer task.

e Sketches are to a large extent an extreme case of im-
ages which lack irrelevant details. Various cartoons
and shaded illustrations may be a reasonable middle-
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Table 2. Performance of different baseline models on SketchTransfer. We ran two trials for each experiment and we report mean with
standard deviation in parenthesis. We also report a supervised learning result for a model trained directly on the labeled sketch training
set. Our results indicate that using the unlabeled sketch data improves substantially but still falls short of the a model trained directly on
labeled sketches.

Inst. Domain Source Virtual Source Target
Norm Adv. Mixup Mixup VAT VAT
v v
v v
v v
v
v v
v v v
v v
v v v v v v
v v v v v v
v v v

Rotation Unlabeled Test

DIRT-T CyCada Pred. Sketches Ay
Per Class

10000 17.55(4.95)

0 23.29(0.37)

v 10000 25.27(0.12)

v 10000 27.90(0.38)

10000 30.31(0.19)

0 35.66(0.16)

0 35.84(1.56)

0 37.74(1.44)

0 38.72(0.75)

10000 41.15(0.45)

10000 51.60(6.30)

v 10000 58.85(2.85)

Supervised ~ 87.25(0.45)

ground and serve as an easier analogue task to Sketch-
Transfer.

We elected to make the task easier by providing access
to unlabeled sketch images. Another way to accom-
plish this might be to provide a very small number of
labeled sketch images and use meta-learning to per-
form few-shot (or one-shot) classification of sketches.
The task classification without using any sketch data
during training would be challenging, yet [16] demon-
strated strong generalization to changing environments
by encouraging independent mechanisms as an induc-
tive bias of the architecture.

8. Conclusion

Human perceptual understanding shows a great deal of
invariance to details and emphasis on salient features which
today’s deep networks lack. We have introduced Sketch-
Transfer, a new dataset for studying this phenomenon con-
cretely and quantitatively. We applied the current state-of-
the-art algorithms on domain transfer to this task (along
with ablations). Intriguingly we found that they only
achieve 60% accuracy on the SketchTransfer task, which
is between the 11% accuracy of a random classifier but falls
dramatically short of the 90% classifier trained on the la-
beled sketch dataset. This indicates that this new Sketch-
Transfer task could be a powerful testbed for exploring de-
tail invariance and abstractions learned by deep networks.
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Figure 4. Confusion matrices indicating predicted and true classes
for a model trained only on real images (top), our best transfer
learning model (center), and a model trained on labeled sketch im-
ages (bottom). A stronger diagonal indicates better performance.
The model trained only on real images has the best performance
on planes and trucks. The model exploiting unlabeled images per-
forms better on many more classes, but still struggles to separate
cats and dogs as well as horses and dogs.

5

-

| —~ralt—d
d|s ]
Randomly Initialized Network

L
35

el
i
PR D

Network Trained only on Real Images

[+ =]

g [o fe

oo
Ra
[

v

i

Sl

)80 8

-
e
B
>
ooy |

SRS [RR[B]E

N
=
=
=&

| PP

E
PO ] (TR P

M T =
3

NiF

in

ZJEN

Bans
=
TN

@D

O 6253 3
o
rk Trained with Unlabeled Sketch Images

TN Y
o et A

N
SN
d=s

HE
“PlEIME

Z
a
£
o)

>

I

ot o

ined on Labeled Sketch images
K N W
00 T ok e
9,70 186,58
s P ERES

Figure 5. Nearest Neighbors on the test set using different dis-
tances (original on the left). Note that the distance learned af-
ter transfer learning is clearly more semantically meaningful, and
even a well-regularized model using only the source data learned
surprisingly good features for sketches.

FE)| 3
aS@IE]

i
/)
%]

QO

Net

=
S
)
-
o
o
S
=

i

Ly

t-
v

CADRAE | PADIRAE| PADRAE | FA A | PO

RIS
VIZIEC B
o1

=)
R

NG

970



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]

[15]

(16]

C. Beckham, S. Honari, A. Lamb, V. Verma, F. Ghadiri, R. D.
Hjelm, and C. Pal. Adversarial mixup resynthesizers. arXiv
preprint arXiv:1903.02709, 2019.

D. Berthelot, N. Carlini, I. J. Goodfellow, N. Papernot,
A. Oliver, and C. Raffel. Mixmatch: A holistic approach
to semi-supervised learning. CoRR, abs/1905.02249, 2019.
W. Brendel and M. Bethge. Approximating CNNs with
bag-of-local-features models works surprisingly well on im-
agenet. In International Conference on Learning Represen-
tations, 2019.

T. Clanuwat, M. Bober-Irizar, A. Kitamoto, A. Lamb, K. Ya-
mamoto, and D. Ha. Deep learning for classical japanese
literature. arXiv preprint arXiv:1812.01718, 2018.

T. Clanuwat, A. Lamb, and A. Kitamoto. End-to-end pre-
modern japanese character (kuzushiji) spotting with deep
learning. Jinmoncom 2018, (2018):15-20, nov 2018.

T. Clanuwat, A. Lamb, and A. Kitamoto. Kuronet: Pre-
modern japanese kuzushiji character recognition with deep
learning. arXiv preprint arXiv:1910.09433, 2019.

M. Eitz, J. Hays, and M. Alexa. How Do Humans Sketch Ob-
jects? ACM Trans. Graph. (Proc. SSIGGRAPH), 31(4):44:1-
44:10, 2012.

G. F. Elsayed, S. Shankar, B. Cheung, N. Papernot, A. Ku-
rakin, I. J. Goodfellow, and J. Sohl-Dickstein. Adversarial
examples that fool both human and computer vision. CoRR,
abs/1802.08195, 2018.

R. Epstein. The empty brain. Aeon, May, 18:2016, 2016.
https://aeon.co/essays/your—brain-does—
not-process—information—-and-it-is—-not-
a-computer.

Z. Feng, C. Xu, and D. Tao. Self-supervised representation
learning by rotation feature decoupling. In The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
June 2019.

Y. Ganin, T. Kulkarni, I. Babuschkin, S. Eslami, and
O. Vinyals. Synthesizing programs for images us-
ing reinforced adversarial learning. arXiv preprint
arXiv:1804.01118, 2018.

Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle,
F. Laviolette, M. Marchand, and V. Lempitsky. Domain-
adversarial training of neural networks. The Journal of Ma-
chine Learning Research, 17(1):2096-2030, 2016.

L. A. Gatys, A. S. Ecker, and M. Bethge. A neural algorithm
of artistic style. arXiv preprint arXiv:1508.06576, 2015.

R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wich-
mann, and W. Brendel. Imagenet-trained cnns are biased to-
wards texture; increasing shape bias improves accuracy and
robustness. arXiv preprint arXiv:1811.12231, 2018.

I. J. Goodfellow, J. Shlens, and C. Szegedy. Explain-
ing and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572, 2014.

A. Goyal, A. Lamb, J. Hoffmann, S. Sodhani, S. Levine,
Y. Bengio, and B. Scholkopf. Recurrent independent mech-
anisms. arXiv preprint arXiv:1909.10893, 2019.

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

971

D. Ha and D. Eck. A neural representation of sketch draw-
ings. In International Conference on Learning Representa-
tions, 2018.

D. Ha and J. Schmidhuber. Recurrent world models facilitate
policy evolution. In Advances in Neural Information Pro-
cessing Systems 31, pages 2451-2463. Curran Associates,
Inc., 2018. https://worldmodels.github.io.
T-H. Ha and N. Sonnad. How do you draw a
circle? we analyzed 100,000 drawings to show
how culture shapes our instincts. Quartz, 2017.
https://qz.com/994486/the-way-you-draw—
circles—-says—a—-lot—-about-you/.

J. Hoffman, E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko,
A. A. Efros, and T. Darrell. Cycada: Cycle-consistent adver-
sarial domain adaptation. arXiv preprint arXiv:1711.03213,
2017.

Z. Huang, W. Heng, and S. Zhou. Learning to paint with
model-based deep reinforcement learning. arXiv preprint
arXiv:1903.04411, 2019.

R. Jana. Exploring and visualizing an open
global dataset. Google Al Blog, 2017. https:
//ai.googleblog.com/2017/08/exploring—
and-visualizing-open-global.html.

J. Jongejan, H. Rowley, T. Kawashima, J. Kim, and
N. Fox-Gieg. The Quick, Draw!-Al Experiment.
Google Al Experiments, 2017. https://github.com/
googlecreativelab/quickdraw—dataset.

S. Laine and T. Aila. Temporal ensembling for semi-
supervised learning. CoRR, abs/1610.02242, 2016.

Y. J. Lee, C. L. Zitnick, and M. F. Cohen. Shadowdraw:
Real-time user guidance for freehand drawing. In ACM SIG-
GRAPH 2011 Papers, SIGGRAPH 11, pages 27:1-27:10,
New York, NY, USA, 2011. ACM.

B. Long, J. Fan, Z. Chai, and M. C. Frank. Developmental
changes in the ability to draw distinctive features of object
categories, Jul 2019.

B. Long, J. E. Fan, and M. C. Frank. Drawings as a win-
dow into developmental changes in object representations.
In CogSci, 2018.

X. Mao, Y. Ma, Z. Yang, Y. Chen, and Q. Li. Virtual mixup
training for unsupervised domain adaptation. arXiv preprint
arXiv:1905.04215, 2019.

M. Martino, H. Strobelt, O. Cornec, and E. Phibbs. Forma
fluens. http://formafluens.io/,2017.

T. Miyato, S.-i. Maeda, M. Koyama, and S. Ishii. Virtual
adversarial training: a regularization method for supervised
and semi-supervised learning. IEEE transactions on pattern
analysis and machine intelligence, 41(8):1979-1993, 2018.
R. Nakano. Neural painters: A learned differentiable con-
straint for generating brushstroke paintings. arXiv preprint
arXiv:1904.08410, 2019.

M. Sajjadi, M. Javanmardi, and T. Tasdizen. Regularization
with stochastic transformations and perturbations for deep
semi-supervised learning. In Proceedings of the 30th Inter-
national Conference on Neural Information Processing Sys-
tems, NIPS’ 16, pages 1171-1179, USA, 2016. Curran Asso-
ciates Inc.



(33]

(34]

(35]

[36]

(37]

(38]

(39]

(40]

(41]

(42]

[43]

[44]

P. Sangkloy, N. Burnell, C. Ham, and J. Hays. The Sketchy
Database: Learning to Retrieve Badly Drawn Bunnies. ACM
Trans. Graph., 35(4):119:1-119:12, July 2016.

R. Shu, H. H. Bui, H. Narui, and S. Ermon. A dirt-t ap-
proach to unsupervised domain adaptation. arXiv preprint
arXiv:1802.08735, 2018.

C. Szegedy, W. Zaremba, 1. Sutskever, J. Bruna, D. Erhan,
I. Goodfellow, and R. Fergus. Intriguing properties of neural
networks. arXiv preprint arXiv:1312.6199, 2013.

V. Verma, A. Lamb, C. Beckham, A. Najafi, . Mitliagkas,
D. Lopez-Paz, and Y. Bengio. Manifold mixup: Better rep-
resentations by interpolating hidden states. In International
Conference on Machine Learning, pages 6438—-6447, 2019.
V. Verma, A. Lamb, J. Kannala, Y. Bengio, and D. Lopez-
Paz. Interpolation consistency training for semi-supervised
learning. In Proceedings of the 28th International Joint
Conference on Artificial Intelligence, IICAI’ 19, pages 3635—
3641. AAAI Press, 2019.

V. Verma, M. Qu, A. Lamb, Y. Bengio, J. Kannala, and
J. Tang. Graphmix: Regularized training of graph neu-
ral networks for semi-supervised learning. arXiv preprint
arXiv:1909.11715, 2019.

H. Wang, X. Wu, P. Yin, and E. P. Xing. High frequency
component helps explain the generalization of convolutional
neural networks. arXiv preprint arXiv:1905.13545, 2019.
N. Xie, H. Hachiya, and M. Sugiyama. Artist agent: A rein-
forcement learning approach to automatic stroke generation
in oriental ink painting. In /CML. icml.cc / Omnipress, 2012.
H. Zhang, M. Cissé, Y. N. Dauphin, and D. Lopez-
Paz. mixup: Beyond empirical risk minimization. CoRR,
abs/1710.09412, 2017.

H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz.
mixup: Beyond empirical risk minimization. In Interna-
tional Conference on Learning Representations, 2018.

N. Zheng, Y. Jiang, and D. Huang. Strokenet: A neural paint-
ing environment. In International Conference on Learning
Representations, 2019.

J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-
to-image translation using cycle-consistent adversarial net-
works. In Proceedings of the IEEE international conference
on computer vision, pages 2223-2232,2017.

972



