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Abstract

Egocentric vision holds great promises for increasing

access to visual information and improving the quality of

life for people with visual impairments, with object recog-

nition being one of the daily challenges for this population.

While we strive to improve recognition performance, it re-

mains difficult to identify which object is of interest to the

user; the object may not even be included in the frame due to

challenges in camera aiming without visual feedback. Also,

gaze information, commonly used to infer the area of inter-

est in egocentric vision, is often not dependable. However,

blind users often tend to include their hand either interact-

ing with the object that they wish to recognize or simply

placing it in proximity for better camera aiming. We pro-

pose localization models that leverage the presence of the

hand as the contextual information for priming the center

area of the object of interest. In our approach, hand seg-

mentation is fed to either the entire localization network

or its last convolutional layers. Using egocentric datasets

from sighted and blind individuals, we show that the hand-

priming achieves higher precision than other approaches,

such as fine-tuning, multi-class, and multi-task learning,

which also encode hand-object interactions in localization.

1. Introduction

Computer vision holds a great promise for solving daily

challenges that people with visual impairments face; one

of the challenges is object recognition from egocentric vi-

sion [3, 6, 10]. However, there is no guarantee that, with-

out visual feedback, these users can aim the camera prop-

erly to indicate objects of interest in the frame. Consider

the photos in Figure 1 taken by people with visual im-

pairments who tried identifying objects with the help of a

sighted crowd on VizWiz [19] or with their personalized

object recognizer [26]. Do all the images contain the object

of interest? Do we know about which of the objects is the

user inquiring? Does the object show discriminative view-

points? How can the user tell if the wrong object is being

recognized given a cluttered background? These questions

Figure 1. Examples of egocentric photos taken by people with vi-

sual impairments for object recognition in the crowdsourcing app,

VizWiz [19], and a personalized fine-grained object recognition

model in TEgO [26]. These examples illustrate the need for object-

of-interest localization for better camera framing.

highlight the need for non-visual feedback that guides users

to well-framed images of objects for the recognition task.

While this is often achieved through a few iterations with

sighted help in a crowdsourcing platform, it remains a chal-

lenging task for automated solutions, making recognition

errors perceptible only through sight.

In response, many non-visual feedback mechanisms

have been proposed to help people with visual impairments

take better quality photos for identifying objects [5, 22, 56].

The most recent work in this direction explores the utility

of proprioception [41, 46], the perception of body and limb

position, in the context of object recognition. It shows that

many people with visual impairments naturally tend to hold

or place their hand close to the object of interest for better

camera framing [26]. This finding is further supported by

prior evidence on the ability of blind people to guide hand

orientation and to make rapid corrections through proprio-

ception [17]. While the presence and shape of the hand are

shown to be helpful for estimating object centers and pro-

viding real-time non-visual feedback, prior work also shows

that people with visual impairments are susceptible to false

positives as they have no means to verify whether the lo-

calization model is correct — they trust the feedback even

though they know that it can be wrong [25].

Towards a feedback mechanism with lower false posi-

tives for object-of-interest localization, we present a com-

putational model that builds on prior work in contextual

priming [47]. In our approach, hand segmentation is used to

provide contextual information to guide the localization of
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the object of interest in static images. The intuition is that

the hand segmentation can help capture semantic relations

between the hand and the object of interest, such as the re-

lationship between the hand position and the object position

and the relationship between the hand pose and the object

size [4]. Such relations will essentially guide the localiza-

tion model to pay attention to certain regions near the hand

in the image. We explore the potential of context priming

by infusing hand segmentation to: (i) the entire localization

network or (ii) the last two convolutional layers only. As

in [47], the first approach is designed to impart the hand

features in all layers. The second approach is based on the

observation that later layers capture more descriptive fea-

tures [59], such as hand features captured in a later convo-

lutional layer [33].

We evaluate these approaches on three egocentric

datasets, GTEA [15], GTEA Gaze+ [14], and TEgO [26],

by comparing the performances of our methods with those

of other methods: a naive no-hand object localization

model, a object localization model that is fine-tuned from

the hand segmentation model [26, 33], and alternative ap-

proaches that frame object localization as a multi-class or

multi-task problem. Our evaluation finds that hand-priming

can contribute to better localization of the object of interest

in terms of false positives, especially when incorporated in

the later convolutional layers. While there are limited anno-

tated data from people with visual impairments, the result

on images from a blind individual seems to be consistent.

To the best of our knowledge, this is the first work

to provide empirical results from different approaches on

object-of-interest localization for an assistive egocentric-

vision task that can benefit people with visual impairments.

A unique challenge in this task is that gaze information,

commonly used to infer the individuals’ area of interest in

egocentric vision [14, 31, 63], is not available for people

with visual impairments, but hand–object interactions can

be leveraged to fill this gap through context priming.

2. Related Work

Our work draws upon prior work on egocentric object

localization. We discuss previous attempts to understand

hand–object interactions in egocentric vision and focus on

models that are augmented by contextual feedback, which

inspire our hand-priming approach for object localization.

Then, we shift our discussion to assistive technologies that

employ computer vision models to understand egocentric

data collected by people with visual impairments.

2.1. Egocentric Interactions

Interactions between hands and objects in egocentric vi-

sion have been explored for various tasks: from gaze esti-

mation to human behavior understanding. The estimation

of hand pose and shape can serve as a cue to understanding

users’ intentions and thus has been the focus of research for

both the computer vision and human-computer interaction

communities [9, 26, 45, 51].

Traditionally, the egocentric hand information has been

utilized in activity recognition [15, 33, 40, 49]. Prior work

focuses on the interactions between hands and objects

due to that objects can possess a clue to users’ activi-

ties [31, 33, 40, 49]. Using two-stream convolutional neural

networks, Ma and Kris [33] try to localize and recognize an

object of interest according to the hand pose and location in

egocentric vision to recognize users’ activities. This prior

work suggests localizing the center area of the object of in-

terest, instead of its exact center coordinates. Our method

also follows this approach for object localization.

Some prior work assumes that some implicit visual atten-

tion, such as gaze information, has been implicitly encoded

in input data; hence, there is prior work that tries to esti-

mate gaze points in egocentric data [21, 28, 29, 50] or uses

this visual attention to accomplish other tasks [14, 31, 63].

Such visual attention, however, may not be encoded in data

from different populations — for instance, blind people. For

this issue, recent prior work has proposed to use more ex-

plicit visual attention, such as fingers pointing to the item

of interest, to understand items of interest of blind people

in complex visual scenes [18]. In addition, even for people

with visual impairments, hands have been found to be the

explicit cue to objects of their interest [23, 26]. Based on

these prior observations, our work focuses on interactions

between egocentric hands and objects of interest to learn

the relationship between the hands and objects of interest.

Hand–object interactions have also been explored for

other tasks. Tekin et al. [51] propose a single neural net-

work model that outputs 3D hand and object poses from

RGB images and recognizes objects and users’ actions. Cai

et al. [7] suggest to model the relationship between hand

poses and object attributes, as those data can provide com-

plementary information to each other. With the model that

understands the hand–object relationship, this prior work

further tries to recognize users’ actions. As our model lo-

calizes an object of interest based on the hand–object in-

teractions, we see its potential usage in other applications,

such as recognition of objects and actions.

2.2. Context Reinforcement in Vision

Prior work in cognitive science has shown that the hu-

man visual system tries to use “context” to pay attention

only to our interest [34, 53, 57]. The use of the con-

text information has also been discussed from the perspec-

tive of computer vision [13, 37, 38]. Inspired by these

observations, researchers in computer vision have intro-

duced various approaches that exploit contextual informa-

tion [35, 36, 42, 52, 58].

In the deep learning era, researchers have also shown
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that using contextual information, such as instance segmen-

tation, helps to improve the performance of object detec-

tion and recognition [20, 30, 47, 62]. FCIS [30] and Mask

R-CNN [20] are designed to learn instance segmentation,

which is then used for object classification. On the other

hand, Shrivastava and Gupta [47] proposed a slightly dif-

ferent approach. In their model, a segmentation module is

used to provide contextual feedback in the object detection

model (Faster R-CNN [43]); i.e., the segmentation output

is appended to the object detection model. Built upon this

contextual priming and feedback approach, our approach

takes into account the contextual information (i.e., the hand

information) for object localization in egocentric vision.

2.3. Egocentric Vision in Assistive Technologies

Assistive technologies, especially for people with visual

impairments, have employed computer vision algorithms to

help them access visual information that surrounds them.

As people with visual impairments use their smartphones or

wearable cameras to take photos of their target, the captured

data are in egocentric vision; thus, assistive technologies

have focused on computer vision models that can under-

stand the egocentric vision. For instance, researchers in as-

sistive technologies have proposed various approaches that

can help visually impaired people capture their surround-

ings and access to that information. Such technologies,

called blind photography, have been developed to simply

capture scenes [54,55], and recognize objects [5,22,56,61]

or people (e.g., family members and friends) [1, 56, 60].

In particular, prior work on blind photography reported

that people with visual impairments are vulnerable to false-

positive object localization [25] as there are no means for

these users to check the localization output. In this paper,

considering this prior finding, we focus on reducing false

positives in object localization and evaluating the object lo-

calization models with the precision metric as this measure-

ment captures false-positive estimations.

3. Methods

We introduce a hand-primed object localization model

that is built upon the prior work on contextual priming and

feedback [47]. The objective of our model is to localize

an object of interest pertaining to the hand information in

egocentric vision.

3.1. HandPrimed Object Localization

We build an object localization model that is reinforced

by a hand segmentation output. Our hand-primed object lo-

calization model consists of two models: a hand segmenta-

tion network and an object localization network. For both of

the models, we employ the FCN-8s architecture [32]. Using

the pixel-level classification model, our object localization

model tries to estimate which pixels belong to the center
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Figure 2. The architecture of our hand-primed object localization

model. It consists of two neural networks: one (above) for hand

segmentation and another (below) for object localization. The

hand segmentation output is infused into the object localization

model in two ways: HPAll (orange dotted line) and HPLate (blue

dashed line).

area of an object of interest as proposed in [33]; the one

proposed in this prior work is used as the baseline model

that uses the hand information for object localization.

As depicted in Figure 2, the hand segmentation out-

put is appended to several layers in the object localization

network to prime the model to use the hand information

for object localization. We propose two different ways of

priming the object localization model to use the hand in-

formation: HandPrimedAll (HPAll) and HandPrimedLate

(HPLate). Assuming that providing this segmentation to all

layers would make a model primed to use that feedback for

its tasks [47], we design the HPAll model in which the seg-

mentation output is infused to all the convolutional layers

(conv1–conv5). On the other hand, in the HPLate model,

the hand segmentation output is infused into the later convo-

lutional layers (conv4, conv5). This approach is inspired by

the observations that the later convolutional layers capture

the more descriptive features [59], and the hand features are

found to be captured in a later convolutional layer (conv5)

of the prior object localization network [33].

The hand segmentation model has two output layers

to segment hands and a background in an image; i.e.,

the model performs a per-pixel classification to determine

which pixels belong to the hand or the background. For

object localization, our model does not estimate the exact

center and bounding box of an object of interest. Instead,

the model infers the center area of a target object. Hav-

ing two output layers, our hand-primed object localization

model determines which pixels belong to the center area of

an object of interest or the non-center area (background).

Prior work in pose estimation [39] and egocentric activity

recognition [33] has highlighted benefits of estimating ar-

eas of interest over the exact coordinate estimation.

Our model expects egocentric images that are obtained

by users taking photography or by extracting salient frames

from videos recorded using a wearable camera on the head,

the chest, or eyeglasses.

3424



3.2. Implementation Details

As the object localization output is dependent on the

hand segmentation output, we separately trained these two

networks. First, we trained the hand segmentation network.

Then, while freezing the weights of the hand segmentation

network, we trained the object localization model.

Adam [24] was used to train our hand segmentation

and object localization networks. Following are hyper-

parameters that we set for training: (hand segmentation)

10,000 training steps, 0.00001 learning rate, 16 batch size,

and 10
−9 Adam’s epsilon; (object localization) 20,000

training steps, 0.00001 learning rate, 8 batch size, and 10
−9

Adam’s epsilon. In both of the models, we initialized the

weights of the first five convolutional layers (conv1–conv5)

with those of the VGG-16 network model [48] pre-trained

on ImageNet [12].

Training: Using four egocentric datasets including Ego-

Hands [2], GTEA [15], GTEA Gaze+ [14], and TEgO [26],

we first trained our hand segmentation model. Provided

with a set of original images and those hand masks as shown

in Figure 3, our hand segmentation model learns hand fea-

tures from the input data during training. To train our ob-

ject localization model, a set of original images and those

object center annotation data were used; Figure 3 shows the

examples. The center of an object of interest in each image

was annotated with a Gaussian heatmap blob. The object

localization model was taught to estimate the center area

of a target object interacted with the hand; i.e., we trained

the model to learn the relationship between the hand pose

and object location. GTEA, GTEA Gaze+, and TEgO were

used to train and test the object localization model. Note

that we did not use the EgoHands dataset for object local-

ization as this dataset mostly contains hand movements in

board games, such as chess, card games, and Jenga. As

both of the hand segmentation and object localization mod-

els predict a class per pixel, the cross-entropy loss function

was used to train both of the networks.

Inference: At test time for object localization, we only

considered per-pixel classification outputs which confi-

dence scores were higher than 0.5 in the object localization

output layer. When there was more than one cluster of the

estimated center area, the biggest cluster was chosen to be

the estimated center area.

4. Experiments

For evaluation, using egocentric hand–object datasets,

we compared our approach with several other approaches

of using the hand information to localize an object of in-

terest. As the localization outputs and these ground-truths

were represented as an area, mIoU (mean intersection over
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Figure 3. Input data for training models: an original image, its

hand mask, and its object center annotation.

union) and the standard COCO metrics, including AP (av-

eraged over IoU thresholds), AP50, and AP75, were used to

report the performance of each model. AP is an appropriate

metric for our evaluation in that it inherently captures false-

positive predictions [11], which are a critical factor in object

localization. It also measures the capability of a model to

be employed in assistive technologies for people with visual

impairments, such as blind photography, since users of such

systems are prone to false-positives [25].

4.1. Datasets

All the datasets (GTEA, GTEA Gaze+, TEgO) already

provide hand segmentation data for their original images,

but only the TEgO dataset provides the annotation data for

object location; they used a Gaussian heatmap blob to in-

dicate the center of an object of interest, which was also

used for egocentric activity recognition [33]. For the other

datasets (GTEA and GTEA Gaze+), we used the object

localization annotation provided by Lee and Kacorri [26];

they shared their manual annotation data for these datasets

on the TEgO website. Following is the number of im-

ages used from each dataset: GTEA (663), GTEA Gaze+

(1,115), and TEgO (5,758). Note that we excluded im-

ages without hands from the TEgO dataset in our evalua-

tion. We randomly selected samples from each dataset and

applied the following dataset splitting to each dataset: 80%

for training, 10% for validation, and 10% for testing.

The GTEA datasets include images only collected by

sighted people, but the TEgO dataset contains data from a

blind person. The evaluation with this TEgO data would

gauge the compatibility of each localization model with

assistive technologies for people with visual impairments,

such as blind photography or object recognition.
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4.2. Comparison Models

There were four different models with which we used to

compare our approach. Similar to our model, all the com-

parison models were also built upon the FCN-8s model. As

in our method, the Adam optimizer was used for training.

NoHand: This model was trained1 for object localization

without explicitly being trained on hand segmentation data;

i.e., the object center annotation was only used for training.

Finetune: This is the baseline model that uses hand fea-

tures for object localization, which was introduced by Ma et

al. [33]. To implement this model, we fine-tuned1 our hand

segmentation model to the object localization problem for

each dataset. During the fine-tuning, we froze the weights

of the first five convolutional layers (conv1–conv5) as in the

model proposed by the prior work; they observed that hand

features were captured in the conv5 layer.

MultiClass/MultiClass-2x: In this model, learning the

hand and the object center was considered as a multi-class

problem. This multi-class model estimates the class of

each pixel; i.e., it determines to which class among back-

ground, hand, and object center area each pixel belongs.

In addition, we implemented another multi-class model,

MultiClass-2x, in which we set twice more weight on the

loss in object localization. For both of the models, the

weights were also initialized with those of our object hand

segmentation model before training1.

MultiTask/MultiTask-2x: Considering hand segmenta-

tion and object localization as two different tasks in one

model, we employed the hard parameter sharing for this

multi-task learning [8]. This model shares the first five

convolutional layers (conv1–conv5) and has two separate

branches — one branch for the hand segmentation and an-

other for the object localization. This model is called Mul-

tiTask. Moreover, as in the MultiClass models, we also cre-

ated another multi-task model in which the loss in object

localization model was computed to be twice more impor-

tant than the loss in hand segmentation. We call this model

MultiTask-2x. Before training2 these models, we also ini-

tialized the weights of the hand segmentation part of these

models with those of our hand segmentation model; i.e., the

weights of the shared convolutional layers and the separate

layers for the hand segmentation part were initialized with

those of our hand segmentation model.

4.3. Hand Segmentation

We first evaluate the hand segmentation performance of

the models as our work focuses on this information to lo-

calize an object of interest in egocentric vision. A thresh-

old of 0.5 was used to determine the per-pixel classifica-

110,000 training steps, 0.00001 learning rate, 16 batch size.
220,000 training steps, 0.00001 learning rate, 8 batch size.
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Figure 4. Hand segmentation outputs of the comparison models

and our approaches (HPAll, HPLate). The hand segmentation

is overlaid with the green color. All the models except for the

multi-class models appropriately segmented whole hand(s) from

the testing examples; the multi-class models failed to segment fin-

gers from the examples from GTEA and GTEA Gaze+.

tion on the hand segmentation output layer. We measured

the hand segmentation performance of Finetune before fine-

tuning it to object localization; thus, three models (Fine-

tune, HPAll, and HPLate) ended up having the same hand

segmentation model. Note that the hand segmentation part

for the multi-class (MultiClass, MultiClass-2x) and multi-

task (MultiTask, MultiTask-2x) models was initialized with

the weights of our hand segmentation model and then fine-

tuned to each dataset again.

Quantitative analysis: We report the quantitative analysis

Table 1. Quantitative analysis of the hand segmentation models.

The average interaction of union (mIoU ) and the COCO standard

metrics (AP , AP50, AP75) are used.

Dataset Model mIoU AP AP50 AP75

GTEA

NoHand N/A N/A N/A N/A

MultiClass 0.82 0.68 1.0 0.85

MultiClass-2x 0.77 0.58 0.98 0.63

MultiTask 0.92 0.88 1.0 0.98

MultiTask-2x 0.92 0.88 1.0 0.98

Finetune,HPAll/Late 0.9 0.85 1.0 0.98

GTEA

Gaze+

NoHand N/A N/A N/A N/A

MultiClass 0.88 0.81 0.98 0.93

MultiClass-2x 0.83 0.72 0.97 0.83

MultiTask 0.92 0.88 1.0 0.96

MultiTask-2x 0.91 0.86 1.0 0.95

Finetune,HPAll/Late 0.91 0.87 0.99 0.97

TEgO

NoHand N/A N/A N/A N/A

MultiClass 0.92 0.9 0.99 0.98

MultiClass-2x 0.89 0.83 0.98 0.95

MultiTask 0.92 0.89 0.98 0.97

MultiTask-2x 0.92 0.91 0.98 0.97

Finetune,HPAll/Late 0.92 0.91 0.98 0.98
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Figure 5. Object localization outputs of the comparison models and our approaches (HPAll, HPLate). The object localization output is

overlaid with the blue color on the testing examples; the threshold for the localization output was set to 0.5.

of the hand segmentation performance of each model in Ta-

ble 1. Note that NoHand was not evaluated for hand seg-

mentation since this model was trained only for object lo-

calization. As described in the table, our hand segmentation

model and the multi-task models achieved equal to or higher

than 0.9 in mIoU and 0.85 in AP in all of the three datasets.

On the other hand, the hand segmentation performances of

the multi-class models were not competitive to the other

models including our hand segmentation model. In partic-

ular, although the performance of the localization-focused

multi-task model (MultiTask-2x) showed the similar perfor-

mance to that of the naive multi-task model (MultiTask), we

observed the performance degradation in the localization-

focused multi-class model (MultiClass-2x) when compar-

ing its performance to that of the naive multi-class model

(MultiClass) in all of the datasets.

Qualitative analysis: The hand segmentation outputs of

all the models (except for NoHand) are visualized with the

green color in Figure 4. As in the quantitative analysis, our

visual inspection informs that all the models were able to

segment hand(s) from testing images, but the multi-class

models lack detailed segmentation. In general, the multi-

class models segmented a large part of hand(s) from the

testing images, but sometimes were unable to provide fine-

grained hand segmentation. In the figure, we observed that

the multi-class models were unable to segment fingers from

the testing examples from GTEA and GTEA Gaze+.

4.4. Object Localization

As in the hand segmentation analysis, we evaluate the

object localization performance, quantitatively and qualita-

tively. A threshold of 0.5 was used to determine whether

per-pixel estimations belong to the center area of an object.

Quantitative analysis: Table 2 shows the object localiza-

tion performances of our hand-primed object localization

models (HPAll, HPLate) and the comparison models. In

the GTEA and TEgO datasets, our model (HPLate) outper-

formed the comparison models in almost all of the metrics.

In the GTEA Gaze+ dataset, our HPLate model showed the

best performance in AP75 and comparative performances to

Table 2. Quantitative analysis of the object localization models.

The average interaction of union (mIoU ) and the COCO standard

metrics (AP , AP50, AP75) are used.

Dataset Model mIoU AP AP50 AP75

GTEA

NoHand 0.69 0.48 0.82 0.51

Finetune 0.68 0.47 0.80 0.46

MultiClass 0.26 0.01 0.06 0

MultiClass-2x 0.66 0.48 0.80 0.51

MultiTask 0.42 0.10 0.42 0

MultiTask-2x 0.67 0.48 0.80 0.52

HPAll 0.70 0.51 0.77 0.58

HPLate 0.73 0.55 0.85 0.57

GTEA

Gaze+

NoHand 0.49 0.23 0.53 0.20

Finetune 0.43 0.20 0.45 0.12

MultiClass 0.24 0.01 0.07 0

MultiClass-2x 0.60 0.33 0.74 0.24

MultiTask 0.31 0.05 0.23 0

MultiTask-2x 0.52 0.24 0.68 0.11

HPAll 0.50 0.25 0.55 0.20

HPLate 0.55 0.30 0.70 0.25

TEgO

NoHand 0.69 0.48 0.86 0.47

Finetune 0.70 0.49 0.88 0.51

MultiClass 0.24 0.01 0.08 0

MultiClass-2x 0.70 0.46 0.92 0.41

MultiTask 0.37 0.02 0.14 0

MultiTask-2x 0.72 0.52 0.94 0.52

HPAll 0.70 0.48 0.90 0.44

HPLate 0.74 0.55 0.93 0.59
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those of MultiClass-2x in the other metrics, such as mIoU ,

AP , and AP50.

Between our hand-primed object localization models,

HPLate generally showed better performance than HPAll in

all of the datasets, which indicates that modulation of hand

features in higher layers helps capture the contextual rela-

tionship between hands and the object of interest more than

modulating hand features in all layers. Compared with the

baseline model (Finetune), our model (HPLate) achieved

the performance improvement by 17% (from 0.47 to 0.55

AP), 50% (from 0.2 to 0.3 AP), and 12% (from 0.49 to 0.55

AP) in GTEA, GTEA Gaze+, and TEgo datasets, respec-

tively. This result demonstrates that the explicit use (infus-

ing) of the hand segmentation in object localization is more

helpful for localizing an object of interest than fine-tuning

the fixed features of the hand model to a different problem,

object localization. Furthermore, in comparison to NoHand

that did not have the explicit training for hand information,

our model (HPLate) showed better object localization per-

formance in all the three datasets. Based on these observa-

tions, it seems that having explicit hand features in the last

convolutional layers (e.g., conv4 and conv5) helps to prime

the object localization model to focus on necessary features,

such as hand pose and location.

Qualitative analysis: Figure 5 shows that our hand-

priming models (HPAll, HPLate) well predicted the cen-

ter area of an object associated with hand(s). As described

in the quantitative analysis, HPLate generated more precise

localization outputs than HPAll; the testing examples de-

pict that HPAll tended to output a larger center area than

HPLate and sometimes estimated more than one center area

as shown in the GTEA Gaze+ example. MultiClass and

MultiTask were unable to estimate the center area of an ob-

ject of interest successfully, while the localization-focused

version of these models (MultiClass-2x, MultiTask-2x) im-

proved the performance of object localization.

More testing examples in Figure 6 were used to inspect the

performances of the models, visually. The figure shows

that our model estimated a more round shape of the center

area, which is closer to the ground truth, than did the other

models. In particular, comparing the output of our method

(HPLate) with that of NoHand, we found further evidence

that the hand information is essential not only to localize an

object of interest but also to decide which object would be

of interest when multiple objects appear in the scenes.

Failure cases: Figure 7 shows failures cases of our model

(HPLate) in object localization. It can still be confused with

two or more objects when the hand–object interaction is

not so obvious. For example, the left example in the figure

shows that our model was confused with the two objects in

proximity of the hand. This confusion seems to be caused

G
T

E
A

 G
a

z
e

+
T

E
g

O

NoHand MultiTask-2x HPLateFinetune

G
T

E
A

MultiClass-2x

Figure 6. Object localization outputs of the models on other testing

examples. In comparisons with NoHand, our method (HPLate)

shows that the hand information helps localize the target object.
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Figure 7. Failure cases of our method (HPLate) despite the appro-

priate hand segmentation outputs on these testing examples.

by an indiscernible interaction between the hand and the ob-

ject in the example. In addition, the middle example shows

the false-negative localization of our model. Although our

hand model successfully segmented the hand, the object

model was unable to localize the object being held by the

hand in the example. Furthermore, the false-positive output

of our model is presented on the right of the figure. Despite

the appropriate hand segmentation, our model localized a

wrong object, which might be caused by the object occlu-

sion by the hand. Further investigations are necessary to

spot factors in these issues since the other methods also suf-

fered from the issues in the same and/or different examples.

More in TEgO: Data from blind people may not have

some implicit information about the object of interest (e.g.,

placement of the target object at the center of the camera

frame). Hence, in data from blind people, hands may be

a reliable indication of a target object. As only TEgO in-

cludes data collected by a blind person, we evaluated all the

methods with the TEgO data collected by the blind person.

In Table 3, we report the performance of each model on data

from sighted and blind people in the TEgO dataset, respec-
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Table 3. Object localization performances of the methods on a dif-

ferent set of the TEgO data. For this analysis, the data from the

blind person are separated from the data from the sighted person.

Dataset Model mIoU AP AP50 AP75

TEgO

(blind)

NoHand 0.71 0.52 0.90 0.54

Finetune 0.71 0.51 0.90 0.52

MultiClass 0.48 0.13 0.54 0.01

MultiClass-2x 0.75 0.57 0.93 0.61

MultiTask 0.31 0.03 0.17 0

MultiTask-2x 0.71 0.50 0.91 0.50

HPAll 0.69 0.46 0.86 0.45

HPLate 0.75 0.57 0.94 0.64

TEgO

(sighted)

NoHand 0.74 0.54 0.93 0.58

Finetune 0.74 0.55 0.96 0.57

MultiClass 0.23 0.01 0.05 0

MultiClass-2x 0.73 0.52 0.94 0.51

MultiTask 0.52 0.17 0.63 0.03

MultiTask-2x 0.74 0.53 0.96 0.54

HPAll 0.73 0.51 0.94 0.50

HPLate 0.76 0.59 0.96 0.64

tively. For this analysis, the data from the sighted person

and the data from the blind person were separately used to

train and test each model. Our method, HPLate, outper-

formed the other methods not only on TEgO (sighted) but

also on TEgO (blind). In particular, compared to the base-

line model (Finetune), HPLate achieves the performance

improvement, on average, by 12% and 7% on the TEgO

(blind) and TEgO (sighted) datasets, respectively.

5. Discussion

In this paper, our hand-primed object localization model

showed the effectiveness of using hand information for ob-

ject localization in egocentric vision. We observed that our

model worked well not only on the datasets from sighted

people but also on the dataset that contains the hand–object

interactions of the blind person. We also saw its potential

in being extended to applications in diverse domains, such

as computer vision problems and assistive technologies. In

particular, assistive technologies that take egocentric input

from users with visual impairments and employ computer

vision models to understand the input may benefit from our

approach when estimating a region of interest of the users

and recognizing their object or activity.

Our approach has some limitations, which however are

valuable guidance on our future directions. First, a large

dataset from the blind population may lead us to have more

generalizable evaluation of the methods including our ap-

proach. Currently, assistive systems powered by state-of-art

computer vision models suffer from a lack of datasets from

this specific population [19]. As such assistive technolo-

gies can benefit from ample data, we are seeking more data

collected by visually impaired people.

As our model only estimates the center area of an object

of interest, an additional method is required to extract only

the object of interest from the input image for further tasks,

such as fine-grained object recognition. Prior work used

the fixed size of a bounding box to extract the object of in-

terest [33], but such a naive approach may not work well

on different sizes and shapes of objects. Object detection,

such as region proposal network [43], may need to be incor-

porated to extract only a target object, but further research

is required to use the contextual information (i.e. hands) in

such object detection. Also, developing a hand detection

model that detects an egocentric hand simply with a bound-

ing box might be another cost-wise direction. Perhaps re-

placing the hand segmentation task with the hand detection

task may lose some information about the hand, but it could

be compensated by more labeled hand data. This hypothe-

sis needs to be confirmed by further analysis. We leave this

analysis as our future work.

Last, egocentric data collected with wearable cameras

can include both left and right hands and two different ob-

jects being interacted with the left and right hands, respec-

tively. In this case, it would be more natural and helpful

to localize an object of interest for each hand, separately,

to understand the egocentric context, more accurately. In

addition, prior work shows that video data could contain

more information about understanding users’ interactions

with objects in the egocentric vision [16, 27, 44]. Consider-

ing not only static images but also videos, we are currently

improving our model to learn left and right hands and local-

ize an object of interest for each hand.

6. Conclusion

We proposed an object localization model reinforced by

hand information. In our approach, the output of the hand

segmentation network is infused to the object localization

network to prime the localization model to use the hand in-

formation for object localization in egocentric vision. Our

evaluation demonstrates the effectiveness of using the hand

segmentation feedback for object localization — estimating

the center area of a target object. It also shows that explicit

infusion of the hand information into an object localiza-

tion network achieves more precise localization than do the

other approaches. We believe that our method can be fur-

ther employed in other applications that need to understand

hand–object interactions, such as object/action recognition

and assistive systems for people with visual impairments.

7. Acknowledgments

The authors thank the anonymous reviewers for their

helpful comments on an earlier version of this work. This

work is supported by NIDILRR (#90REGE0008).

3429



References

[1] J. Balata, Z. Mikovec, and L. Neoproud. Blindcamera: Cen-

tral and golden-ratio composition for blind photographers.

In Proceedings of the Mulitimedia, Interaction, Design and

Innnovation, page 8. ACM, 2015.

[2] S. Bambach, S. Lee, D. J. Crandall, and C. Yu. Lending a

hand: Detecting hands and recognizing activities in complex

egocentric interactions. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 1949–1957,

2015.

[3] G. Bertasius, H. Soo Park, S. X. Yu, and J. Shi. Unsupervised

learning of important objects from first-person videos. In

Proceedings of the IEEE International Conference on Com-

puter Vision, pages 1956–1964, 2017.

[4] I. Biederman. On the semantics of a glance at a scene. In

Perceptual organization, pages 213–253. Routledge, 2017.

[5] J. P. Bigham, C. Jayant, A. Miller, B. White, and T. Yeh.

Vizwiz:: Locateit-enabling blind people to locate objects

in their environment. In 2010 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition-

Workshops, pages 65–72. IEEE, 2010.

[6] E. Brady, M. R. Morris, Y. Zhong, S. White, and J. P.

Bigham. Visual challenges in the everyday lives of blind peo-

ple. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, pages 2117–2126. ACM,

2013.

[7] M. Cai, K. M. Kitani, and Y. Sato. Understanding hand-

object manipulation with grasp types and object attributes.

In Robotics: Science and Systems, volume 3, 2016.

[8] R. Caruana. Multitask learning: A knowledge-based source

of inductive bias. In ICML, 1993.

[9] C. Choi, S. Ho Yoon, C.-N. Chen, and K. Ramani. Robust

hand pose estimation during the interaction with an unknown

object. In Proceedings of the IEEE International Conference

on Computer Vision, pages 3123–3132, 2017.

[10] D. Damen, H. Doughty, G. Maria Farinella, S. Fidler,

A. Furnari, E. Kazakos, D. Moltisanti, J. Munro, T. Perrett,

W. Price, et al. Scaling egocentric vision: The epic-kitchens

dataset. In Proceedings of the European Conference on Com-

puter Vision (ECCV), pages 720–736, 2018.

[11] J. Davis and M. Goadrich. The relationship between

precision-recall and roc curves. In Proceedings of the 23rd

international conference on Machine learning, pages 233–

240. ACM, 2006.

[12] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database.

In Computer Vision and Pattern Recognition, 2009. CVPR

2009. IEEE Conference on, pages 248–255. Ieee, 2009.

[13] S. K. Divvala, D. Hoiem, J. H. Hays, A. A. Efros, and

M. Hebert. An empirical study of context in object detec-

tion. In 2009 IEEE Conference on computer vision and Pat-

tern Recognition, pages 1271–1278. IEEE, 2009.

[14] A. Fathi, Y. Li, and J. M. Rehg. Learning to recognize daily

actions using gaze. In European Conference on Computer

Vision, pages 314–327. Springer, 2012.

[15] A. Fathi, X. Ren, and J. M. Rehg. Learning to recognize

objects in egocentric activities. In CVPR 2011, pages 3281–

3288. IEEE, 2011.

[16] A. Furnari, S. Battiato, K. Grauman, and G. M. Farinella.

Next-active-object prediction from egocentric videos. Jour-

nal of Visual Communication and Image Representation,

49:401 – 411, 2017.

[17] N. Gosselin-Kessiby, J. F. Kalaska, and J. Messier. Evidence

for a proprioception-based rapid on-line error correction

mechanism for hand orientation during reaching movements

in blind subjects. Journal of Neuroscience, 29(11):3485–

3496, 2009.

[18] A. Guo, S. McVea, X. Wang, P. Clary, K. Goldman, Y. Li,

Y. Zhong, and J. P. Bigham. Investigating cursor-based in-

teractions to support non-visual exploration in the real world.

In Proceedings of the 20th International ACM SIGACCESS

Conference on Computers and Accessibility, pages 3–14.

ACM, 2018.

[19] D. Gurari, Q. Li, A. J. Stangl, A. Guo, C. Lin, K. Grau-

man, J. Luo, and J. P. Bigham. Vizwiz grand challenge: An-

swering visual questions from blind people. arXiv preprint

arXiv:1802.08218, 2018.

[20] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn.

In Computer Vision (ICCV), 2017 IEEE International Con-

ference on, pages 2980–2988. IEEE, 2017.

[21] Y. Huang, M. Cai, Z. Li, and Y. Sato. Predicting gaze in ego-

centric video by learning task-dependent attention transition.

In Proceedings of the European Conference on Computer Vi-

sion (ECCV), pages 754–769, 2018.

[22] C. Jayant, H. Ji, S. White, and J. P. Bigham. Supporting blind

photography. In The proceedings of the 13th international

ACM SIGACCESS conference on Computers and accessibil-

ity, pages 203–210. ACM, 2011.

[23] H. Kacorri, K. M. Kitani, J. P. Bigham, and C. Asakawa.

People with visual impairment training personal object rec-

ognizers: Feasibility and challenges. In Proceedings of the

2017 CHI Conference on Human Factors in Computing Sys-

tems, pages 5839–5849. ACM, 2017.

[24] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014.

[25] H. J. P. S. J. E. Lee, Kyungjun and H. Kacorri. Revis-

iting blind photography in the context of teachable object

recognizers. In Proceedings of the 21st International ACM

SIGACCESS Conference on Computers and Accessibility,

ASSETS ’19, New York, NY, USA, 2019. ACM.

[26] K. Lee and H. Kacorri. Hands holding clues for object recog-

nition in teachable machines. In Proceedings of the 2019

CHI Conference on Human Factors in Computing Systems.

ACM, 2019.

[27] Y. J. Lee, J. Ghosh, and K. Grauman. Discovering impor-

tant people and objects for egocentric video summarization.

In 2012 IEEE Conference on Computer Vision and Pattern

Recognition, pages 1346–1353, June 2012.

[28] Y. Li, A. Fathi, and J. M. Rehg. Learning to predict gaze in

egocentric video. In Proceedings of the IEEE International

Conference on Computer Vision, pages 3216–3223, 2013.

3430



[29] Y. Li, M. Liu, and J. M. Rehg. In the eye of beholder: Joint

learning of gaze and actions in first person video. In Pro-

ceedings of the European Conference on Computer Vision

(ECCV), pages 619–635, 2018.

[30] Y. Li, H. Qi, J. Dai, X. Ji, and Y. Wei. Fully convolutional

instance-aware semantic segmentation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 2359–2367, 2017.

[31] Y. Li, Z. Ye, and J. M. Rehg. Delving into egocentric actions.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 287–295, 2015.

[32] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 3431–3440, 2015.

[33] M. Ma, H. Fan, and K. M. Kitani. Going deeper into first-

person activity recognition. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

1894–1903, 2016.

[34] Y. Meng, X. Ye, and B. D. Gonsalves. Neural processing of

recollection, familiarity and priming at encoding: Evidence

from a forced-choice recognition paradigm. Brain research,

1585:72–82, 2014.

[35] R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee, S. Fi-

dler, R. Urtasun, and A. Yuille. The role of context for object

detection and semantic segmentation in the wild. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 891–898, 2014.

[36] K. P. Murphy, A. Torralba, and W. T. Freeman. Using the

forest to see the trees: A graphical model relating features,

objects, and scenes. In Advances in neural information pro-

cessing systems, pages 1499–1506, 2004.

[37] A. Oliva and A. Torralba. The role of context in object recog-

nition. Trends in cognitive sciences, 11(12):520–527, 2007.

[38] t. E. Palmer. The effects of contextual scenes on the identifi-

cation of objects. Memory & Cognition, 3:519–526, 1975.

[39] T. Pfister, J. Charles, and A. Zisserman. Flowing convnets

for human pose estimation in videos. In Proceedings of the

IEEE International Conference on Computer Vision, pages

1913–1921, 2015.

[40] H. Pirsiavash and D. Ramanan. Detecting activities of daily

living in first-person camera views. In 2012 IEEE Confer-

ence on Computer Vision and Pattern Recognition, pages

2847–2854. IEEE, 2012.

[41] U. Proske and S. C. Gandevia. The proprioceptive senses:

their roles in signaling body shape, body position and move-

ment, and muscle force. Physiological reviews, 92(4):1651–

1697, 2012.

[42] A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora,

and S. J. Belongie. Objects in context. In ICCV, volume 1,

page 5. Citeseer, 2007.

[43] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In

Advances in neural information processing systems, pages

91–99, 2015.

[44] X. Ren and C. Gu. Figure-ground segmentation improves

handled object recognition in egocentric video. In 2010 IEEE

Computer Society Conference on Computer Vision and Pat-

tern Recognition, pages 3137–3144, June 2010.

[45] G. Rogez, M. Khademi, J. Supančič III, J. M. M. Montiel,
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