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Abstract

Skeleton-based action recognition has attracted more

and more attention in recent years. Besides, the rapid de-

velopment of deep learning has greatly improved the per-

formance. However, the current exploration of action co-

occurrence is still not comprehensive enough. Most existing

works only mine co-occurrence features from the temporal

or spatial domain seperately, and it’s common to combine

them in the end. Different from previous works, our ap-

proach is able to learn temporal and spatial co-occurrence

features integratedly and globally, which is called spatio-

temporal-unit feature enhancement (STUFE). In order to

better align the skeleton data, we introduce a novel method

for skeleton data preprocessing called active coordinate

system conversion (ACSC). A coordinate system can be

learned automatically to transform skeleton samples for

alignment. By the way, the proposed methods are com-

patible with current two types of mainstream models, the

CNN-based and GCN-based models. Finally, on the two

benchmarks of NTU-RGB+D and SBU Kinect Interaction,

we validated our methods based on two mainstream models.

The results show that our methods achieve the state-of-the-

art.

1. Introduction

In the past few years, human action recognition has be-

come an active area of research, due to its wide appli-

cations, ranging from surveillance to human-computer in-

teraction and virtual reality. Human pose, also known as

skeleton, can be used as a kind of data modality for ac-

tion recognition. Unlike RGB video, human skeleton se-

quences can provide very effective information only with

a limited amount of data. [9] first verified the validity of

skeletal sequence on discriminant actions from a biological

perspective. Now there are many devices can directly pro-

vide solutions for real-time skeleton sequence output. In-

tel RealSense [11] and Microsoft Kinect [36] are the most
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Figure 1: This is an overview of our approach at the data flow

level. Take the original skeleton data as input, then pass ACSC

and STUFE, and finally complete the classification.

commonly used. The popularity of these devices has greatly

enhanced the utility of skeleton-based action recognition.

Preprocessing of skeleton datas is common in skeleton-

based action recognition. Most of these operations are de-

signed for data augmentation or reducing the noise of the

data. In order to get a better expression of the skeleton

data, MTLN [10] converts the skeleton data from a Carte-

sian coordinate system to a cylindrical coordinate system.

And the experimental results validates the effectiveness of

the operation. However, such coordinate transformations

are fixed for all the skeleton samples without enough flexi-

bility, which leaves room for improvement.

On the other hand, one of the most critical problems has

always been how to extract useful features from the skeleton

sequences. Many early works tried the approach of hand-

crafted features [29, 31, 25], e.g. some probability based

approaches [31] constructed features from dynamic motion
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and static skeletons. Since 2015, manual feature meth-

ods have been gradually surpassed by deep neural network

methods. Recurrent Neural Networks (RNNs) was first in-

troduced to skeleton sequence modeling. These RNN-based

methods, including H-RNN [4] and LSTM [18, 24, 33, 34,

13, 19] focus on modeling the information in the time do-

main and are lack of the ability of modeling the spatial in-

formation. Subsequently, the introduction of the Convolu-

tional Neural Networks (CNN) solved the above problem

of RNN. The feature extraction capabilities of CNN have

been verified on multiple computer vision tasks. Applying

CNN to skeleton-based action recognition requires format-

ting the skeleton sequence into an image form. [3] are the

first to convert the joints and timing of skeleton sequences

to the height and width of the images, followed by an image

classifier. Further improvements were made in HCN [15].

It enhanced the spatial co-occurrence features learning abil-

ities by modifying the convolution operation. But it does

not consider temporal domain modeling. A few years later,

graph-based convolutions (GCN) have emerged in this area.

Most recent related work is aimed to enhance feature ex-

traction in temporal or spatial(joint) domain based on ST-

GCN [30].

In this paper, we consider learning the spatio-temporal

features integratedly and globally. 1) ‘integratedly’ means

that the modeling of temporal information and spatial in-

formation is integrated. Differently, some previous work

such as STGR [14] designed a temporal module and a spa-

tial module separately which are responsible for temporal

modeling and spatial modeling respectively. These methods

do not satisfy ‘integratedly’. 2) ‘Globally’ means that the

model has the ability to learn global information directly,

both in terms of time and spatial dimensions. To the best of

our knowledge, most previous works did not have both of

these properties with in one model.

For many actions, spatio-temporal co-occurrence is es-

pecially important. Take the action of ‘touching head’ for

example, people usually pay attention to the position of the

hand at the beginning of the action, and then are concerned

with the position of the head later. So the early ‘hand’ and

the later ‘head’ are the key to distinguish this action cat-

egory. Considering that the previous methods did not in-

tegratedly consider temporal and spatial domain, we have

designed a method spatio-temporal-unit feature enhance-

ment (STUFE) to learn co-occurrence features across tem-

poral and spatial domains, and this method has good ver-

satility and can be directly used in the current mainstream

CNN and GCN architectures. To the best of our knowledge,

this is the first time to learn co-occurrence features across

spatial-temporal domain instead of doing it separately. Be-

sides co-occurrence mining, we also consider the problem

of skeleton data preprocessing. According to the previous

work [10], the skeleton sequence in the cylindrical coordi-

nate system is more helpful for action recognition than it in

the Cartesian coordinate system. Inspired by this finding,

we propose a method of active coordinate system transfor-

mation (ACSC) that converts each skeleton sequence into a

more suitable space. The entire conversion process is dif-

ferentiable, and its internal parameters can be automatically

updated under the guidance of the gradient. The workflow

of our method is shown in Fig. 1.

Our contributions can be summarized as follows: 1) For

the first time, we propose a spatio-temporal co-occurrence

feature learning method for skeleton-based action recongni-

tion. 2) We design an active coordinate system transforma-

tion that can better align the skeleton data for action recog-

nition.

2. Related Work

Action recognition is one of the key tasks in computer vi-

sion. There have been many approaches so far. According

to the difference of the modal of the input data, they can be

classified as RGB-based, depth-map based, skeleton-based,

and others [27]. For example, a RGB-based method[21]

uses video data as input, then a pose estimate method is in-

troduced for feature extraction. A typical depth-map based

method[26] uses depth map as input data, then using CNNs

for feature learning and classification. At the same time,

there is a method[2] that fuses multimodal data. Here, we

focus on the relevant work of skeleton-based action recog-

nition methods.

So, in this section, we first briefly cover the research re-

lated to skeleton-based recognition. Then, we summarize

the relevant methods from the perspective of co-occurrence

exploration.

2.1. Skeletonbased Action Recognition

The acquisition of skeleton data is becoming more and

more convenient, thanks to the popularity of low-cost depth

cameras [11, 36] and the rapid development of related tech-

nologies such as human posture estimation [1] for obtain-

ing skeleton data from a single picture. This has led to the

skeleton-based action recognition, attracting more attention

in the academia.

Unlike the methods based on handcrafted features, the

methods of learning feature representation directly from

raw data, relying on the powerful feature learning capa-

bilities of deep neural networks, have become the main-

stream in recent years. As mentioned before, the RNN

method [37, 35, 33] was once the mainstream. Then, a

spatio-temporal graph [7] is introduced, which is used to

express the relationships among body parts into the RNN.

Although rough, this is the prototype of the follow-up GCN

idea. Subsequently, skeleton sequences are manually trans-

formed into images to feed into CNN. CNN-based methods

587



[3, 10, 17] gradually became dominant with its super feature

extraction capability.

Nevertheless, the recent rise of the GCN-based ap-

proaches such as [30, 14] has shown greater potential with

its superior spatial relationship modeling capabilities. The

GCN method is derived from graph convolution. The earli-

est graph convolution is based on Graph Fourier Transform

[23, 6, 5]. ST-GCN [30] first used the spatial domain graph

convolution method to complete the skeleton-based action

recognition. [14] has added dynamic routing based on ST-

GCN, which can build more flexibly relationships among

the joints of the human body. Similarly, in [28] a motif no-

tation is introduced to model each joint in a skeleton.
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Figure 2: The idea of the ACSC method, (a) is the raw data, (b) is

the data transformed in the cylindrical coordinate system, and (c)

is the data we learned in the new coordinate system.

Although CNN-based and GCN-based methods are com-

parable in performance, GCN has better interpretability

than CNN. The advantage of the CNN method is that since

CNN has been successfully used in many fields, there are

more experiences on CNN’s network structure design and

training. The proposed method in this work is fully com-

patible with both models.

2.2. Cooccurrence Exploration

Human actions are usually associated with a specific set

of joint points at certain time steps. The human brain uses

this when distinguishing an action. For example, if some-

one identify the action of ‘touching back’ (backache), he or

she needs to focus on the hand and then turn the attention to

the back. Therefore, how to learn co-occurrence has always

been crucial for skeleton-based action recognition. Most of

the work has explored this aspect, even though some did

not mention the concept of co-occurrence. DeepLSTM [37]

introduced the fully connected layer to complete the co-

occurrence learning in the spatial domain. Global spatial

co-occurrence can also be learned by transforming the fea-

ture map in the channel and joint dimensions [15]. Previous

work only learn co-occurrence from spatial domain or the

temporal domain separately. For example, the spatial graph

router and the temporal graph router are respectively intro-

duced to extract co-occurrence features independently, and

finally the two are combined [14] . Different from these, our

approach directly performs co-occurrence learning across

both temporal and spatial domains.

3. Method

In this section, we introduce the on active coordinate

system conversion (ASCS) and spatio-temporal-unit feature

enhancement (STUFE). They have good compatibility and

are compatible with CNN-based and GCN-based models.

3.1. Active Coordinate System Conversion

The skeleton data of a person at time step t can be de-

noted as Xt = {X1
t , X

2
t , ..., X

j
t , ..., X

J
t } where Xj

t refers

to the coordinate value of the joint j at time t and J is

the number of joints. For a complete skeleton sequence,

it can be formulated as X = {X1, X2, ..., Xt, ..., XT } ∈
R

D×T×J , where T is the number of frames in the sequence

and D is the depth dimension which is the dimensionality

of the coordinate space. For 3D skeleton data, D = 3.

The original skeleton data is based on the Cartesian co-

ordinate system. [x, y, z] denotes the original coordinate

value. The process of coordinate system conversion is rep-

resented as operator A . Then, the cylindrical coordinate

transformation process proposed by [10] can be expressed

as:

A





x
y
z



 =





√

x2 + y2

arcsin(y/
√

x2 + y2)
z



 . (1)

Although good performance is achieved with the conver-

sion, we think that there might be a coordinate system more

suitable than the cylindrical coordinate system. We con-

tinue to advance on this direction and propose ACSC which

is to generalize A .

In detail, some formulation is needed. In 3D space,

the base of the original coordinate system is defined as

E = [~e1, ~e2, ~e3]. The transformed base can be formulated

as E′ = [~e1
′, ~e2

′, ~e3
′]. Obviously, in the inferring pro-

cess, the coordinate values are involved in the calculation,

and the base does not participate in any calculation. Here,

~υ = [x, y, z] and ~υ′ = [x′, y′, z′] represent initial coordi-

nate values and transformed coordinate values, respectively.

Each skeleton joint corresponds to a vector in space, and the
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Figure 3: Overview of the key steps of the STUFE algorithm. Feature map M
(n)
t,j is input. First step a) is to calculate the distance between

every two units. A matrix R consisting of all the results can be obtained after the step c) . Finally, after ⊙ summation in step (d), the C
(n)

used for attention mechanism can be obtained.

vector can be expressed as a base vector multiplied by a co-

ordinate value. In any case, there must be

E~υ ≡ E′~υ′, (2)

(

~e1, ~e2, ~e3
)

·





x
y
z



 =
(

~e1
′, ~e2

′, ~e3
′
)

·





x′

y′

z′



 . (3)

The transformation of the coordinate system is essentially

the conversion of the base. Here, A is still used to represent

the base transformation. The process of base conversion of

the coordinate system is,

E = E′
A . (4)

We can get E~υ = E′
A ~υ. According to Eqn. (4), E~υ =

E′
A ~υ = E′~υ′ . In this way, the relationship of ~υ and ~υ′

that we are most concerned about can be found.

~υ′ = A ~υ. (5)

Finding a better coordinate system is actually to find a

better base conversion operator A . The change that A can

make is shown in Fig. 2. Unlike the fixed form of cylindri-

cal coordinate system conversion, we aim to transform A

into a learnable form.

Ideally A should have following properties: 1) The new

coordinate system generated by A should be orthogonal. 2)

The transformation itself should be nonsingular, otherwise

the dimensionality of the newly generated coordinate sys-

tem will be smaller than that of the original space. And this

will lose a lot of spatial information in the original skeleton

sequence, just as 3D data is projected onto a 2D plane.

In fact, it is difficult to find constraints on the orthogo-

nality to satisfy property 1) rigorously. Thus, we choose an

approximation strategy such that A can be approximated

by a multi-layer perceptron (MLP) and the transformation

of the coordinate system can be learned. In order to satisfy

property 2), based on MLP, the initial values of the parame-

ters must be selected carefully. Because if the initial param-

eters of the MLP happen to cause singularity of the skeleton

data, subsequent training will be difficult to take a turn for

the better. In order to ensure that the initial parameters are

meaningful and satisfy the property 2), the training is not

started immediately, but the MLP is used as a self-encoder

for first training. In other words, A at this time just serves

as ‘identity matrix’, which maps the base of the Cartesian

coordinate system to itself. Then, MLP is used to learn the

transform process.

Since the coordinate transformation involves only the

primitive input data, it has good versatility. It is compati-

ble with two mainstream models. The experimental details

are shown in Section 4.

3.2. Spatiotemporalunit Feature Enhancement

Co-occurrence is very important for the recognition of

actions. Our method of spatio-temporal-unit feature en-

hancement (STUFE) is compatible with both CNN and

GCN. This is because the feature maps of CNN and GCN

are very similar. Thus, we use CNN as an example to illus-

trate the method.

The input skeleton data X ∈ R
D×T×J can be regarded

as a standard 3D tensor and the subsequent feature maps

can be as well where D,T, J have same meaning as Sec-

tion 3.1. For the CNN model, the feature map of the nth

layer can be noted as M (n). M (n) ∈ R
Dn×Tn×Jn , where

Dn, Tn, Jn is the depth,height (time dimension) and width

(joint dimension) of the feature map of nth layer. We splits

the feature map M (n) into basic spatio-temporal units M
(n)
t,j

and each unit M
(n)
t,j ∈ R

Dn×1×1. A feature map M (n) have

T×J units totally. These units with high-level semantic fea-

tures are the key to our exploration of co-occurrence across

spatio-temporal domain.
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The key steps of STUFE are shown in Fig. 3.

Start with Step (a) in Fig. 3. Here, we introduce a dis-

tance function Distance(unita, unitb), so that we can cal-

culate the distance between the unit M
(n)
t,j and the remaining

units one by one. This distance function will be described

in detail later. Then just as (b) shown in Fig. 3, the calcu-

lation result can be written in the form of a matrix with the

size of T × J , representing the distance among M
(n)
t,j and

all units. Here we record this result matrix as R(t,j). Simi-

larly, each unit M
(n)
t,j has the corresponding matrix R(t,j)

through the above calculation. In total there are T × J
matrices like R(t,j). Let R denotes the stack of the ma-

trices. For feature map M (n), R can be reshaped such that

R ∈ R
(Tn×Jn)×(Tn×Jn), shown as (c) in Fig. 3. Note that

R contains the distance of any two of spatio-temporal fea-

ture units in a specific semantic space. It also plays an im-

portant role in the visualization in Section 4.3.4. However,

the information currently contained in R cannot be directly

translated into the discriminative ability of the model. Step

(d) is to solve this problem. Next we elaborate Step (a) and

Step (d).
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Figure 4: Illustration of the distance function. First perform em-

bedding on each unit, then calculate the cosine distance.

For Step (a) which is about the distance function, we

want to allow units to map to a new space in which the

cosine distance between two units with co-occurrence can

be larger. Instead of directly calculating the cosine distance

between the feature units, we perform embedding firstly as

shown in Fig. 4. This embedding process can not be super-

vised directly, so this process needs to be restricted. Here,

a similar approach to ACSC in Section 3.1 is adopted. The

embedding model is separately trained by the way of auto-

encoder. This ensures that the embedding model has mean-

ingful initial parameters when the training begins. Subse-

quent training also limits the learning rate of the parameters

of this part. The magnitude of the parameter change is lim-

ited, making this part of the training more like finetuning.

For Step (d), although R contains the spatio-temporal

correlation information we want, its size is too large to be

used directly. To solve this problem, we used the attention

mechanism. As long as a group of units with co-occurrence

is enhanced by weighted summation, the effect of increas-

ing attention is achieved. In order to clarify this process,

now we define an operation ⊙,

A⊙B =

M
∑

i=1

N
∑

j=1

Aij ·Bij , (6)

where A ∈ R
M×N and B ∈ R

D×M×N . Here, Aij is a

scalar and Bij is a vector of size D, So Aij · Bij is still a

vector of size d. R(t,j) ⊙M (n) gives a tensor of the same

shape as a unit M
(n)
t,j . Just as (d) shown in Fig. 3. Here we

introduce C(n),

C
(n)
t,j = Rt,j ⊙M (n). (7)

When all calculations are completed, the shape of C(n) will

have the same shape as the original feature map M (n). The

whole process can be expressed in the form of an algorithm,

as shown in Algorithm 1. The final C(n) is an enhanced

feature map M (n). To make the whole process smoother,

we did not directly replace the original feature map M (n)

with C(n), but instead adopted a way to add M (n) to C(n)

with suitable weight as following formula:

M
(n)
final = ϕC(n) +M (n), (8)

where ϕ is not a hyperparameter, but is gradually increased

from 0 as a normal parameter.

M
(n)
final is the final enhanced feature map that can be

directly involved in subsequent CNN operations. So far

spatio-temporal-unit-based co-occurrence feature learning

has been completed.

4. Experiments

In this section, we evaluated the proposed ASCS and

STUFE on two major benchmarks NTU-RGB+D and SBU

Kinect Interaction. We first introduced the evaluation met-

rics and experimental details, and finally analyzed the re-

sults. All experiments are conducted on GTX2080Ti.

4.1. Datasets

4.1.1 NTU-RGB+D

The NTU-RGB+D[22] is currently the most widely used

and largest skeleton-based action recognition dataset. This

dataset contains 56000 action samples in 60 action classes.

These samples were taken by 40 volunteers in a laboratory

environment. The sensor uses Microsoft’s Kinect II[36],
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Algorithm 1 algorithm for co-occurrence exploration

Input: M (n) feature map of the nth layer

Parameter: Function Distance()
Output: C(n)with the same shape as the M (n)

1: for all t ∈ [1, Tn], j ∈ [1, Jn] do

2: Initialize R(t,j).

3: for all t′ ∈ [1, Tn], j
′ ∈ [1, Jn] do

4: R
(t,j)
t′,j′ ← Distance(M

(n)
t,j ,M

(n)
t′,j′)

5: end for

6: Initialize S ← 0
7: for all t′ ∈ [1, Tn], j

′ ∈ [1, Jn] do

8: S ← R
(t,j)
t′,j′ ·M

(n)
t′,j′ + S

9: end for

10: C
(n)
t,j ← S

11: end for

12: return C(n)

Method CS CV

Lie Group [25] CVPR 2014 50.1 52.8

H-RNN [4] CVPR 2015 59.1 64.0

Deep RNN [22] CVPR 2016 59.3 64.1

Deep LSTM [22] CVPR 2016 60.7 67.3

PA LSTM [22] CVPR 2016 62.9 70.3

ST-LSTM [18] ECCV 2016 62.9 70.3

STA-LSTM [24] AAAI 2017 73.4 81.2

Visualization CNN [20] PR 2017 76.0 82.6

VA-LSTM [33] ICCV 2017 79.4 87.6

Temporal Conv [12] CVPRW 2017 74.3 83.1

Clips + CNN + MTLN [10] CVPR 2017 79.6 84.8

Skepxels [17] arXiv 2017 81.3 89.2

HCN [15] IJCAI 2018 86.5 91.1

RHCN [Described in Sec. 4.2] 84.2 90.7

3D-POSE-S2 [21] CVPR 2018 82.4 86.7

ST-GCN [30] AAAI 2018 81.5 88.3

SR-TSL [30] ECCV 2018 84.8 92.4

motif-GCNs [28] AAAI 2019 84.2 90.2

STGR-GCN [14] AAAI 2019 86.9 92.3

RHCN + ACSC + STUFE 86.9 92.5

Table 1: Recognition performance on NTU-RGB+D dataset. We

report the accuracies on cross-subject (CS) and cross-view (CV)

benchmarks.

which can directly output the three-dimensional coordinates

of each joint of the human body. Each sample consists of the

skeleton containing 25 joints and each sample contains up to

two subjects. All action classes are roughly divided as daily

action, medical action, and interactive action. The authors

of the NTU-RGB+D recommend two evaluation protocols.

1)Cross-subject (CS): According to the different subjects,

40,320 samples are divided into training sets, and 16560

are used for testing. 2)Cross-view (CV):Under this proto-

col, the training data comes from cameras at view 2 and 3,

while the data from cameras with view 1 is used for test-

ing. The two parts consist of 37,920 and 18,960 samples,

respectively. In order to facilitate comparison with previous

work, We use top1 accuracy as a benchmark.

4.1.2 SBU Kinect Interaction

SBU Kinect Interaction [32] is a dataset that focuses on two

person interaction. All data is collected by Kinect. The

entire dataset contains 282 skeleton sequences divided into

8 action classes. The whole skeleton sequence consists of

6822 frames. Since the acquisition device (Kinect I) is rel-

atively behind the NTU-RGB+D (Kinect II), each skeleton

contains only 15 joints. The evaluation protocol uses the

subject-independent 5-fold cross validation recommended

by the author [32].

4.2. Implementation Details

For the basic model of CNN, we chose HCN[15] for test-

ing. Since the HCN model is not open source, it can only

be reproduced according to the paper. However, in doing so,

the performance will be slightly different from the original

text. Here we call it RHCN. By the way, there is a perfor-

mance gap between origin HCN (98.6) and RHCN(97.4)

that we reproduced. This is because the author of HCN

adjusted the network structure for the SBU dataset. Here,

for a fair comparison, our RHCN is identical on both two

datasets. For the multi-person samples, the following pro-

cessing method is adopted. First, we default that each sam-

ple contains two persons. All samples in the SBU Kinect

Interaction [32] contain exactly two persons, but some sam-

ples in the NTU-RGB+D [22] contain only one. For the

single-person sample, we extend it by filling in zeros, and

then use the element-wise maximum operation for feature

fusion. Because according to experience[15], using such

operations for fusion can reduce the impact of padded ze-

ros. The model is optimized by the Adam optimization al-

gorithm, and the learning rate is set to 0.001. The learning

rate of the ASCS module and the STUFE module is set to

0.0001. The weight decay is 10−4 and the batch size is 64.

Setting the learning rate in this way is to limit the fluctua-

tion of parameters in ASCS and STUFE, which is especially

important in the early stage of training.

For the GCN-based approach, the open source ST-GCN

is directly used as the basis. Here, the main part of the

model is optimized by the SGD algorithm with a learning

rate of 0.01. Similarly, the proposed module uses a smaller

learning rate of 0.001.Weight decay and batch size are the

same as RHCN. All implementation work is based on the

deep learning framework Pytorch 1.0.
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three subgraphs, which represent three ‘time points’ S1, S2 and

S3. These samples are from the NTU-RGB+D dataset and (a)(b),

(c)(d) are ‘touching head’ and ‘touching back’.

.

Methods

Accuracy (%)

X=ST-GCN X=RHCN

SBU NTU SBU NTU

X 94.3 81.5 97.4 84.2

X + CCS 94.4 81.5 97.5 84.3

X + ACSC 94.8 81.7 97.7 84.9

X + STUFE 95.2 82.3 98.3 86.1

X + ACSC + STUFE 95.6 82.5 98.7 86.9

Table 2: Ablation study on the SBU Kinect Interaction dataset and

NTU-RGB+D dataset CS benchmark. CCS refers to the cylindri-

cal coordinate system.

4.3. Analysis of Results

4.3.1 Comparison on NTU-RGB+D

On NTU-RGB+D [22] dataset, our performance exceeds all

previous methods under CV protocol, including the latest

approach [28, 14] just introduced in 2019 as shown in Table

1. Our method exceeded it by 0.2% in top-1 accuracy. There

are similar results in the CS protocol, except that we tied

with STGR-GCN [14]. Even so, the number of parameters

size is still smaller than STGR-GCN. Verifying the effec-

tiveness of STUFE and ACSC is more important to us. So

we verified them on CS protocol of NTU-RGB+D dataset

based on both RHCN and ST-GCN as shown in Table 2. The

method we propose can produce 2.7% improvement based

on RHCN. The results fully demonstrate the effectiveness

of our approach.

4.3.2 Comparison on SBU Kinect Interaction

The ablation study based on the SBU Kinect Interaction

dataset is also shown in Table 2. Both ACSC and STUFE

have been fully validated. In particular, for STUFE, there

Method Accuracy (%)

Raw Position [32] CVPRW 2012 49.7

Joint feature [8] ICMEW 2014 86.9

CHARM [16] ICCV2015 86.9

H-RNN [4] CVPR 2015 80.4

ST-LSTM [18] ECCV 2016 88.6

Co-occurrence-LSTM [37] AAAI 2016 90.4

STA-LSTM [24] AAAI 2017 91.5

ST-LSTM + Trust Gate [18] ECCV 2016 93.3

VA-LSTM [33] ICCV 2017 97.6

RHCN + ACSC + STUFE 98.7

Table 3: Action recognition performance for skeleton-based mod-

els on the SBU Kinect Interaction dataset. We report Top-1 accu-

racy.

Method training time (s) increments(%)

RHCN 7023 baseline

RHCN+ACSC 7213 +2.71%

RHCN+STUFE 7721 +9.94%

RHCN+ACSC+STUFE 7962 +13.37%

Table 4: The increase in model’s training time when ACSC and

STUFE are added.

is a gain of 0.9% in the case where the base performance is

already high. In Table 3, we compare the performance of

proposed method to other methods’. Although we empha-

size that our main contribution is not absolute performance,

we still outperforms the state-of-the-art approaches.

4.3.3 Learning cost

In addition to performance metrics, we also consider the

learning time cost of the proposed method. As shown in

Table 4. We compared the increase in training time after the

ACSC and STUFE was introduced to RHCN respectively.

From the results, ACSC and STUFE did not bring too much

computational cost. We think this is reasonable compared

to the performance improvement it brings.

4.3.4 Visualization

We have visualized R of GCN model, as shown in Fig.5.

R contains the distance information between all spatio-

temporal units. Considering that the size of R is very large

the size of which is T 2
n × J2

n, it is difficult to directly visu-

alize it, so we simplified it. The length of the original 64

frames are merged as three segments, denoted as S1, S2,

and S3, respectively. At the same time, the hand joints are

simplified, and the 25 joints are eventually merged into 21.

Finally, the distance values are normalized and the distances

with small values are filtered out. The larger cosine distance

592



value (the higher the correlation), the darker the color of

the connecting line between units. It can be found that for

‘touching back’, the ‘hand’ at S1 is highly correlated with

the ‘back’ at S3 . This is in line with our previous specula-

tion about co-occurrence.

5. Conclusion

In this paper, we propose two novel methods for

skeleton-based action recognition. Active coordinate sys-

tem conversion (ACSC) can actively convert the coordinate

system of the skeleton sample to a new coordinate sys-

tem that is more conducive to model discriminationd, and

STUFE can mine the co-occurrence features across tempo-

ral and spatial domain. Moreover, the proposed methods are

compatible with the current mainstream GCN-based model

and CNN-based model. In order to verify the effectiveness

of proposed methods, we tested on two benchmarks and the

accuracy eventually surpassed the previous state-of-the-art.
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