
Graph Networks for Multiple Object Tracking

Jiahe Li∗ Xu Gao∗ Tingting Jiang

NELVT, Department of Computer Science, Peking University, China

{jiaheli, gaoxu1024, ttjiang}@pku.edu.cn

Abstract

Multiple object tracking (MOT) task requires reason-

ing the states of all targets and associating these targets

in a global way. However, existing MOT methods mostly

focus on the local relationship among objects and ignore

the global relationship. Some methods formulate the MOT

problem as a graph optimization problem. However, these

methods are based on static graphs, which are seldom up-

dated. To solve these problems, we design a new near-

online MOT method with an end-to-end graph network.

Specifically, we design an appearance graph network and

a motion graph network to capture the appearance and the

motion similarity separately. The updating mechanism is

carefully designed in our graph network, which means that

nodes, edges and the global variable in the graph can be

updated. The global variable can capture the global re-

lationship to help tracking. Finally, a strategy to handle

missing detections is proposed to remedy the defect of the

detectors. Our method is evaluated on both the MOT16 and

the MOT17 benchmarks, and experimental results show the

encouraging performance of our method.

1. Introduction

Multiple object tracking (MOT) is a crucial problem in

computer vision because of its academic and commercial

potential. However, it is still tough and challenging to deal

with MOT problem, due to factors like similar appearance,

abrupt appearance changes, frequent occlusions, interac-

tions among multiple object and large camera motion.

Most of graph models [48, 29, 5, 41, 6, 42] are often

static graphs. Intuitively, we can construct a graph by treat-

ing the objects and the detections as nodes and the associa-

tions between objects and detections as edges. Based on the

graph, these graph models formulate MOT problem as the

min-cost network flow optimization problem. These static

graph models will fail when the information contained by

nodes or edges is outdated. If these graph models had been

∗Contributed equally. Xu Gao is currently working at Baidu. Source

codes of this paper are available: https://github.com/yinizhizhu/GNMOT.

Frame t-1 Frame t

Global Variable

Figure 1. The graph network consists of colorful circle nodes (ob-

jects in frame t − 1), grey square nodes (detections in frame t),

edges (connections between objects and detections) and a global

variable. Our method can update all components iteratively.

able to update the nodes and edges, a better tracking per-

formance would be achieved. To this end, nodes and edges

need to be updated. Moreover, these static graph models do

not model the global interaction among objects.

Recently, it is shown that the graph network has the abil-

ity of reasoning by comprehensive experiments [2]. As

shown in Fig. 1, the graph network consists of three parts,

including the node, the edge and the global variable. The

graph network updates nodes and edges iteratively and rea-

sonably, which can remedy the defect of previous graph

models. In the graph network, the global variable is ex-

pected to capture the global relationship among all nodes

and edges through the updating mechanism, such as inter-

action among nodes. Hence, the graph network provides a

solution to the MOT problem. However, with an improper

design of the graph network, directly applying the graph

network on the MOT problem will fail.

Appearance and motion are essential cues for dealing

with MOT problem. Many factors result in poor ap-

pearances, such as, similar appearance, abrupt appearance

changes and frequent occlusions. During that time, motion-

based models perform better than appearance-based mod-

els. When large camera motion and inaccurate detections

cause bad motion estimation, appearance-based models are

more robust than motion-based models. Hence, we design

two graph networks, including the appearance graph net-

work and the motion graph network, which use the appear-

ance feature and the motion feature as the attribute of nodes

respectively. The interaction is also important for dealing

with MOT problem. In the graph network, the global vari-

able is expected to capture the interaction among objects.

719

We propose a new near-online MOT method with two

end-to-end graph networks inspired by [3] which provides

a new basic graph network framework. We carefully design

our graph networks according to the unique characteristic

of MOT problem. For the two end-to-end graph networks

which handle appearance and motion respectively, we de-

sign four updating modules to get the similarity scores be-

tween objects and detections for association. Specifically,

it contains a node updating module, a global variable up-

dating module, and two edge updating modules. In fact,

the updating mechanism contains the inference of the graph

network. Besides, it can also keep the historical informa-

tion of nodes through the long-term tracking. Finally, to

remedy the defect of the detectors, two strategies for han-

dling missing detections are proposed. It includes a single

object tracker (SOT) strategy and a detection recovery strat-

egy. Our method is evaluated on both the MOT16 and the

MOT17 benchmarks, and experimental results show the en-

couraging performance. To our best knowledge, this is the

first paper that applies the graph network on MOT problem.

The main contributions are as follows: (1) We pro-

pose a new near-online MOT method with an end-to-end

graph network framework followed by strategies for han-

dling missing detections. (2) The updating mechanism is

carefully designed in our graph networks, which allows the

inference of the graph network.

2. Related Works

Multiple Object Tracking. In recent works, many

existing MOT methods follow the tracking-by-detection

strategy, which tackle MOT problem by running a detec-

tor first and associate those detections afterwards. These

methods can be categorized into offline approaches, on-

line approaches and near-online approaches. Offline ap-

proaches use detections from the entire sequence, and then

conduct a global optimization, including graph optimiza-

tion methods [48, 29, 4, 5, 6] and hierarchical methods

[47, 41, 42, 32, 25]. In comparison, online approaches

only use detections from both the current frame and the

previous frames. Recent online MOT works model MOT

problem as a data association problem between the tracked

objects and the detections. The key is to evaluate the

similarity between each tracked object and each detection

by using different networks (e.g. Recurrent Neural Net-

works [27, 12, 33, 49, 16] and Reinforcement Learning

[43, 30]) and different mechanisms (e.g. Attention mecha-

nism [10, 49, 16] and the single object tracking mechanism

for pre-processing [10, 49]). Recently, some near-online

MOT methods are proposed, which are similar to the online

MOT approaches but allow to re-associate objects in recent

frames. Choi [8] proposes an aggregated local flow descrip-

tor to provide a robust similarity measure for association.

Fagot-Bouquet et al. [11] combine a sparse representation-

based appearance model to improve multi-frame data as-

sociation. Kim et al. [20] utilize an LSTM network to

score the track proposals in a near-online multiple hypothe-

sis tracking framework. However, these online/near-online

methods do not consider the global relationship between all

tracked objects and detections.

Graph-Related Methods. Some offline methods use

graph models to formulate the MOT problem [48, 29, 5,

41, 6, 42, 35, 44]. Although most of these methods can

build connections between objects, they are lack of reason-

ing among objects, and nodes/edges cannot be updated.

Due to the ability of reasoning, graph networks have

been designed to solve some problems in other computer

vision areas. For instance, Shen et al. [36] propose a graph

network to solve the person re-identification problem, and

the graph network is used to guide the similarity between

each probe-gallery pair. Many other graph network meth-

ods are concluded into a unified structure by [3]. In general

cases, the graph network consists of nodes, edges and the

global variable. These components are updated iteratively,

which is regarded as the inference process.

Our model can infer the relationship among objects. Be-

sides, our model can update nodes and edges, which is more

flexible than traditional graph models.

3. Problem Formulation

3.1. Notions

The following notions are defined at frame t.

Trajectory: A trace formulated by bounding boxes from all

the frames between frame 1 and frame t− 1.

Detection: A bounding box in current frame t. The detec-

tion set is denoted by Dt.
Object: The last bounding box on one trajectory. Objects

before frame t comprise the object set for frame t, which is

denoted by Ot. If the object occurred in frame t− 1, it is a

normal object. Otherwise, it is a missing object.

3.2. Pipeline

The pipeline is demonstrated in Fig. 2. As shown in

Fig. 2, there are four procedures: feature extraction, graph

networks, data association and missing detections handling.

Feature Extraction. First, we extract the appearance

features and the motion features from both objects and de-

tections. To be specific, the appearance feature is extracted

from a convolutional neural network (CNN). The motion

feature is a 6-dimension vector, including the 2D coordi-

nates of the top-left corner, width, height and 2D velocity of

the object/detection which is computed from the displace-

ment between the detection and the object.

Graph Networks. Afterwards, graph networks infer the

similarity between each object and each detection. Each

node is associated with the feature of the object/detection,

720

Inputs Graph NetworksFeature Extraction Data Association

2
3

1

Cc

t

t-1

t-2

...

Frame t-1

Frame t

Video Stream 4
2

1

4

3

Objects

Detections

Appearance

Features

Motion

Features

...

...

...

...

Appearance

Graph Network

Motion

Graph Network

2

1

4

3

3

2

2

3

Frame t

Similarity

Missing Detections Handling

2

3
4

Frame t

1

4

Outputs

5

Single

Object

Tracker
55

Detection

Recovery Strategy

Frame

t-2 t-1 t

5

5

52
3

1

Frame t-1

45

Figure 2. Pipeline of our MOT model. Inputs are the frame t − 1, the frame t, the object set Ot from frame t and the detection set Dt at

frame t. Outputs are tracking results. For example, there are four objects from frame t − 1 and three detections from frame t, and their

features are extracted and sent into the graph networks. Afterwards, data association and missing detections handling are performed.

and each edge that connects the object and the detection is

associated with their similarity score.

Data Association. This procedure outputs the associa-

tions between the objects and the detections. The Hungar-

ian algorithm [22] is used to find the optimal assignments.

Note that we abandon those associations where the object is

spatially very far from the detection.

Missing Detections Handling. After the data associa-

tion procedure, there are still some missing detections. For

those objects that have been missed in the current frame,

the SOT strategy is used to track those missing objects in

the current frame, and associate them with the recovered

bounding boxes by SOT with high confidence score. For

those detections that have been missed for a while, we use

a detection recovery strategy, which applies a linear motion

model to recover those missing detections.

We denote the i-th object in Ot as oi, and the j-th detec-

tion in Dt as dj . The state of assignment between oi and dj
is denoted by ai,j , where ai,j = 1 describes the situation

that the detection dj is associated with the object oi, and

ai,j = 0 describes the opposite situation. The assignment

set is denoted by At = {ai,j}
|Ot|×|Dt|, where |Ot| and |Dt|

are the numbers of objects and detections respectively.

Then the optimal assignment set can be formulated by

Ât = argminAt

|Ot|
∑

i=1

|Dt|
∑

j=1

ai,jF(oi, dj), (1)

s.t.

|Ot|
∑

i=1

ai,j ≤ 1 and

|Dt|
∑

j=1

ai,j ≤ 1, (2)

where F(oi, dj) denotes the cost between the object oi and

the detection dj . The constraints (2) describe that one ob-

ject can be associated with at most one detection, and one

detection can be associated with at most one object. Fol-

lowing the constraints, it is allowed that
∑|Ot|
i=1

ai,j = 0 and

∑|Dt|
j=1

ai,j = 0, which means that detections are associated

with no objects, and objects are missing at current frame.

4. Graph Networks

The cost function in Eqn. (1) is calculated by

F(oi, dj) = αAGN(foia , f
dj
a) + (1− α)MGN(foim , f

dj
m)

(3)

where AGN(·) and MGN(·) denote the appearance graph

network and the motion graph network respectively, which

are illustrated in Fig. 4. α is the hyperparameter. foia and

f
dj
a denotes the appearance feature of the object oi and the

detection dj respectively, and foim and f
dj
m denotes the mo-

tion feature of oi and dj respectively.

4.1. Preliminary

Battaglia et al. [3] conclude recent works on graph net-

works and present a new basic graph network (GN) frame-

work, which is similar to Fig. 4 (a) but without the stage A.

The unit of computation in the GN is the GN block, which

takes a graph as input, computes over the structure, outputs

an updated graph. During the computation, nodes, edges

and the global variable are updated sequentially. Note that

the update order can be tailored to the demands of the task.

Inspired by [3], we propose two end-to-end graph networks

to solve the MOT problem. Before introducing these two

graph networks, we first describe the whole graph network.

4.2. Structures of the Graph Network

The graph network structure and the update order are de-

signed carefully according to the unique characteristic of

the MOT. We design a 4-step graph network, which moves

the edge updating module to the end of [3]’s structure. The

reason is that there is no ground truth of nodes and the

global variable, so that this network is only supervised by

edges for updating nodes and the global variable. There-

fore, it is better to update edges in the end. Meanwhile,

721

Edge

Updating

Module I

u u u

ReLU

ReLU

...

+

u

ReLU

ReLU

S
o

ftm
a

x

u

Node

Updating

Module

Global

Updating

Module

Edge

Updating

Module II

...

Edge

Updated

Aggregated

Features

Node

Updated

Global

Updated

Edge

Updated

(A) (B) (C) (D)

Object

Detection

Edge

Global

Variable

Final Edge

Figure 3. Upper Part: The structure of the 4-step graph network. Blue solid circles, green solid squares and orange rounded rectangles

denote object set, detection set and the global variable respectively. Updated components of each module are marked in red. Lower Part:

The corresponding networks for the four modules. For each module, there is a big square box denoting the neural network. Inside the box,

the grey rectangles denote FC layers. The left side and right side denote the input and output. The blue, green, black, orange rectangles

denote features of object nodes, detection nodes, edges and the global variable respectively. The hollow rectangles with black, green

and orange edges denote updated features of edges, detection nodes and the global variable. The rectangles with textures are aggregated

features. The red square with the black outline is the final edge feature.

V

u

E

V

u

E

C D

V

u

E

V

u

E

A B C D

(a)

(b)

Figure 4. (a) The structure of our 4-step graph network. It is also

the structure of the appearance graph network. Stage A, B, C, D

denote the edge updating module I, the node updating module, the

global updating module and the edge updating module II respec-

tively. (b) The structure of the motion graph network, which only

contains stage C and stage D.

one more edge updating module should be added to update

edges at first, because the node updating module depends on

updated edges rather than initialized edges. Hence, we de-

sign the following graph network structure, which contains

four modules, including (A) edge updating module I φe, (B)

node updating module φv , (C) global updating module φu,

and (D) edge updating module II ψe, which are shown in

Fig. 4 (a).

Denote V and E as the node set and the edge set respec-

tively, and each node is represented by a feature. Here,

V = {vsp, v
r
q |p = 1, ..., |Ot|, q = 1, ..., |Dt|}, (4)

E = {ek|k = 1, ...,K}, (5)

where vsp denotes the p-th object, vrq denotes the q-th de-

tection, and ek denotes the k-th edge/relationship between

one object and one detection. K = |Ot| × |Dt| denotes the

total number of object-detection pairs. Besides, the global

variable u is expected to encode information of all objects,

detections, and assignment states. In addition, it is neces-

sary to consider all nodes and edges for updating the global

variable. Hence, two aggregating functions ρv→u and ρe→u

are used to aggregate all nodes and all edges respectively.

(A) Edge Updating Module I. Inputs are the object

node, the detection node, the edge and the global variable.

The output is the updated edge.

For simplicity, we denote the object node and the detec-

tion node that are connected by ek as vsk and vrk respectively.

Then, the updated edge e∗k can be calculated by

e∗k = φe(vsk, v
r
k, ek, u) = NNφ([v

s
k, v

r
k, ek, u]), (6)

where NNφ(·) is a neural network whose structure consists

of two fully connected (FC) layers and a Leaky ReLU func-

tion in the middle. The input features are concatenated and

sent into NNφ(·).
(B) Node Updating Module. This module merges his-

toric features into detection nodes. Inputs are the object

node, the detection node, the updated edge and the global

variable. The output is the updated detection node. The

updated detection node ṽrk can be calculated by

ṽrk = φv(vsk, v
r
k, e

∗
k, u) = NNφ([v

s
k, v

r
k, e

∗
k, u]), (7)

where NNφ(·) has the same structure as the module (A).

(C) Global Updating Module. Inputs are the global

variable, the aggregated node and the aggregated edge. Out-

put is the updated global variable.

We aggregate all object and detection nodes and all up-

dated edges. Denote V and E as the aggregated node and

the aggregated edge respectively. These aggregated features

can be calculated by

V =
1

2K

(K
∑

k=1

vsk +

K
∑

k=1

ṽrk

)

, E =
1

K

K
∑

k=1

e∗k. (8)

722

This aggregating process considers all associations.

V and E will be sent into the global updating module af-

terwards, together with the original global variable. Hence,

the updated global variable ũ can be calculated by

ũ = φu(V ,E, u) = NNφ([V ,E, u]), (9)

where NNφ(·) has the same structure as the module (A).

(D) Edge Updating Module II. Inputs are the object

node, the updated detection node, the updated edge and the

updated global variable. The output is the final edge. The

final edge ẽk can be calculated by

ẽk = ψu(vsk, ṽ
r
k, e

∗
k, ũ) = NNψ([v

s
k, ṽ

r
k, e

∗
k, ũ]), (10)

where NNψ(·) has the similar structure as the module (A),

but adding a softmax layer after the last FC layer to get the

similarity score.

4.3. Appearance Graph Network

Appearance graph network measures the appearance

similarity between each object and each detection. Inputs

are appearance features of all objects and all detections, and

outputs are the similarity scores of all object-detection pairs.

The appearance feature uses the updated detection appear-

ance feature from the last timestep, since it is updated at

each timestep. Note that these updated nodes maintain the

trajectory information at each timestep.

To get a robust appearance similarity, we design the 4-

step graph network, which is illustrated in Fig. 4 (a). Each

output edge is regarded as the appearance similarity, which

is shown as AGN(·) in Eqn. (3).

4.4. Motion Graph Network

Motion graph network measures the motion similarity

between each object and each detection. Inputs are motion

features of all objects and all detections, and outputs are

the similarity scores of all object-detection pairs. As men-

tioned in Sec. 3.2, the velocity of the object is estimated

according to the trajectory, thus there is no need for node

updating. Hence, we design a similar structure as the ap-

pearance graph network, but remove the first edge updating

module and the node updating module, which is illustrated

in Fig. 4 (b). Each output edge is regarded as the motion

similarity, which is shown as MGN(·) in Eqn. (3).

4.5. Training Strategy

We use an online strategy to train these two graph net-

works, so that frames are selected sequentially while train-

ing. For training the appearance graph network, we design

a 2-step training strategy. First, the edge updating module

I is trained until convergence. Then, the latter three mod-

ules get training. For training the motion graph network,

we train the whole network directly.

We train our graph networks with the cross entropy loss.

Besides, we design a node cost for the node updating mod-

ule. If the object-detection pair belongs to the same person,

the detection node will be updated. Otherwise, the detec-

tion node is expected to be unchanged. Denote L as the

final training loss, which can be formulated by

L = LC + λLN , (11)

where LC and LN denote the cross entropy loss and the

node cost respectively. λ, which can adjust the weight of

LN , is set as 1. Here, LC can be calculated by

LC = −p log p̂− (1− p) log(1− p̂), (12)

where p denotes the ground truth association between each

object and each detection. p = 1 indicates that the detection

is associated with the object, and p = 0 indicates the oppo-

site situation. p̂ denotes the predicted p. LC is applied for

the edge updating module I and the edge updating module

II. Besides, the node cost LN is designed as

LN = (1− p)× MSE(v, ṽ), (13)

where v is the original feature of the detection node, and ṽ is

the updated v. MSE(·, ·) is the mean squared error function.

5. Experiments

5.1. Datasets and Evaluation Metrics

MOTChallenge is one of the public MOT benchmark

platform, where many state-of-the-art methods have been

evaluated. Specifically, MOT16 [28] and MOT17 are the

most popular benchmarks in MOTChallenge. Both of these

two benchmarks contain same sequences, including 7 train-

ing sequences and 7 testing sequences with crowd scenar-

ios, different viewpoints and camera motions. The differ-

ence between these two benchmarks is that the MOT16

only provides detection results from DPM [13], while the

MOT17 provides detection results from three different de-

tectors, including DPM [13], Faster R-CNN [31] and SDP

[45]. Moreover, the MOT17 provides more accurate ground

truth for all the sequences.

In addition, a validation set is built for the ablation study

and tuning hyperparameters. Specifically, we divide each

training sequence from the MOT17 into two parts, named

as Set A (first 4/5 frames) and Set B (last 1/5 frames). We

use Set A as the training set and Set B as the validation

set. Note that in the testing procedure, we use all training

sequences from the MOT17 to train the model.

We use metrics proposed in [23] to evaluate the MOT

performance, including MOTA (MOT Accuracy), MOTP

(MOT Precision), IDF1 (ID F1-Measure), MT (Mostly

Tracked Target Percentage), ML (Mostly Lost Target Per-

centage), FP (False Positives), FN (False Negatives), IDS

(Identity Switch) and FM (Fragment). MOTA is the most

important metric, since it combines FP, FN and IDS.

723

Detection Methods MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓ FM↓

Offline Approach Public

EDMT17[7], CVPRW 2017 45.3 47.9 17.0% 39.9% 11122 87890 639 946

TLMHT[37], TCSVT 2018 48.7 55.3 15.7% 44.5% 6632 86504 413 642

LMP[39], CVPR 2018 48.8 51.3 18.2% 40.1% 6654 86245 481 595

HCC[26], ACCV 2018 49.3 50.7 17.8% 39.9% 5333 86795 391 535

Online Approach Public

STAM[10], CVPRW 2017 46.0 50.0 14.6% 43.6% 6895 91117 473 1422

DMAN[49], ECCV 2018 46.1 54.8 17.4% 42.7% 7909 89874 532 1616

AMIR[33], ICCV 2017 47.2 46.3 14.0% 41.6% 2681 92856 774 1675

JCSTD[40], TITS 2019 47.4 41.1 14.4% 36.4% 8076 86638 1266 2697

KCF[9], WACV 2019 48.8 47.2 15.8% 38.1% 5875 86567 906 1116

Near-online Approach Public

LINF1[11], ECCV 2016 41.0 45.7 11.6% 51.3% 7896 99224 430 963

MHT bLSTM*[20], ECCV 2018 42.1 47.8 14.9% 44.4% 11637 93172 753 1156

NOMT[8], ICCV 2015 46.4 53.3 18.3% 41.4% 9753 87565 359 504

Ours without SOT 47.4 42.6 14.5% 34.4% 7795 86178 1931 3389

Ours 47.7 43.2 16.1% 34.3% 9518 83875 1907 3376

Near-online Approach Private (POI[46]) Ours without SOT 58.4 54.8 27.3% 23.2% 5731 68630 1454 1730

Table 1. Experiments on MOT16 test set. For the near-online approach, the best result in each metric is highlighted in bold, and the second

best result is underlined. * indicates the use of additional training data.

Detection Methods MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓ FM↓

Offline Approach Public

EDMT17*[7], CVPRW 2017 50.0 51.3 21.6% 36.3% 32279 247297 2264 3260

MHT DAM[19], ICCV 2015 50.7 47.2 20.8% 36.9% 22875 252889 2314 2865

jCC[18], TPAMI 2018 51.2 54.5 20.9% 37.0% 25937 247822 1802 2984

eHAF17[38], TCSVT 2019 51.8 54.7 23.4% 37.9% 33212 236772 1834 2739

Online Approach Public

EAMTT[34], ECCV 2016 42.6 41.8 12.7% 42.7% 30711 288474 4488 5720

PHD GSDL17[15], Acess 2018 48.0 49.6 17.1% 35.6% 23199 265954 3998 8886

AM ADM17[24], Acess 2018 48.1 52.1 13.4% 39.7% 25061 265495 2214 5027

DMAN[49], ECCV 2018 48.2 55.7 19.3% 38.3% 26218 263608 2194 5378

MTDF[14], TMM 2019 49.6 45.2 18.9% 33.1% 37124 241768 5567 9260

Near-online Approach Public

MHT bLSTM*[20], ECCV 2018 47.5 51.9 18.2% 41.7% 25981 268042 2069 3124

Ours without SOT 50.1 46.3 18.6% 33.3% 25210 250761 5470 8113

Ours 50.2 47.0 19.3% 32.7% 29316 246200 5273 7850

Table 2. Experiments on MOT17 test set. For the near-online approach, the best result in each metric is highlighted in bold, and the second

best result is underlined. * indicates the use of additional training data.

5.2. Implementation Details

All the experiments are conducted on Linux with the In-

tel 3.6GHz CPU and a NVIDIA GTX 1070 GPU.

Network Details. Input images are first resized into 224

× 224. Afterwards, the pre-trained ResNet-34 [17] is used

to extract the appearance feature. The size of the FC layer in

each updating module is set as 256, and the negative slop in

Leaky ReLU is set as 10−2. The global variable is randomly

initialized between 0 and 1, and its size is set as 100. The

edge feature is initialized with the Intersection over Union

(IoU) between the object and the detection, and its size is

set as 2. The size of the appearance feature and the motion

feature are set as 512 and 6 respectively. Besides, we set

α = 0.3 in Eqn. (3) based on the results on validation set,

where α is selected from 0.1 to 0.9 with step-size 0.1.

Training Details. We use the Adam [21] optimizer to

train the appearance graph network and the motion graph

network. Learning rates are set as 10−5 and 5×10−4 for the

appearance and the motion graph network respectively. The

batch training strategy is used, and we set the batchsize as 8.

To simulate detections from the real detectors, we randomly

sample bounding boxes around the ground truth, which has

a large IoU with the ground truth. The IoU between the

sample box and the ground truth is set as 0.85.

Occlusion Handling. When the object is mostly oc-

cluded, it is prone to getting lost, and ID switch may hap-

pen when the object reappears later. To deal with such a

challenge, we store those missing objects from the current

frame, and keep associating them with detections in the next

timesteps. Therefore, those missing objects from previous

frames are equally regarded as objects at the current frame,

which will be sent into the graph network as well. Consid-

ering the computational efficiency, if the object is missing

over 25 frames, it will be removed from the graph network.

Intuitively, the probability for associating those missing ob-

jects with detections should decrease when it is missed for

a long time. Hence, we update the cost function for those

missing objects by F̃(oi, dj) = F(oi, dj) × η∆t−1, where

∆t is the temporal gap between the missing object and the

detection. η is set as 1.3 based on the results on the valida-

tion set, where η is selected from 1.1 to 1.9 with step-size

0.1. F̃(oi, dj) will replace F(oi, dj) in Eqn. (1).

Missing Detections Handling. Two strategies of han-

724

dling the missing detections have been described in Sec. 3.2.

First, we use the SOT [50] for those objects that are not as-

sociated with any detection at the current frame. To keep

the robustness of the SOT results, we abandon those SOT

predictions which have the confidence score less than 0.98.

For the detection recovery strategy, we recover those miss-

ing detections that have been missed within 16 frames.

5.3. Results on the MOT16 and MOT17 Benchmark

We evaluate our method on the MOT16 and MOT17

benchmark. Experimental results are shown in Table 1 and

Table 2. On MOT16, we can see that our approach achieves

the best result on MOTA, ML and FN on near-online MOT,

and achieves the second best result on MT, which shows

that our method can generate longer trajectories for targets.

Compared with the four offline MOT methods, our method

is competitive on MOTA and achieves better results on ML

and FN. Compared with the five online MOT methods, our

method achieves the second best result on MOTA and MT

and the best result on ML and FN. Specifically, KCF [9] in-

tegrates SOT in MOT with an adaptive model refreshment

strategy to achieve state-of-the-art performance, while our

method only uses SOT to handle the missing detections.

Since the near-online method uses more frames than the on-

line method, the comparison with online methods is only

for reference. On MOT17, our method has better perfor-

mance on MOTA, MT, ML and FN than MHT bLSTM [20].

Note that MHT bLSTM is the only one near-online method

which provides the results on the MOT17 benchmark. In

addition, on MOT17, compared with our graph network

without SOT, our method performs better in all metrics ex-

cept the FP, which shows that SOT can improve the perfor-

mance of our baseline method. In summary, our method

achieves state-of-the-art performance on near-online MOT

on the MOT16 and MOT17 benchmarks, and the single ob-

ject tracker can improve the performance.

Since the detection results influence the tracking perfor-

mance significantly, we evaluate our method with a better

detection POI [46] on MOT16. To eliminate the impact of

SOT on our method, we evaluate our method without SOT.

As shown in Table 1, with the POI detection, our method

achieves better performance than our method with public

detection on MOT16. Hence, the better detection is, the

better our method performs.

5.4. Ablation Study

Three ablation studies are conducted. The first one is to

show why we choose different networks for the appearance

graph network and the motion graph network. The second

one demonstrates the effectiveness of the global variable.

The third one validates the effectiveness of the node cost

LN . Note that we conduct these experiments on the valida-

tion set. First, we denote several models as follows:

Methods MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓ FM↓

A 52.6 54.8 31.6 32.2 1529 28765 1226 884

A* 52.7 56.3 31.5 33.0 1455 28882 1161 913

M 53.9 61.4 31.9 32.2 1390 28570 690 772

Table 3. Performance of models based on single feature.

A - Appearance graph network with stage C and stage D.

A* - Appearance graph network with all four stages.

A*/g - A* without the global variable.

M - Motion graph network with stage C and stage D.

M/g - M without the global variable.

A*+M - Our method (Cost is calculated by Eqn. (3)).

A*/g+M/g - A*+M without the global variable.

(I) Effectiveness of graph networks. Table 3 shows re-

sults of three models, including A, A* and M. It is observed

that A* has a better performance compared with A, which

indicates that the node updating module in A* is likely to

catch long term cue to update the appearance feature of ob-

jects. To be specific, A* improves 1.5 on IDF1 compared

with A, and has the better FP and IDS than A. Hence, we

choose A* as our appearance graph network.

Moreover, we can see that M outperforms both A* and A

on MOTA, which indicates that the motion graph network

is more effective than the appearance graph network. We

find that there are some ID switch cases that can be only

handled by the appearance graph network, and some can

be only handled by the motion graph network. Fig. 5 (a)-

(c) shows the effectiveness of graph network. The person

with ID=1 is occluded by another person in (a). Due to the

similar motion of these persons, it drifts to the woman with

white clothes by the motion graph network in (c). However,

it can be regarded as a missing object by the appearance

graph network in (b). Fig. 5(d)-(f) shows the effectiveness

of the motion graph network. Due to the fact that persons

with ID=2 and ID=3 have similar clothes in (d), it is difficult

to distinguish them by using the appearance graph network

in (e). However, it can be handled by the motion graph net-

work in (f). Hence, these two networks are complementary.

More results are provided in the supplementary material.

Besides, our current method combines the appearance

cue and the motion cue with a weighted strategy, whose

costs are calculated by Eqn. (3). The parameter α is set

as 0.3 (less than 0.5), which indicates that the motion cue is

more important than the appearance cue in our method.

(II) Effectiveness of the global variable. We remove

the global variable from A* and M, and re-train them to get

A*/g and M/g respectively. We also get the model based on

the weighted strategy.

Table 4 shows the results of these models. On MOTA,

IDF1, MT, FP and IDS, the graph networks with the global

variable outperform the graph networks without the global

variable no matter what feature they ground. Specifically,

on IDF1, A* improves 0.5 compared with A*/g, M im-

725

Methods MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓ FM↓

A* 52.7 56.3 31.5 33.0 1455 28882 1161 913

A*/g 52.6 55.8 31.2 32.9 1545 28819 1174 885

M 53.9 61.4 31.9 32.2 1390 28570 690 772

M/g 52.6 60.0 31.6 32.8 1392 28621 1521 802

A*+M 54.5 63.7 33.2 32.3 1525 28210 511 683

A*/g+M/g 54.3 62.3 32.9 32.0 1622 28247 517 692

Table 4. Performance of models with/without the global variable.

The best result is highlighted in bold.

Loss MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓ FM↓

LC + λLN 52.7 56.3 31.5 33.0 1455 28882 1161 913

LC 52.5 56.0 32.0 33.9 1539 28811 1253 939

Table 5. Performance of A* trained with/without the node cost.

The best result is highlighted in bold.

1
1

(a) (b) (c)

(d) (e) (f)

2

3
2

3
3

2

Figure 5. Results of A* and M in MOT17-09 and MOT17-03 with

Faster R-CNN detections. (a) One person at frame 281 in MOT17-

09. (b) The tracking results at frame 283 in MOT17-09 using A*.

(c) The tracking results at frame 283 in MOT17-09 using M. (d)

Two people at frame 1211 in MOT17-03. (e) The tracking results

at frame 1217 in MOT17-03 using A*. (f) The tracking results at

frame 1217 in MOT17-03 using M.

proves 1.4 compared with M/g, and A*+M improves 1.4

compared with A*/g+M/g. Hence, the global variable in

the graph network can catch the global relationship to help

tracking, such as, the interaction among objects and the

characteristic of the video sequence.

(III) Effectiveness of node cost. We retrain the A* with-

out the node cost. The results are shown in Table 5. As we

can see, A* trained with LC + λLN performs better than

A* trained with LC , which indicates that the node cost is

helpful for tracking. Hence, we train the appearance graph

network A* with the additional node cost.

5.5. Robustness Study

We conduct experiments over different initializations to

assess the robustness of our model. We train our model

on five different initializations: default, xavier uniform,

xavier normal, kaiming uniform and kaiming normal. De-

MOTA IDF1 MT ML

A* 52.8 57.1 32.0 33.1
A*/g 52.7 56.7 31.4 33.0
M 52.8 59.7 31.6 32.8
M/g 52.3 59.4 31.4 32.8
A*+M 54.3 62.6 32.6 32.6
A*/g+M/g 54.2 62.3 32.2 32.6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n

Mean

Figure 6. Standard deviation and mean of MOTA, IDF1, MT and

ML over five initializations.

fault initialization uses kaiming uniform to initialize the

weights and the biases of the fully connected layer. The

remain four initializations are used to initialize the weights,

and the biases are initialized with zeros. Specifically, we

train our model with the default initialization to achieve the

best performance. Details of different initializations can be

found on [1]. We report the standard deviation and the mean

of MOTA, IDF1, MT and ML on the validation set over

these five initializations.

As shown in Fig 6, M is more sensitive to initialization

than other models. Due to the weighted strategy, A*+M is

more robust than M. A*/g+M/g is more robust than A*/g

and M/g. Compared with Table 4, the average performance

of A* and A*/g over five initializations is better than the

performance of A* and A*/g trained with default initializa-

tion. Since the average performance of M over five initial-

izations is worse than the performance of M trained with de-

fault initialization, the average performance of A*+M over

five initializations is also worse than the performance of

A*+M trained with default initialization.

6. Conclusion and Future Works

In this paper, we propose a near-online MOT method

with an end-to-end graph network, which can achieve the

global optimum in each timestep. Besides, the updating

mechanism is included in our graph network. Experimental

results show the effectiveness of our method.

In future works, we will focus on extending the graph

network for the near-online MOT, which can build a bigger

graph among recent frames and more reasoning will be in-

cluded. Besides, the interaction among objects in the same

frame can also be modeled with the graph network.

Acknowledgement

This work was partially supported the Natural Science

Foundation of China under contracts 61572042, 61527804.

This work was partially supported by Qualcomm. We also

acknowledge the high-performance computing platform of

Peking University for providing computational resources.

726

References

[1] https://pytorch.org/docs/stable/nn.init.html.

[2] P. Battaglia, R. Pascanu, M. Lai, D. J. Rezende, and

K. kavukcuoglu. Interaction networks for learning about ob-

jects, relations and physics. In Proceedings of the 30th Inter-

national Conference on Neural Information Processing Sys-

tems, NIPS’16, pages 4509–4517, USA, 2016. Curran Asso-

ciates Inc.

[3] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-

Gonzalez, V. Zambaldi, M. Malinowski, A. Tacchetti, D. Ra-

poso, A. Santoro, R. Faulkner, C. Gulcehre, F. Song, A. Bal-

lard, J. Gilmer, G. Dahl, A. Vaswani, K. Allen, C. Nash,

V. Langston, C. Dyer, N. Heess, D. Wierstra, P. Kohli,

M. Botvinick, O. Vinyals, Y. Li, and R. Pascanu. Rela-

tional inductive biases, deep learning, and graph networks.

arXiv:1806.01261, 2018.

[4] J. Berclaz, F. Fleuret, E. Turetken, and P. Fua. Multiple

object tracking using K-shortest paths optimization. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

33(9):1806–1819, 2011.

[5] A. A. Butt and R. T. Collins. Multi-target tracking by la-

grangian relaxation to min-cost network flow. In 2013 IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 1846–1853, 2013.

[6] V. Chari, S. Lacoste-Julien, I. Laptev, and J. Sivic. On pair-

wise costs for network flow multi-object tracking. In 2015

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 5537–5545, 2015.

[7] J. Chen, H. Sheng, Y. Zhang, and Z. Xiong. Enhancing

detection model for multiple hypothesis tracking. In 2017

IEEE Conference on Computer Vision and Pattern Recogni-

tion Workshops (CVPRW), pages 2143–2152, July 2017.

[8] W. Choi. Near-online multi-target tracking with aggregated

local flow descriptor. In 2015 IEEE International Conference

on Computer Vision (ICCV), pages 3029–3037, 2015.

[9] P. Chu, H. Fan, C. C. Tan, and H. Ling. Online multi-object

tracking with instance-aware tracker and dynamic model re-

freshment. In 2019 IEEE Winter Conference on Applications

of Computer Vision (WACV), pages 161–170, Jan 2019.

[10] Q. Chu, W. Ouyang, H. Li, X. Wang, B. Liu, and N. Yu.

Online multi-object tracking using CNN-based single object

tracker with spatial-temporal attention mechanism. In 2017

IEEE International Conference on Computer Vision (ICCV),

pages 4846–4855, Oct 2017.

[11] L. Fagot-Bouquet, R. Audigier, Y. Dhome, and F. Lerasle.

Improving multi-frame data association with sparse repre-

sentations for robust near-online multi-object tracking. In

B. Leibe, J. Matas, N. Sebe, and M. Welling, editors, Com-

puter Vision – ECCV 2016: 14th European Conference on

Computer Vision, pages 774–790.

[12] K. Fang, Y. Xiang, X. Li, and S. Savarese. Recurrent autore-

gressive networks for online multi-object tracking. In 2018

IEEE Winter Conference on Applications of Computer Vision

(WACV), pages 466–475, March 2018.

[13] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-

manan. Object detection with discriminatively trained part-

based models. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 32(9):1627–1645, Sept 2010.

[14] Z. Fu, F. Angelini, J. Chambers, and S. M. Naqvi. Multi-

level cooperative fusion of gm-phd filters for online multiple

human tracking. IEEE Transactions on Multimedia, pages

1–1, 2019.

[15] Z. Fu, P. Feng, F. Angelini, J. Chambers, and S. M. Naqvi.

Particle PHD filter based multiple human tracking using

online group-structured dictionary learning. IEEE Access,

6:14764–14778, 2018.

[16] X. Gao and T. Jiang. OSMO: Online specific models for oc-

clusion in multiple object tracking under surveillance scene.

In Proceedings of the 26th ACM International Conference on

Multimedia, MM ’18, pages 201–210, New York, NY, USA,

2018. ACM.

[17] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In 2016 IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 770–

778, June 2016.

[18] M. Keuper, S. Tang, B. Andres, T. Brox, and B. Schiele.

Motion segmentation multiple object tracking by correlation

co-clustering. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 42(1):140–153, Jan 2018.

[19] C. Kim, F. Li, A. Ciptadi, and J. M. Rehg. Multiple hypoth-

esis tracking revisited. In 2015 IEEE International Confer-

ence on Computer Vision (ICCV), pages 4696–4704, 2015.

[20] C. Kim, F. Li, and J. M. Rehg. Multi-object tracking with

neural gating using bilinear LSTM. In Computer Vision –

ECCV 2018: 15th European Conference on Computer Vi-

sion, September 2018.

[21] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. CoRR, abs/1412.6980, 2014.

[22] H. W. Kuhn. Statement for Naval Research Logistics: “The

Hungarian method for the assignment problem”. Naval Res.

Logist., 52(1):6–21, 2005. Reprinted from Naval Res. Logist.

Quart. 2 (1955), 83–97.

[23] L. Leal-Taixe, A. Milan, I. Reid, S. Roth, and K. Schindler.

Motchallenge 2015: Towards a benchmark for multi-target

tracking. 2015.

[24] S. Lee, M. Kim, and S. Bae. Learning discriminative appear-

ance models for online multi-object tracking with appear-

ance discriminability measures. IEEE Access, pages 1–1,

2018.

[25] C. Ma, C. Yang, F. Yang, Y. Zhuang, Z. Zhang, H. Jia,

and X. Xie. Trajectory factory: Tracklet cleaving and re-

connection by deep siamese Bi-GRU for multiple object

tracking. In 2018 IEEE International Conference on Mul-

timedia and Expo (ICME), pages 1–6, July 2018.

[26] L. Ma, S. Tang, M. J. Black, and L. Van Gool. Multi-person

tracking with automatic customization. In The 14th Asian

Conference on Computer Vision (ACCV), December 2018.

[27] A. Milan, S. Hamid Rezatofighi, A. Dick, I. Reid, and

K. Schindler. Online multi-target tracking using recurrent

neural networks. In 2017 The Association for the Advance of

Artificial Intelligence (AAAI), February 2017.

[28] A. Milan, L. Leal-Taixé, I. D. Reid, S. Roth, and

K. Schindler. MOT16: A benchmark for multi-object track-

ing. CoRR, abs/1603.00831, 2016.

727

[29] H. Pirsiavash, D. Ramanan, and C. C. Fowlkes. Globally-

optimal greedy algorithms for tracking a variable number of

objects. In 2011 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 1201–1208, 2011.

[30] L. Ren, J. Lu, Z. Wang, Q. Tian, and J. Zhou. Collabora-

tive deep reinforcement learning for multi-object tracking. In

Computer Vision – ECCV 2018: 15th European Conference

on Computer Vision, September 2018.

[31] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: To-

wards real-time object detection with region proposal net-

works. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 39(6):1137–1149, June 2017.

[32] E. Ristani and C. Tomasi. Features for multi-target multi-

camera tracking and re-identification. In 2018 IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

June 2018.

[33] A. Sadeghian, A. Alahi, and S. Savarese. Tracking the un-

trackable: Learning to track multiple cues with long-term

dependencies. In 2017 IEEE International Conference on

Computer Vision (ICCV), pages 300–311, Oct 2017.

[34] R. Sanchez-Matilla, F. Poiesi, and A. Cavallaro. Online

multi-target tracking with strong and weak detections. In

Computer Vision – ECCV 2016: 14th European Conference

on Computer Vision Workshops, pages 84–99, 2016.

[35] S. Schulter, P. Vernaza, W. Choi, and M. Chandraker. Deep

network flow for multi-object tracking. In 2017 IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 2730–2739, July 2017.

[36] Y. Shen, H. Li, S. Yi, D. Chen, and X. Wang. Person re-

identification with deep similarity-guided graph neural net-

work. In Computer Vision – ECCV 2018: 15th European

Conference on Computer Vision, pages 508–526, Cham,

2018. Springer International Publishing.

[37] H. Sheng, J. Chen, Y. Zhang, W. Ke, Z. Xiong, and J. Yu.

Iterative multiple hypothesis tracking with tracklet-level as-

sociation. IEEE Transactions on Circuits and Systems for

Video Technology, pages 1–1, 2018.

[38] H. Sheng, Y. Zhang, J. Chen, Z. Xiong, and J. Zhang. Het-

erogeneous association graph fusion for target association in

multiple object tracking. IEEE Transactions on Circuits and

Systems for Video Technology, pages 1–1, 2019.

[39] S. Tang, M. Andriluka, B. Andres, and B. Schiele. Mul-

tiple people tracking by lifted multicut and person Re-

identification. In 2017 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 3701–3710, July

2017.

[40] W. Tian, M. Lauer, and L. Chen. Online multi-object track-

ing using joint domain information in traffic scenarios. IEEE

Transactions on Intelligent Transportation Systems, pages 1–

11, 2019.

[41] B. Wang, G. Wang, K. L. Chan, and L. Wang. Tracklet as-

sociation with online target-specific metric learning. In 2014

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 1234–1241, 2014.

[42] B. Wang, G. Wang, K. L. Chan, and L. Wang. Tracklet asso-

ciation by online target-specific metric learning and coherent

dynamics estimation. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 39(3):589–602, March 2017.

[43] Y. Xiang, A. Alahi, and S. Savarese. Learning to track: On-

line multi-object tracking by decision making. In 2015 IEEE

International Conference on Computer Vision (ICCV), pages

4705–4713, 2015.

[44] B. Yang and R. Nevatia. An online learned CRF model for

multi-target tracking. In 2012 IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 2034–

2041, 2012.

[45] F. Yang, W. Choi, and Y. Lin. Exploit all the layers: Fast and

accurate cnn object detector with scale dependent pooling

and cascaded rejection classifiers. In 2016 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

2129–2137, June 2016.

[46] F. Yu, W. Li, Q. Li, Y. Liu, X. Shi, and J. Yan. POI: Multiple

object tracking with high performance detection and appear-

ance feature. In G. Hua and H. Jégou, editors, Computer

Vision – ECCV 2016 Workshops, pages 36–42, Cham, 2016.

Springer International Publishing.

[47] A. R. Zamir, A. Dehghan, and M. Shah. GMCP-tracker:

Global multi-object tracking using generalized minimum

clique graphs. In Computer Vision – ECCV 2012: 12th Eu-

ropean Conference on Computer Vision, 2012.

[48] L. Zhang, Y. Li, and R. Nevatia. Global data association for

multi-object tracking using network flows. In 2008 IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 1–8, 2008.

[49] J. Zhu, H. Yang, N. Liu, M. Kim, W. Zhang, and M.-H.

Yang. Online multi-object tracking with dual matching at-

tention networks. In Computer Vision – ECCV 2018: 15th

European Conference on Computer Vision, September 2018.

[50] Z. Zhu, Q. Wang, L. Bo, W. Wu, J. Yan, and W. Hu.

Distractor-aware siamese networks for visual object track-

ing. In Computer Vision – ECCV 2018: 15th European Con-

ference on Computer Vision, September 2018.

728

