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Abstract

Depth completion, a task to estimate the dense depth

map from sparse measurement under the guidance from the

high-resolution image, is essential to many computer vi-

sion applications. Most previous methods building on ful-

ly convolutional networks can not handle diverse pattern-

s in the depth map efficiently and effectively. We propose

a multi-scale guided cascade hourglass network to tack-

le this problem. Structures at different levels are captured

by specialized hourglasses in the cascade network with s-

parse inputs in various sizes. An encoder extracts multi-

scale features from color image to provide deep guidance

for all the hourglasses. A multi-scale training strategy fur-

ther activates the effect of cascade stages. With the role of

each sub-module divided explicitly, we can implement com-

ponents with simple architectures. Extensive experiments

show that our lightweight model achieves competitive re-

sults compared with state-of-the-art in KITTI depth com-

pletion benchmark, with low complexity in run-time.

1. Introduction

Accurate depth sensing is a critical basic component for

many computer vision applications, including autonomous

navigation, augmented realities, and unmanned aerial ve-

hicles. A popular solution to these tasks is based on ac-

tive depth sensors, given their precise measurements. Un-

fortunately, commodity-level sensors, such as LiDAR and

Time-of-Flight sensor, barely produce sparse depth maps

with considerable missing data. For instance, projecting 3D

point cloud captured by Velodyne LiDAR HDL-64e into an

image plane results in roughly 4% valid pixels on a depth

map in KITTI dataset [21]. The scarcity of depth measure-

ments makes it hard to meet the demands of high-level ap-

plications. As a consequence, a task of depth completion,

i.e., to estimate the dense depth map from sparse input depth

with the guidance from the aligned high-resolution camera

image, catches growing attention in recent years.
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Figure 1. Example Data for Depth Completion in KITTI

dataset. (a) Form top to bottom: the guidance color image, the in-

put sparse depth which is dilated for visualization, and the ground-

truth depth. In the camera image space, distant objects are shrunk,

while near objects are enlarged due to perspective projection. (b)

Far areas have larger depth variance (computed in a 9×9 window)

but counts less proportion of pixels than the near areas do.

In addition to high accuracy requirement, a depth com-

pletion method always needs to have low demands for run-

time and a small number of parameters in a practical sys-

tem. Most recent methods [21, 23, 10] take advantage of

convolutional neural networks (CNN) to tackle the prob-

lem. A common convolution kernel is shared spatially over
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the whole image so that the computation can be processed

efficiently in parallel. One of the most popular backbones

is the hourglass-shaped fully convolutional network (FCN)

[10, 5, 16]. The contractive part in the hourglass traverses

a large scope of field progressively by a series of down-

sampling convolutions. The expanding part receives multi-

scale features from the contractive part by skip connections

to cope with diverse structures.

Although previous studies have achieved promising re-

sults, the plain hourglass architecture is actually not opti-

mal for depth completion. This is mainly because of the ex-

tremely imbalanced distribution of scene structures across

the camera image space, largely due to perspective projec-

tion. As shown in Fig. 1 (a), distant objects are shrunk

and tend to appear as relatively fine structures compared to

near parts. The deformation causes more severe variation

in depth but much fewer supporting data points in far re-

gions than those in the near, as evidenced by Fig 1 (b). In

this situation, vanilla CNN based methods applying spatial-

ly shared filters can not fit heterogeneous patterns across the

image. Hourglass networks collecting multi-scale features

have the ability to cover diverse structures, while practical

learning performance is not satisfactory. The imbalance in

structures make layers for a certain scale may not be ad-

equately trained to be effective. Consequently, a success-

ful hourglass always depends on massive parameters trained

with extensive data [13, 16, 10].

To alleviate the problem, we propose a Multi-Scale

Guided Cascade Hourglass Network (MSG-CHN). Instead

of a single network bearing all the features, we employ cas-

cade hourglass networks, which has been applied success-

fully to human pose estimation [14]. Different from these

stacked hourglasses, we designate each sub-network to pre-

dict structures on a particular scale by feeding inputs at

different resolutions. Multi-scale features from the high-

resolution color image are extracted accordingly to provide

guidance information for specific structures. By dividing

sub-modules for refined tasks, the suppression effect among

layers for different structures can be reduced. Furthermore,

the redundant network can be replaced with a compact com-

bination of simple architectures.

Specifically, we feed sparse inputs in the quarter, half,

and full sizes to three stacked hourglasses, respectively.

With the inputs down-sampled to different resolutions, we

can implement component sub-networks with simple and

similar architectures, whose roles are promoted by inputs.

Even more valuable is that the run-time complexity can be

considerably reduced.

As for the image guidance information, we apply a single

deep encoder with layers of down-sampling convolutions on

the full-resolution color image. Considering that the RGB

image is densely informative and full of details, we do not

perform manually-designed down-sampling as how we treat

the sparse depth. To further reduce the computational com-

plexity, the RGB encoder only operates once to extract all

scales of features for three hourglasses. Guidance features

are integrated in a ”late” manner into every encoder in the

cascade hourglass networks.

In order to activate the role of each sub-network, we

apply a multi-scale training strategy. Each sub-module is

trained to predict the depth at the corresponding resolution.

With the intermediate supervision, cascade networks can be

sufficiently trained into effect.

The major contributions and achievements of this paper

are three-fold:

• We are, to the best of our knowledge, the first to apply

cascade hourglass networks to handle the multi-scale

structures for depth completion.

• We propose to extract multi-scale guidance informa-

tion from image for the cascade networks. Ground-

truth maps are down-sampled to the corresponding s-

cales for auxiliary supervision.

• Our compact network achieves competitive accuracy

with low run-time complexity compared to state-of-

the-art methods on KITTI depth completion bench-

mark.

2. Related Work

Depth Completion

Most depth completion methods fall into two groups.

One group focuses on how to dig out useful information

from the sparse data. Uhrig et al. [21] propose a sparse

convolution to explicitly consider the sparsity of input by

only evaluating valid positions, which makes their model

invariant to the level of sparsity. Huang et al. [8] extend

the concept of sparsity-invariant convolution to other op-

erations including summation, up-sampling, and concate-

nation, so that they can implement a multi-scale network

HMS-Net. Eldesokey et al. [5] as well as Hua and Gong

[7] replace the binary mask in the sparsity-invariant convo-

lution with continuous confidence. Inspired by these work-

s, we extend the average pooling operation to down-sample

the sparse input.

The other group of methods investigates the proper way

to integrate multi-modality data, i.e., the RGB image with

depth measurements, to facilitate the completion. Com-

pared to dealing with the sparse depth with RGB image to-

gether, previous works [8, 10, 16] agree on that combining

them late at the feature level is a better choice. Some meth-

ods extract specific features from an image to assist in dense

estimation. Qiu et al. [16] learn surface normals as the in-

termediate representation. Besides surface normals, Zhang

and Funkhouser [23] estimate occlusion boundaries as well

to better constrain the scene structures. MSG-Net [9] ex-

tracts multi-scale features to guide depth super-resolution
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Figure 2. Our Depth Completion Pipeline. The sparse depth map is first resized to low- and medium- resolutions. Down-sampled maps

together with the original one are fed into three cascade hourglass networks. A color image passes through an encoder to predict multi-scale

guidance for each hourglass. Afterward, estimations from each hourglass are integrated by residual connections. Each network is trained

with ground-truth depth down-sampled to the corresponding scale.

at different levels progressively. We follow them to employ

layers of down-sampling convolutions on the image. Differ-

ently, we arrange the features in a principled way to guide

all the sub-modules of different scales in the cascade net-

work.

MultiScale Networks for Dense Estimation

Pixel-wise inference tasks, such as semantic segmenta-

tion and depth prediction, widely employ multi-scale net-

works. One kind of method extracts and integrates multi-

scale features in a unified network. Encoder-decoder archi-

tecture with skip connections [19, 12] is one of the most

popular backbones, which contains an encoder to extrac-

t multi-scale features sequentially and a decoder to col-

lect features through skip connections. Some methods

[25, 1, 20] utilize the spatial pyramid pooling (SPP) block

to learn a coarse-to-fine representation via kernels in dif-

ferent spatial sizes. Nevertheless, training such networks

sufficiently is challenging and always takes a long time.

The other type of methods resize the input to several

resolutions and assign them to sub-networks. Each sub-

network is in charge of a certain scale, and the final pre-

diction is a combination of the multi-scale outputs. Chen

et al. [2] deploy sub-networks in parallel, together with an

attention model to merge multiple estimations. Eigen and

Fergus [3] use stacked sub-networks to recover pixel-wise

labels from the coarse-scale to the fine. Our architecture al-

so contains stacked networks to fit diverse structures, while

sub-networks are guided with multi-scale features from the

color image. Furthermore, the function of our sub-networks

is explicitly restricted during training by a multi-scale train-

ing strategy.

Realtime PixelWise Prediction

Pixel-wise prediction methods achieve real-time perfor-

mance in two ways. Some methods [15, 18, 17] speed up

a model by pruning parameters. However, the high-speed

brought by the lightweight model is at the cost of accuracy.

Zhao et al. [24] argue that the computation complexity is re-

lated to the feature resolution. They propose an ICNet with

cascade down-sampled inputs to achieve real-time inference

without sacrificing much performance. Our network shares

the same merit with ICNet. We properly take advantage of

low-resolution sparse inputs for encoding coarse features.

The design significantly reduces the demanding of run-time

with little sacrifice on the capacity of the model.

3. Model

3.1. Overview

Given a sparse depth map sD and a guidance RGB im-

age I which is aligned with sD, we are aiming at recovering

a dense depth map. We proposed a multi-scale guided cas-

cade hourglass network (MSG-CHN) to tackle the problem.

The pipeline is illustrated in Fig. 2. The network treats the

sparse depth and the image input in two different manner-

s. Three cascade hourglasses take the quarter-sized sparse

map sD2, half-sized sD1 and full-sized sD0 as input re-

spectively to capture structures in different scales. An RGB

encoder with layers of down-sampling convolutions applies
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on image I for multi-scale guidance features. Image and

depth features are coordinated at each encoder in the depth

pathway. Residual connections integrate predictions from

three hourglasses, to recover dense depth gradually from the

coarsest D2 to the finer D1 and finally reaching the predic-

tionD0. We summarize the detailed layer-by-layer network

configurations in Table. 1.

3.2. Cascade Hourglass Network

The depth pathway consists of three cascade hourglass

modules, each takes a certain resolution of depth map input

and gives predictions at the same resolution. At the begin-

ning, 1/4-sized sparse depth is fed into the first hourglass

to predict the coarsest scale of features, and an initial depth

estimation at the same resolution. With the low-resolution

input, the hourglass can capture large structures easily with-

in only a couple of layers, which is sufficient to give an

abstract of the scene. The initial prediction acting as a ref-

erence, together with the features from the first hourglass

are up-sampled to the half-resolution and fed into the fol-

lowing module. 1/2 down-sampled sparse depth also par-

ticipates in the second hourglass to supply for additional

details. Outputs from the medium-level module are fused

with the initial depth by residual connection to modify the

estimation. The basic module repeats for the third time with

the full-resolution inputs, to give the final dense map with

fine-grained details.

Basic modules share the same network architecture. An

hourglass sub-network starts with initial convolutional lay-

ers to turn the inputs into low-level feature maps. 2 down-

sampling layers each with a stride of 2 contract the spatial

size of feature maps and increase the perspective field pro-

gressively. Deconvolutional layers then up-sample the fea-

tures to the input resolution for the pixel-wise prediction.

To keep fine local information, we integrate features in dif-

ferent levels by skip connections. ReLU comes after each

convolution except for the last layer, to better cope with the

gradient vanishing problem.

When down-sampling the sparse input, it is importan-

t to keep as much information as possible. Inspired by the

sparsity-invariant convolution proposed in [21], we adap-

t the standard average pooling to down-sample the sparse

map. The data at position (x, y) on the down-sampled s-

parse depth map sDk is an average over the valid neighbors

of the pixel (2kx, 2ky) on the original sparse map sD, in

which 2k is the down-sampling factor. This operation can

be implemented simply as a division of the average pooling

results of the original map sD and the indication map C,

where C(x, y) = 1 indicates that pixel (x, y) in sD is ob-

served, otherwise C(x, y) = 0. The implementation of the

down-sampling operation φkx,y(sD,C) can be formulated

Table 1. Network Summary. H and W are the height and width

of the input color image. A stride of −2 in the decoder means

a deconvolution layer with a stride of 2. k is the index of the

hourglass. + means pixel-wise addition of two features. Each

layer is followed with ReLU, except for the last layer in every

sub-module.
RGB Guidance Encoder

Output Kernel Str. Ch I/O OutRes Input

Initial layers

F0 c
3×3 1 3/32

H ×W I
3×3 1 32/32

Encoder

F1 c
3×3 2 32/32 1

2
H ×

1

2
W F0 c

3×3 1 32/32

F2 c
3×3 2 32/32 1

4
H ×

1

4
W F1 c

3×3 1 32/32

F3 c
3×3 2 32/32 1

8
H ×

1

8
W F2 c

3×3 1 32/32

F4 c
3×3 2 32/32 1

16
H ×

1

16
W F3 c

3×3 1 32/32

Basic Depth Hourglass

Output Kernel Str. Ch I/O OutRes Input

Initial layers

F0 dk
3×3 1 1/32

H/2k ×W/2k sDk

3×3 1 32/32

Encoder

F1 dk
3×3 2 32/32 1

2
H/2k ×

1

2
W/2k

F0 dk+
3×3 1 32/32 F5 dk+1

F2 dk
3×3 2 32/32 1

4
H/2k ×

1

4
W/2k F1 dk

3×3 1 32/32

Decoder

F3 dk
3×3 -2 32/32 1

2
H/2k ×

1

2
W/2k

F2 dk+
3×3 1 32/32 F(k+2) c

F4 dk
3×3 -2 32/32

H/2k ×W/2k
F3 dk+

3×3 1 32/32 F(k+1) c+F1 dk

Predictor

Dk 3×3 1 32/32
H/2k ×W/2k

F5 dk+
3×3 1 32/1 F(k) c+F0 dk

as

φkx,y(sD,C) =

∑2
k
−1

i,j=0
sD2kx+i,2ky+j

∑2k−1

i,j=0
C2kx+i,2ky+j + ǫ

=

∑2
k
−1

i,j=0
sD2kx+i,2ky+j/2

2k

∑2k−1

i,j=0
C2kx+i,2ky+j/22k + ǫ

=
ψk
x,y(sD)

ψk
x,y(C) + ǫ

,

(1)

where ψk
x,y(·) is the average pooling, ǫ is a small number to

avoid division by zero.

This kind of down-sampling essentially using adaptive

weights to sample the data according to the validity. It

can be easily extended to take the data positions into con-

sideration. One can define a distance weight ωi,j about

the offsets i, j, and multiply it with ωi,j to sD2kx+i,2ky+j

andC2kx+i,2ky+j . However, this extension introduces extra

computations.
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sDI(e)sDI(chn)sD(e)I(chn)sD(e)I(e)-a sD(e)I(e)-b
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sD Image sD,Image

sD,Image

Figure 3. Different Architectures. F denotes the number of channels of the network.

3.3. MultiScale Guidance

Following the instructions from previous work [10, 20]

that information of different modalities should be jointed

with their high-level features, we design a specialized path-

way to learn guidance features from the RGB signal.

The image pathway contains a single contracting net-

work to encode the guidance information. Different from

the sparse depth map, RGB image is densely informative.

Thus we do not perform manual down-samplings on the im-

age as the way in the depth branch. Instead, we begin with

the full resolution image and use down-sampling convolu-

tion layers to extract multi-scale features. After 4 stacked

layers of down-sampling convolutions each with a stride of

2, the deepest feature maps reach a 1/16 spatial resolution of

the original input size, which is consistent with the minimal

spatial feature size in the depth branch.

The extracted multi-scale image features are merged

with depth features at the decoder phases in the depth path-

way. Especially, our depth branch is composed of 3 predic-

tion modules with different spatial resolutions. We combine

RGB features and depth features that have the same reso-

lution in each of the depth decoders. In this way, all the

depth hourglasses can predict a dense map with the image

guidance. With our design, decoding layers in the cascade

network can always find guidance features that have the cor-

responding resolution. RGB and depth features are fused by

the add operation, so as to compress the length of the feature

channel in decoders.

4. Training with Multi-Scale Supervision

To further activate each functional part, we train the net-

works with intermediate supervision by using multi-scale

ground-truth. We encourage the output of each sub-module

to be close to the ground-truth at the corresponding reso-

lution. The semi-dense ground-truth map is down-sampled

by the strategy in Eq.(1). The total loss L is a summation of

L2 losses for D2, D1 and D0,

L =ω2

1

N

N∑

i=1

L2(D
2
i , D̂

2
i ) + ω1

1

N

N∑

i=1

L2(D
1
i , D̂

1
i )

+ω0

1

N

n∑

i=1

L2(D
0
i , D̂

0
i ),

(2)

where i is the index of pixels, N is the total pixel number of

the depth map. D̂2
i , D̂1

i , and D̂0
i are the ground-truth maps

at the quarter, half and full resolutions.

We adopt a multi-stage scheme during the training pro-

cess. We set ω2 = ω1 = ω0 = 1 at first 10 epoches. Then

ω2 and ω1 is reduced to 0.1 to emphasize the total perfor-

mance. In the end, we set ω2 = ω1 = 0 after 20 epoches.

5. Experiment

In this section, we give an ablation study and a com-

parison with related work on the KITTI depth completion

benchmark [21] to verify the design of our method. KITTI

benchmark provides sparse depth maps captured by Velo-

dyne LiDAR HDL-64e, aligned RGB images, and semi-

dense ground-truth which is the coincident depth of the ac-

cumulated LiDAR and stereo estimation. The dataset con-

tains 85895 training data, 1000 selected validation samples,

and 1000 test data without ground-truth. Due to our limited

computational ability, the networks in the ablation study is

trained on only 10000 samples from the training set.

Our network is implemented in PyTorch. All models are

optimized with Adam [11] (β1 = 0.9;β2 = 0.999). The

learning rate begins at 0.01, and is reduced by a half ev-

ery 5 epochs. We train for 31 epochs with a batch size of

4. Random cropping and left-right-flipping are performed

as data augmentation. The training maps are cropped to a

resolution of 1216×352. We initialize the networks with

random parameters. A weight decay of 2× 10−4 is applied

for regularization.

For evaluation, we report four common metrics: the

mean square error (MAE, mm), root mean square error

(RMSE, mm), as well as their counterpart on the inverse

depth iMAE (1/km) and iRMSE (1/km).
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Table 2. Quantitative Evaluation of Different Architectures.

The proposed MSG-CHN (sD(chn)I(e)) achieves the best perfor-

mance with a small number of parameters and low run-time.

MAE RMSE ♯Params Runtime

sD(e)I(e)-a 280.90 986.16 202K 0.007

sD(e)I(e)-b 279.52 973.45 806K 0.016

sD(e)I(chn) 263.64 972.97 421K 0.015

sD(chn)I(chn) 248.77 933.13 587K 0.017

sDI(chn) 266.16 1006.23 1117K 0.028

sDI(e) 291.91 1025.91 1887K 0.031

sD(chn)I(e) (ours) 245.28 910.37 364K 0.011

5.1. Ablation Study

a) Verification of Cascade Hourglass Architecture

To investigate our architecture design, we test to deal with

the sparse depth and color image by several different net-

work configurations. The diagrams of the network variants

are sketched in Fig. 3, and comparison results are listed

in Table 2. Here, we denominate our MSG-CHN archi-

tecture as sD(chn)I(e) , which means that the sparse depth

pathway is the cascade hourglass architecture, and the im-

age pathway is a single encoder. sD(e)I(e)-a is a variant

in which both depth and image pathways are the single

multi-scale encoders, and a decoder coordinates both fea-

tures for prediction. sD(e)I(e)-b doubles the channel length

of sD(e)I(e)-a. Sparse depth in sD(e)I(chn) passes a single

encoder, while the image goes through stacked hourglasses.

sDI(chn) performs data fusion at the input stage, and takes

the RGBD input to a CHN architecture. sDI(e) contains a

single hourglass to deal with the RGBD input. sD(e)I(e)-

a, sD(e)I(e)-b and sDI(e) belong to the typical pipeline for

depth completion.

Comparing the results of sDI(chn) with those of sDI(e),

we find that even with the data fused at the earliest stage,

cascaded networks show superiority over single-stage net-

works. Moreover, replacing any of the current components

with other configurations will cause degraded performance

(sD(e)I(e)-a/b, sD(chn)I(chn), and sD(e)I(chn)). It justifies

the idea that sparse depth can be down-sampled at the begin-

ning for multi-scale processing, while a single encoder with

sub-sampling convolutions is suitable for the image data.

b) Verification of The Multi-Scale Designs

To study the effect of using multi-scale inputs, we compare

with two variants. CHN takes the full resolution inputs to

all the three hourglasses, and the encoder in the image path

feeds the same scale guidance information for the three net-

works. CHN-D also takes the monotonous resolution inputs

and image guidance, while dilated residual blocks [22] are

Table 3. Impact of the Multi-Scale Designs. Our multi-scale net-

work achieves high accuracy with low computational complexity.

MAE RMSE ♯Params Runtime

CHN 262.63 946.39 364K 0.032

CHN-D 241.77 917.60 438K 0.040

MSG-CHN(ours) 245.28 910.37 364K 0.011

Table 4. Quantitative Evaluation of Different Sampling Strate-

gies. The model with sparse inputs sampled by our adapted aver-

age pooling performs the best.

MAE RMSE iMAE iRMSE

grid sampling 263.53 926.89 1.24 3.13

bilinear sampling 261.88 925.57 1.25 3.21

avg-pooling 255.20 922.06 1.17 2.98

max-pooling 246.93 920.94 1.09 2.82

ours 245.28 910.37 1.07 2.79

added to the end of each depth encoder for capturing multi-

scale structures. To keep the same receptive fields as ours,

we add four dilated layers to the first hourglass, with the di-

lations set to 2, 2, 4, and 1. Two layers with dilations of 2

and 1 are added to the second hourglass.

Results in Table 3 shows that CHN suffers from perfor-

mance degradation both in the accuracy and efficiency. This

is because the duplicated networks without multi-scale in-

puts and guidance lack the ability to describe the various

structures. And the full-sized inputs introduce additional

computational burdens. With the dilated blocks added to

CHN, the variant CHN-D is enabled to cope with multi-

scale features, and achieves similar accuracy as the pro-

posed network. However, the computational complexity is

increased even further. The comparison verifies that our

networks with multi-scale inputs is efficient and effective

to handle the diverse patterns and reduce the computational

complexity at the same time.

c) Effect of the Sampling Strategy

We sub-sample the sparse map to different resolutions for

the network to learn multi-scale predictions, and meanwhile

to accelerate the computation. Here, we analyze the in-

fluence of different down-sampling strategies. In table 4,

we provide a comparison of the final results with inputs

sampled by direct grid sampling, bi-linear sampling, avg-

pooling, max-pooling, and the strategy introduced in Eq.

(1). Sampling sparse data without considering the invalid

positions causes a considerable reduction in accuracy. Max-

Pooling controls the minus effect of invalid data to some ex-

tent, while it is still slightly inferior to the introduced strate-
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Image Original input Grid Bilinear Avg-Pooling Max-Pooling Ours

Figure 4. Down-sampling Results by Different Strategies. Direct grid sampling causes data missing. Bi-linear sampling and Avg-Pooling

pollute the original information. Max-Pooling leads to the loss of fore-ground structures. Our strategy preserves original information as

much as possible.

Table 5. Quantitative Evaluation of Different Training Strate-

gies. Intermediate supervision can boost the performance.

MAE RMSE iMAE iRMSE

w/o intermediate 258.37 922.93 1.11 2.85

with intermediate (ours) 245.28 910.37 1.07 2.62
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Figure 5. Intermediate Results. Form top to bottom are the pre-

dict maps from the first, the second, and the third hourglass.

gy. These straightforward down-sampling operations do not

apply to the sparse data. As shown in Fig. 4, sampling di-

rectly at grids results in the vanishing of the surviving data.

Bi-linear down-sampling and average pooling pollute the

results with the invalid zero values. Moreover, max-pooling

breaks up intrinsic structures.

d) Verification of The Multi-Scale Training

To verify the effectiveness of the multi-scale auxiliary train-

ing, we compare with a model trained end-to-end without

intermediate supervision (w/o intermediate). Results in Ta-

ble 5 imply that introducing intermediate supervision can

boost performance. We visualize example intermediate pre-

dictions of each hourglass in Fig. 5. With our multi-scale

training, the first hourglass learns to give a coarse abstract of

the scene depth. Following stages gradually supply details

at the corresponding scales.

1 2 3 4 1 2 3 4
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Runtime (s)RMSE (mm)

# hourglass # hourglass

Figure 6. The Influence of The Number of Hourglasses. With

the more hourglasses applied, the better performance a model will

achieve, and the longer run-time it will cost.

e) The Number of Cascade Hourglasses

We study the right number of hourglasses in the depth path-

way. With the number of hourglasses ranging from 1 to 4,

the varying trends of RMSE error and run-time are visu-

alized in Fig. 6. When reducing the number, we start re-

moving from the lowest resolution, to ensure that the last

finest hourglass is always kept. That is to say, the one-

hourglass architecture only contains the last component in

CHN, and the two -hourglass architecture contains the last

two. When appending the architecture, another hourglass

with full-resolution inputs follows our MSG-CHN.

Fig. 6 shows that as more hourglasses are introduced and

the total number is no more than 3, errors reduce notably,

and the run-time increases only in a limited amount. How-

ever, once the 4-th hourglass is added, the reduction in error

becomes insignificant while the increment in run-time gets

obvious. We can conclude that: (1) The effect of first three

hourglasses is complementary. (2) Inference through a low-

resolution network is fast, while a high-resolution network

is slow. (3) Using three hourglasses is a decent trade-off

between accuracy and speed.

5.2. Overall Performance

In this section, we compare with current publicly avail-

able state-of-the-art methods on the selected validation and
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Table 6. Comparison With State-of-The-Art on KITTI Benchmark. The platform refers to Nvidia GPUs. Our method achieves

competitive results compared with state-of-the-art, with low demand in run-time.

Methods
Selected Validation Test

♯Params Runtime(s) Platform
MAE RMSE iMAE iRMSE MAE RMSE iMAE iRMSE

DeepLiDAR [16] 215.38 687.00 1.10 2.51 226.50 758.38 1.15 2.56 144.0M 0.07 GTX 1080Ti

RGB guide&certainty [6] 214 802 - - 215.02 772.87 0.93 2.19 2.6M 0.02 Tesla V100

Sparse-to-Dense (gd) [13] 260.90 878.56 1.34 3.25 249.95 814.73 1.21 2.80 26.1M 0.08 Tesla V100

NConv-CNN-L2 (gd) [4] 233.25 870.82 1.03 2.75 233.26 829.98 1.03 2.60 355K 0.02 Tesla V100

Spade-RGBsD [10] - - - - 234.81 917.64 0.95 2.17 5.3M 0.07 -

MSG-CHN (ours) 215.14 750.52 0.95 2.32 220.41 762.19 0.98 2.30 1.2M 0.01 GTX 2080Ti

DeepLiDAR [16]Inputs RGB_guide&certainty [6] Sparse-to-Dense [13] MSG-CHN (ours)

Figure 7. Qualitative Results of Our Method and State-of-the-Art on KITTI test set. From top to bottom, left to right: the input color

image, the sparse depth input, the estimated dense depth maps, and the error maps (the warmer, the larger). We zoom-in the boxes of

interest at the top-left corner on the error maps. Our method can handle both fine and coarse structures.

test sets of KITTI depth completion. The final model is

trained with all training data provided by KITTI benchmark.

We increase the model channels from 32 to 64 for final re-

sults. Table 6 reports the quantitative evaluation results, Fig.

7 shows several example maps.

Our method achieves competitive results compared with

top methods on KITTI benchmark, with low run-time and

model complexity 1. The number of parameters of the pro-

posed model is a hundredth of DeepLiDAR [16], while the

sacrifice in accuracy is insignificant.

Qualitative results in Fig. 7 demonstrate that our method

can adequately handle the large-scale structures as well as

fine details. Specifically, we correctly recover the boundary

of a large scale car (marked by the yellow boxes), as well as

the fine-grained shape of the signs (pointed out by arrows in

the blue boxes), where other methods fail.

1This is only a rough comparison since the run-time of each method

is evaluated on different platforms. As a reference, Tesla V100 owns the

most CUDA cores and highest computing performance, while GTX 1080Ti

is with the lowest computational ability among the three platforms listed

in Table 6.

6. Conclusion

In this work, we present a lightweight multi-scale guid-

ed cascade hourglass network for the task of depth comple-

tion. The cascade network consists of simple hourglasses

with sparse depth inputs in multiple scales to specifically

cope with diverse structures. Each hourglass receives the

guidance at different levels from an RGB encoder. Sub-

networks are encouraged to focus on particular patterns via

a multi-scale learning strategy. By assigning modules with

specialized functions, the network can be implemented with

simple architectures. We performed comprehensive analy-

ses on the KITTI benchmark and achieved competitive ac-

curacy with low run-time and light weights.
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