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Abstract

Deep networks have achieved excellent results in percep-

tual tasks, yet their ability to generalize to variations not

seen during training has come under increasing scrutiny.

In this work we focus on their ability to have invariance

towards the presence or absence of details. For exam-

ple, humans are able to watch cartoons, which are missing

many visual details, without being explicitly trained to do

so. As another example, 3D rendering software is a rel-

atively recent development, yet people are able to under-

stand such rendered scenes even though they are missing

details (consider a film like Toy Story). The failure of ma-

chine learning algorithms to do this indicates a significant

gap in generalization between human abilities and the abil-

ities of deep networks. We propose a dataset that will make

it easier to study the detail-invariance problem concretely.

We produce a concrete task for this: SketchTransfer, and

we show that state-of-the-art domain transfer algorithms

still struggle with this task. The state-of-the-art technique

which achieves over 95% on MNIST −→ SVHN transfer only

achieves 59% accuracy on the SketchTransfer task, which is

much better than random (11% accuracy) but falls short of

the 87% accuracy of a classifier trained directly on labeled

sketches. This indicates that this task is approachable with

today’s best methods but has substantial room for improve-

ment.

1. Introduction

Humans experience a high resolution world which is rich

in details, yet are able to discern small amounts of highly

relevant information from the world. Thus humans learn ab-

stractions that store important pieces of information while

discarding others. For example, Figure 2 shows how only a

subset of the visual details in a dollar bill are remember by

a person asked to produce a sketch without a reference.

The quality of the abstractions learned by humans may

be an important factor in the flexibility and adaptability of

human perception: we are able to understand objects and

our environment even as details change.

Disturbingly, a growing body of evidence shows that

while deep networks have visual perception which is com-

petitive with humans (at least in some cases), the abstrac-

tions learned by deep networks differ substantially from

what humans learn.

An exploration by [39] showed that deep networks cor-

rectly classify objects when only high-frequency compo-

nents of the image are preserved but fail completely when

only low-frequency components are preserved (the low fre-

quency version of image is a blurred version of that image).

This is the opposite of the inductive bias demonstrated by

humans.

The adversarial examples literature [35] has found that

neural network’s predictions can be changed by extremely

small (adversarially selected) perturbations which are im-

perceptible to human vision. At the same time these small

perturbations have either a very small effect on humans

(when given very little time to process an image) [8] or no

effect at all.

The BagNet project [3] explored using bags of local fea-

tures for Imagenet classification and found that such mod-

els could achieve competitive results. Additionally, they

found that if one performed style transfer on real images

[13] and retained the textures while scrambling the im-

age’s content, standard convolutional imagenet classifiers

retained strong performance. This is evidence that convnets

trained on datasets similar to Imagenet may learn primarily

from local textures while discarding global structure, indi-

cating a strong lack of detail invariance. On artificial im-

ages with the local texture from one image but the global
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Plane Class

Cat Class

Dog Class

Figure 1. The SketchTransfer task involves recognizing sketches

while only having access to labeled examples of real images and

unlabeled sketch images. This is a challenging task for today’s

state-of-the-art transfer learning algorithms.

shape and content of another image, imagenet classifier’s

nearly always prefer the class associated with the texture

rather than the content [14]. Additionally this can be par-

tially addressed and generalization improved by training on

artificially stylized examples in the imagenet dataset.

We create a dataset, which we call SketchTransfer, where

a neural network is evaluated on the quality of its abstrac-

tions learned without explicit supervision. More specifi-

cally, we constructed a dataset in which a model must be

able to classify images of sketches while only having ac-

cess to labels for real images. As an example of why this

task is difficult, consider sketches of dogs and cats. Many

of these sketches choose to focus on the face of the animal.

Oftentimes the only clear difference between a dog sketch

and a cat sketch is the shape of the ears, with dogs having

round ears and cats having pointed ears. While the shape of

the ears is a feature which is present in real images of cats

and dogs, a neural network may not pick up on this highly

salient feature.

While ideally a network could perform this task with just

real data and without any access to data points with miss-

ing details, this may make the task too difficult. To make

the task easier, we give the network access to unlabeled

sketches with the long-term goal of creating networks that

can perform well with as little sketch data as possible or per-

haps no sketch data at all (in practice we found the task is

challenging even with a substantial amount of sketch data).

An emerging view in machine learning is that a great

deal of learning is accomplished in a “self-supervised way”

by relying primarily on the structure in unlabeled natural

data as a form of supervision. A successful algorithm on the

SketchTransfer dataset could provide evidence that detail

invariance is also achievable without the use of explicit of

supervision of data with missing details.

Our new dataset, which we call SketchTransfer, provides

the following contributions:

• A new dataset for transfer learning, which is approach-

able with today’s state of the art methods but is still

very challenging.

• A demonstration that even well-regularized algorithms

fail to generalize across different levels of detail.

• A brief exposition of a few state-of-the-art approaches

to transfer learning and experiments with them on the

SketchTransfer dataset.

2. SketchTransfer

The SketchTransfer training dataset consists of two

parts: labeled real images and unlabeled sketch images. The

test dataset consists of labeled sketch images. To make the

task as straightforward as possible, we used the already pop-

ular CIFAR-10 dataset as the source of labeled real images.

We used the quickdraw dataset [23] as the source of

sketch images. This dataset consists of 345 classes and was

collected by asking volunteers to quickly sketch a given

class with a 20 second time limit. For the SketchTransfer

dataset, we rendered the QuickDraw images at a fixed reso-

lution of 32x32.

The quickdraw dataset contains many more classes than

CIFAR-10 and the classes are slightly different and gener-

ally more detailed. To solve this we defined a correspon-

dence between the classes in CIFAR-10 and a relevant sub-

set of the quickdraw classes (shown in Table 1). For exam-

ple we map the quickdraw classes “Car” and “Police Car”

onto the CIFAR-10 class automobile.
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Figure 2. On the left, a person’s sketch of a dollar bill from memory. On the right, the same person’s sketch with access to a reference. This

indicates that humans only remember and can perform recognition with only a small handful of salient aspects of data and have substantial

detail invariance. (Image credit: The empty brain [9])

One small issue is that CIFAR-10 contains a deer class

and QuickDraw doesn’t. Thus we elected to make our

SketchTransfer test set only have 9 classes, but for the con-

venience of researchers we keep the CIFAR-10 training set

the same (having 10 classes). Our final dataset of sketches

consists of 9 classes which correspond directly to CIFAR-

10 classes. This sketch dataset has a total of 90000 training

images and 22500 test images (10000 and 2500 per class

respectively).

Examples from both real and sketch images across all the

classes can be seen in Figure 1 and Figure 3. One important

property of SketchTransfer is that aside from sharing com-

mon classes, there is no explicit pairing between the real

images and the sketch images.

We received permission from the Google Creative Lab to

use the Quickdraw dataset [23].

3. Related Datasets

Datasets of human sketches make it possible for algo-

rithms to learn representations closely aligned with human

priors. Prior to QuickDraw [23], the Sketch dataset [7] of

20K hand sketches was used to explore feature extraction

techniques. A later work, the Sketchy dataset [33], pro-

vided 70K vector sketches paired with corresponding photo

images for various classes to facilitate a larger-scale explo-

ration of human sketches. ShadowDraw [25] used a dataset

of 30K raster images combined with extracted vectorized

features to construct an interactive system that predicts what

a finished drawing looks like based on a set of incomplete

brush strokes from the user’s digital canvas. In addition to

human sketches, ancient Eastern scripts also have sketch-

like properties. For example, [4] considered using an RNN

and VAEs to generate sketched Japanese characters. Under-

standing and recognizing these historical Japanese charac-

ters has become an important and widely studied problem

in the digital humanities field [5, 6].

In developmental childhood psychology, [27, 26] per-

formed a series of experiments in which they tasked chil-

dren of various ages with drawing sketches of certain

classes, and then studying the properties of the sketches us-

ing convolutional neural networks. Their main finding was

that visual features become more distinctive in the drawings

produced by older children and that this goes beyond differ-

ences in visuomotor controls. This provides some evidence

that for humans the deeper knowledge gained about objects

from growing older, is reflected in sketches.

Table 1. Class correspondences used to construct the sketch part

of the SketchTransfer dataset.

Cifar-10 Class QuickDraw Classes

Airplane Airplane

Automobile
Car

Police Car

Bird

Bird

Duck

Flamingo

Owl

Parrot

Penguin

Swan

Cat

Cat

Lion

Tiger

Deer n/a

Dog Dog

Frog Frog

Horse Horse

Ship

Cruise Ship

Sailboat

Speedboat

Truck
Truck

Firetruck
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Plane

Car

Bird

Cat

Dog

Frog

Horse

Ship

Truck

Figure 3. Examples from all of the classes in the SketchTransfer

dataset, with real images from the class and sketch images from

the class.

4. Baselines

We evaluated several techniques on the proposed Sketch-

Transfer dataset. First we considered techniques which

only use the labeled source data (real images) including

the use of regularization. As these models don’t see the

sketches during training, we might expect that it would be

difficult for these models to generalize well on sketches.

For techniques which take advantage of the unlabeled data,

we primarily focus on methods which perform well on

existing benchmarks. One such benchmark is SVHN to

MNIST, which involves transfer learning between very de-

tailed color images of digits (SVHN) and plain black-and-

white digit images (MNIST) [28]. One key idea is to try to

make the model’s representations on source datapoints and

target domain datapoints more similar, which we discuss in

Section 4.3. Another key idea is to enforce a consistency

based objective on the target domain, which is also widely

used in semi-supervised learning [37]. The idea with this is

to discourage the classifier’s decision boundary from pass-

ing through regions where the data in the target domain has

high density (and thus encourage connected regions of high

density to share the same predicted label). Virtual adversar-

ial training (Section 4.4) and virtual mixup training (Sec-

tion 4.6) are both motivated by this notion of consistency.

4.1. Training only on Labeled Source Data

As the simplest baseline, we consider simply training

a network on the CIFAR-10 dataset and evaluating on

sketches.

4.2. Regularized Training on Source Data

One possible approach is to still only use the real labeled

images, but use regularization. A possibility is that this will

force the model to use the more salient features in the data

to predict on real images which will then be usable when

predicting on sketches. For example, Mixup [41], which

is a state-of-the-art regularizer for deep networks, uses the

linear interpolations of images and the corresponding inter-

polation of the labels for training (Equation 1).

x̃ = λxi + (1− λ)xj ,

ỹ = λyi + (1− λ)yj .
(1)

Furthermore, [36] found that the use of Manifold Mixup

improves robustness to several classes of artificial image

distortions. In its original formulation, Mixup [41] is only

applicable to training with labeled data, although semi-

supervised [37] and unsupervised variants [1] has also been

explored lately.

4.3. Adversarial Domain Adaptation

Domain adversarial training [12] consists of taking the

hidden representations learned by a network on a source do-
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main and a target domain and using an adversarially trained

discriminator d to make the representations g(x) follow the

same overall distribution. Since the discriminator is trained

on hidden states (for both source and target domains), it

does not require labeled data from the target domain.

min
f

Ly(f ;Xs,Ys) + λdLd(g;Xs,Xt)

Ld(g;Xs,Xt) = sup
d

Ex∼Xs
[ln d(g(x))]

+ Ex∼Xt
[ln(1− d(g(x)))] , (2)

The adversarial domain adaptation objective (Equa-

tion 2) augments the usual classifier objective on source

data Xs and a hyperparameter λd is used to adjust the

weight of the adversarial loss, which aims to make features

g(x) look similar for examples from the source and target

distributions.

4.4. Virtual Adversarial Training

The virtual adversarial training (VAT) [30] algorithm is

based on the Consistency regularization principle [32, 24].

The central idea of this algorithm is to use predicted-labels

of unlabeled samples to generate adversarial perturbations,

and use these adversarial perturbations instead of random

perturbations for Consistency regularization. We always

used the FGSM attack for computing the virtual adversarial

perturbations [15].

Lv(f ;X ) = Ex∼X

[

max
‖r‖≤ǫ

DKL(f(x)‖f(x+ r))

]

. (3)

Thus given some ball with a radius ‖r‖ ≤ ǫ around each

of the data points we encourage the change in the model’s

prediction f to be small (Equation 3).

4.5. Dirt­T

The Decision Boundary Iterative Refinement Training

with a Teacher (or “Dirt-T”) algorithm [34] starts with a

pre-trained model and considers an iterative refinement pro-

cedure to enforce the cluster assumption on the unlabeled

target data (the cluster assumption is the notion that deci-

sion boundaries are more likely to pass through regions of

low-density). Because this is only done on the target do-

main, it leads to high loss on the source domain, but also

allows for the possibility of distribution-shift between the

source and target domains.

4.6. Virtual Mixup Training (VMT)

The approaches which combine consistency regular-

ization with Mixup training [42, 36, 38] have shown to

achieve state-of-the-art results in semi-supervised learning

paradigm [37, 2]. VMT [28] extends these approaches in

the paradigm of Unsupervised Domain Adaptation by com-

bining Mixup training with the Domain Adversarial Train-

ing [12]. More formally, VMT [28] augments the loss func-

tion of Domain Adversarial Training and the entropy mini-

mization loss with the Mixup loss.

In the case of target domain, since the targets are not

available, similar to the [37, 2, 30], the pseudolabels of

the unlabeled samples are used for mixing. The mixing

of samples and pseudolabels are done as follows (where

λ ∼ Beta(α, α)):

x̃ = λxi + (1− λ)xj ,

ỹ = λf(xi) + (1− λ)f(xj),
(4)

The Mixup loss function on pseudolabels (Equation 4),

which can be augmented with other losses, is given as fol-

lows:

Lm(f ;X ) = Ex∼X [DKL(ỹ‖f(x̃))] . (5)

4.7. Rotation Prediction

We can also consider adding self-supervised objectives,

with the intuition that solving this objective may require the

model to have a more thorough understanding of salient as-

pects than is required to predict the class. One such self-

supervised objective that we consider, due to its simplicity,

is randomly rotating input images by either 0 degrees, 90

degrees, 180 degrees, or 270 degrees, and having the model

classify the degree of rotation as a 4-way classification task

[10]. As this objective does not require labels, we can apply

it on both the real images and the sketch images.

4.8. CyCada and CycleGAN

The CyCada project [20] explored the use of the Cycle-

GAN algorithm [44] for transfer learning to new domains.

Essentially the CycleGAN consists of an encoder which

maps from the source domain to the target domain and a

decoder which maps back to the source domain. A discrim-

inator is used to encourage the encoded domain to follow

the same distribution as the target domain. Notably this can

be done without having access to paired examples from the

source and target domains.

5. Experiments

First we consider running all the baselines discussed in

Section 4 on the full SketchTransfer dataset, with 10000 un-

labeled images per class (or zero per class, for the baselines

which don’t use the unlabeled sketches). All numbers are

accuracies. We ran two identical trials of each experiment

with different random seeds and report the mean and stan-

dard deviation. The results of running with these baseline

algorithms is presented in Table 2.
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We note that our best result not using labeled sketch data

is the same combination of techniques which achieved the

best result in Virtual Mixup Training [28]. However on their

tasks involving MNIST to SVHN and SVHN to MNIST

transfer, this approach was able to almost match the perfor-

mance of a classifier trained on labeled examples from the

target domain. However on the SketchTransfer task there is

still a clear gap between the 59% obtained with only unla-

beled sketches and the 87% obtained by training on labeled

sketches.

5.1. Analysis

While we demonstrated in Table 2 that a model trained

only on real images performs better than average on

sketches, and this performance is improved by the use of

transfer learning with sketches, it gives little direct insight

into the nature of this improvement. To address this we con-

sidered two different analysis on the learned models. To

make this analysis as clean as possible, we only considered

our best model trained only on real images, our best model

trained on unlabeled sketches, and our best model trained

on label sketches. The best model was selected according

to the test accuracies in Table 2. All of these analysis were

performed on the test set.

First we considered a confusion matrix analysis, given

in Figure 4. The confusion matrix shows the distribu-

tion over predicted classes for each ground truth class. A

stronger diagonal indicates higher accuracy. We can see

that a model trained only on real images is most accurate

on planes, trucks, and ships. The confusion matrix for the

model trained with unlabeled sketches shows dramatically

better classification on the bird, cat, dog, frog, and horse

classes.

Additionally, we conducted an analysis where we col-

lected the k-nearest neighbors for test images using differ-

ent distance metrics (Figure 5). First, we considered a sim-

ple euclidean distance in pixel space, and this yielded ex-

tremely poor nearest-neighbors, with very low semantic and

class similarity. Next we used different encoders and ran it

until reaching an 8x8 spatial representation and used sim-

ple euclidean distance in this space. With a purely random

encoder, this yielded poor results. However, with networks

trained on real images, the quality of the nearest neighbors

was substantially improved in terms of semantic similarity.

We also observed that the network trained using transfer

learning on unlabeled sketches had even more semantically

relevant nearest neighbors.

6. Discussion

In this work, we propose the problem of whether a ma-

chine learning algorithm can develop representations of ev-

eryday things that can be mapped to human doodles, but

giving the learning algorithm access to unlabelled doodle

data. We could also consider an alternative approach where

we train an artificial agent to sequentially draw, one stroke

at a time, a given pixel image (such as CIFAR-10 samples)

and by constraining the number of brush strokes our agent

is allowed to make, we may be able to similar the biological

constraints of the human anatomy and thus also develop a

human doodle-like representation of actual images.

This approach has been explored in Artist Agent [40] and

SPIRAL [11] where an agent is trained to paint an image

from a data distribution using a paint simulator. Subsequent

works [43, 21] combined the SPIRAL algorithm with the

sketch-rnn [17] algorithm and enhanced the drawing agent

by giving it an internal world model [18] to demonstrate that

the agent can learn to paint inside its imagination. While the

aforementioned works train an agent with an objective func-

tion to produce doodles that are as photorealistic as possi-

ble, a recent work [31] trains an agent to optimize instead

for the content loss defined by a neural style transfer algo-

rithm [13], opening up the exciting possibility of training

agents that can produce truly abstract versions of photos.

However, the doodle representations of everyday objects

developed by humans are not merely confined to our con-

strained biological ability to draw objects sequentially with

our hands, stroke-by-stroke, but cultural influence is also at

play. The location meta-data from the original QuickDraw

dataset provided interesting examples of this phenomenon.

For instance, it has been observed that most Americans

draw circles counterclockwise, while most people in Japan

draw them clockwise [19]. Chairs drawn in different coun-

tries tend to have different orientations [22]. Snowman in

hotter countries consists of two snowballs, while for colder

countries consists tend to have three [29]. By giving our al-

gorithm actual unlabelled doodle data produced by humans

around the world, we give our machine learning algorithms

a chance to learn the true representation of objects devel-

oped by all of humanity.

7. Future Work

The idea of SketchTransfer is quite general and we iden-

tify a few ways in which it could be extended:

• While CIFAR-10 does contain realistic images, it is

limited in a few ways. First, the images are rather

small, being only 32x32. Second, the number of la-

beled images is relatively small. Third, they generally

only contain the object of interest and lack context,

both spatial and temporal. Selecting a dataset which

is stronger along any of these axis could be a useful

improvement to the SketchTransfer task.

• Sketches are to a large extent an extreme case of im-

ages which lack irrelevant details. Various cartoons

and shaded illustrations may be a reasonable middle-
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Table 2. Performance of different baseline models on SketchTransfer. We ran two trials for each experiment and we report mean with

standard deviation in parenthesis. We also report a supervised learning result for a model trained directly on the labeled sketch training

set. Our results indicate that using the unlabeled sketch data improves substantially but still falls short of the a model trained directly on

labeled sketches.

Inst.

Norm

Domain

Adv.

Source

Mixup

Virtual

Mixup

Source

VAT

Target

VAT
DIRT-T CyCada

Rotation

Pred.

Unlabeled

Sketches

Per Class

Test

Accuracy

X X 10000 17.55(4.95)

0 23.29(0.37)

X 10000 25.27(0.12)

X 10000 27.90(0.38)

X X 10000 30.31(0.19)

X X 0 35.66(0.16)

X 0 35.84(1.56)

X X 0 37.74(1.44)

X X X 0 38.72(0.75)

X X 10000 41.15(0.45)

X X X X X X 10000 51.60(6.30)

X X X X X X X 10000 58.85(2.85)

X X X Supervised 87.25(0.45)

ground and serve as an easier analogue task to Sketch-

Transfer.

• We elected to make the task easier by providing access

to unlabeled sketch images. Another way to accom-

plish this might be to provide a very small number of

labeled sketch images and use meta-learning to per-

form few-shot (or one-shot) classification of sketches.

The task classification without using any sketch data

during training would be challenging, yet [16] demon-

strated strong generalization to changing environments

by encouraging independent mechanisms as an induc-

tive bias of the architecture.

8. Conclusion

Human perceptual understanding shows a great deal of

invariance to details and emphasis on salient features which

today’s deep networks lack. We have introduced Sketch-

Transfer, a new dataset for studying this phenomenon con-

cretely and quantitatively. We applied the current state-of-

the-art algorithms on domain transfer to this task (along

with ablations). Intriguingly we found that they only

achieve 60% accuracy on the SketchTransfer task, which

is between the 11% accuracy of a random classifier but falls

dramatically short of the 90% classifier trained on the la-

beled sketch dataset. This indicates that this new Sketch-

Transfer task could be a powerful testbed for exploring de-

tail invariance and abstractions learned by deep networks.
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Figure 4. Confusion matrices indicating predicted and true classes

for a model trained only on real images (top), our best transfer

learning model (center), and a model trained on labeled sketch im-

ages (bottom). A stronger diagonal indicates better performance.

The model trained only on real images has the best performance

on planes and trucks. The model exploiting unlabeled images per-

forms better on many more classes, but still struggles to separate

cats and dogs as well as horses and dogs.

Pixel-Based

Randomly Initialized Network

Network Trained only on Real Images

Network Trained with Unlabeled Sketch Images

Network trained on Labeled Sketch images

Figure 5. Nearest Neighbors on the test set using different dis-

tances (original on the left). Note that the distance learned af-

ter transfer learning is clearly more semantically meaningful, and

even a well-regularized model using only the source data learned

surprisingly good features for sketches.
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