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Abstract

Video-based person re-identification (Re-ID) methods

can extract richer features than image-based ones from

short video clips. The existing methods usually apply sim-

ple strategies, such as average/max pooling, to obtain the

tracklet-level features, which has been proved hard to ag-

gregate the information from all video frames. In this pa-

per, we propose a simple yet effective Temporal Aggrega-

tion with Clip-level Attention Network (TACAN) to solve the

temporal aggregation problem in a hierarchal way. Specif-

ically, a tracklet is firstly broken into different numbers

of clips, through a two-stage temporal aggregation net-

work we can get the tracklet-level feature representation.

A novel min-max loss is introduced to learn both a clip-

level attention extractor and a clip-level feature represen-

ter in the training process. Afterwards, the resulting clip-

level weights are further taken to average the clip-level fea-

tures, which can generate a robust tracklet-level feature

representation at the testing stage. Experimental results

on four benchmark datasets, including the MARS, iLIDS-

VID, PRID-2011 and DukeMTMC-VideoReID, show that

our TACAN has achieved significant improvements as com-

pared with the state-of-the-art approaches.

1. Introduction

As one of the most popular yet challenging computer vi-

sion tasks, person re-identification (Re-ID) aims at tracking

pedestrians among multiple non-overlapping camera views.

On one hand, person Re-ID is able to save a significant

amount of human labour in exhaustively searching for the

person of interest amongst a large set of video tracklets col-

lected from multiple cameras. On the other hand, person

Re-ID is also a very challenging problem because the same
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†Corresponding author, jinjun@mail.xjtu.edu.cn

pedestrian’s appearance changes drastically across the dis-

joint camera views, due to the changes in various covariate

factors such as posture, background and illumination.

In the past few years, image-based person Re-ID has

made great progress [21, 23, 30]. A typical image-based

person Re-ID model usually takes a single cropped full-

body image as input, and a pre-defined distance metric is

utilized to measure the similarity between every pair of

cropped images. In this way, a person is re-identified if the

corresponding similarity is above a defined threshold [8].

To further improve the model’s capacity, some researchers

attempted part-based methods to make full use of body

shape information [21]. For example, slicing images into

several parts turned out to be a useful solution [23] in learn-

ing discriminative features for person Re-ID. Although the

image-based person Re-ID methods have achieved consid-

erable accuracy on public datasets, including the Market-

1501 [28], DukeMTMC-reID [29], and CUHK03 [12],

when applied to real-world data, the accuracy is still lim-

ited by various factors such as background, occlusion and

posture variations. Besides, some researchers have also at-

tempted to detect the foreground object from an image to

focus features mostly on the salient parts [30], which on

the other hand is also very challenging due to the difficulty

in learning the attention from single images. To deal with

the issue of image quality, some other researchers have also

investigated the generative adversarial networks (GAN) [4]

based method to reproduce frame images with less noise.

However, these methods still suffer from the limited infor-

mation available from single images.

Hence, video-based person Re-ID is attracting increas-

ing popularity because videos usually contain richer in-

formation than single images. Besides, the video-based

person Re-ID datasets are easily available, which makes

it possible to overcome this problem. For example, the

MARS [13] dataset is released as an extension of Market-

1501, where the original Market-1501 dataset becomes a

subset of MARS and images are carefully selected from the

corresponding video tracklets. In fact, video tracklets are
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more readily available from many real-world surveillance

systems. The challenges of video-based person Re-ID in-

clude how to select the most suitable frames to apply image-

based models, how to aggregate information from multiple

frames, and how to obtain a robust feature representation

for person association. Extensive experimental results have

shown that simple strategies, such as average/max pooling,

to aggregate the consecutive frame-level features are not al-

ways effective in practice. What’s worse, some existing

methods directly extend the image-based ones [15, 20] to

solve the video-based person Re-ID problem, where image

features are extracted and then combined over tracklet. We

argue that the video-based person Re-ID methods should fo-

cus on strategies of how to deal with consecutive frames and

a well-designed strategy should also take advantage of rich

temporal information of video tracklets that do not exist in

single images.

In this paper, we propose a simple yet effective Temporal

Aggregation with Clip-level Attention Network (TACAN)

to solve the temporal aggregation problem in a hierarchal

way. In the training process, we firstly break each tracklet

into different numbers of clips, and then a novel min-max

loss is introduced to learn both a clip-level attention extrac-

tor and a clip-level feature representer. At the testing stage,

the resulting clip-level weights are further taken to average

the clip-level features, which can generate a robust tracklet-

level feature representation for video-based person Re-ID.

In summary, our contributions in this paper are two folds:

1) We propose to learn the clip-level attention and propose

a two-stage temporal aggregation network TACAN to effec-

tively consider more temporal information when aggregat-

ing features over frames and clips; 2) We adopt the min-

max loss into our framework which can noticeably improve

the training efficiency. Experimental results on four bench-

mark datasets, including the MARS, iLIDS-VID, PRID-

2011 and DukeMTMC-VideoReID, show that our TACAN

has achieved significant improvements as compared with

the state-of-the-art approaches.

2. Related Works

In this section, some related works on person Re-ID

are listed, including image-based Re-ID methods, video-

based Re-ID methods, and metric learning, to show massive

achievements in these years on person Re-ID tasks.

2.1. Imagebased Person ReID

Recent works on image-based person Re-ID is mainly

focusing on two directions: image feature representation

and metric learning. In the image feature representation

task, normally, image-based Re-ID models have two parts

in the pipeline. The first part is a base model for preliminary

features and the other part is a fine-grained feature extractor.

Since the rapid development of Convolutional Neural Net-

work (CNN), it has become the mainstream using the image

classification models as the feature extractor base model for

person Re-ID. Many CNN models that pre-trained on the

ImageNet dataset can be transferred to the person Re-ID

tasks. ResNet [5] and SENet [10] are widely-used networks

that perform well on ImageNet dataset. Based on the idea of

residual learning, ResNet can speed up the training of neu-

ral networks, and the network can still learn representative

features while increasing the depth. The 50-layer ResNet,

which we called ResNet50, is widely used as the base model

for many transfer learning tasks. SENet is on the basis of

ResNet that squeezes and excites channel-wise feature re-

sponses by explicitly modeling inter-dependencies between

channels. Generally speaking, SENet performs better than

ResNet on image classification tasks.

Based on the development of CNN networks, many ef-

fective slice-and-segmentation-based person Re-ID meth-

ods have been proposed. Part-based Convolutional Baseline

(PCB) [21] employed a simple uniform partition strategy

and assembled part-informed features into a convolutional

descriptor. Multiple Granularity Network (MGN) [23] di-

vided the original images into 2 and 3 stripes and aggregated

global and local features to obtain the final feature represen-

tation. Foreground attention neural network (FANN) [30]

learned a discriminative feature representation through en-

hance the positive side of the foreground and weaken the

negative side of the background.

2.2. Videobased Person ReID

Compared to former image-based person Re-ID, video-

based Re-ID can take more advantages from temporal infor-

mation. Since the works of extracting image features have

many achievements, how to effectively aggregate multi-

frame image features becomes the key problem of research.

Many temporal modeling methods were proposed, such as

Recurrent Neural Network (RNN), temporal attention, and

3D CNN [14]. It has been proven that Temporal attention

models have the best feature representation among these

methods [2]. A lot of researchers focused on the study of

spatial-temporal attention mechanisms, to predict the qual-

ity scores for the features of video frames or local regions

and obtain aggregated video-level features from both spatial

and temporal dimensions. Spatiotemporal Attention Net-

work (STAN) [11] extracted local image features organized

by spatial attention model and combined them by tempo-

ral attention. Spatial-temporal Clues Integration Module

(STIM) [16] mined the spatial-temporal information from

features upgraded by refining recurrent unit (RRU). Spatial-

Temporal Attention-aware Learning (STAL) [1] focused on

the salient parts of persons in videos jointly in both spa-

tial and temporal domains. Limited by the computational

memory, these attention mechanisms can only be applied

to short clips, then aggregate clip-level features with aver-

3377



Figure 1. The pipeline of TACAN. Each clip shares the same base model to extract image-level feature maps and then operate aggregation

inside the clip. A weight predictor reassigns clip-level attention for each clip so that the model can generate a robust tracklet-level feature.

During the training stage, softmax loss is applied as the classification loss, while the combined loss function of triplet loss and min-max

loss is applied after the feature embedding layer as the clustering loss.

age/max pooling, which not fully motivated the potential of

attention mechanisms.

Other researchers combined adjacent frame features

to obtain the integrated feature representation. Region-

based Quality Estimation Network (RQEN) [20] learned

the partial quality of each image and aggregated the

complementary portion of the different frames in an im-

age sequence. Self-and-Collaborative Attention Network

(SCAN) [27]generated self and collaborative sequence rep-

resentations and adopted generalized pairwise similarity

measurement to calculate the similarity of video pairs.

Moreover, the Spatio-Temporal Completion network (STC-

Net) [9] was a GAN-based method. It recovered the appear-

ance of the occluded parts with the Spatio-temporal infor-

mation, then got better accuracy with the newly generated

dataset.

2.3. Metric Learning

In the metric learning task, combining classification loss

and verification loss is useful to transfer representations

learned from large image classification datasets to fit this

identification task [3]. Commonly, the nearest Euclidean

feature distance is used when matching, so softmax loss is

used for classification and triplet loss is used for metric em-

bedding. Label smoothing strategy [22] was proposed to

solve the problem of softmax loss overfitting. Batch-hard

triplet loss [6] was more adaptable to mini-batch training

and improved the triplet loss, which selected the hardest

positive and negative samples in a mini-batch for each an-

chor sample and computed their metric distances.

Different from existing methods, our work focus on clip-

level features aggregation instead of simply aggregation of

frames inside clips. We propose a novel TACAN that in-

cludes temporal aggregation module and clip attention mod-

ule. Focusing on higher-level features makes our model

express the entire video-level(tracklet-level) features bet-

ter. Moreover, inspired by Min-max objective [19], we

adopt the min-max Loss for video-based Re-ID which can

constraint intra-class distances and expand inter-class dis-

tances.

3. Method

3.1. Overview

For our proposed TACAN, there are three modules for

the entire calculation pipeline: spatial-temporal aggregation

within clips, aggregation with clip-level attention and multi-

loss function for metric learning. One certain video tracklet

S can be divided into several clips {C1, C2, ..., Cm}, each

clip has T frames. Inside the clip, on each frame, which is

a person bounding box image, we can utilize a CNN model

to extract a d-dimensional image-level feature fIi and the

feature set in each clip is FI = {fI1 , fI2 , , ..., fIT }. Then,

by aggregating all feature vectors in a certain temporal ap-

proach, each clip can be represented by a clip-level feature

vector fCi
with the same d dimensions as image-level fea-

tures. In order to obtain the robust tracklet-level feature vec-

tor, the vital module for our proposed method is fusing all
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consecutive clip-level features FC = {fC1
, fC2

, , ..., fCm
}

with clip-level attention W = {w1, w2, ..., wm}. After

this refined clip-level aggregation, we can achieve a D-

dimensional tracklet-level feature vector fT . Those fea-

ture vectors in all for different video tracklets can be

used for person Re-ID by searching the nearest Eu-

clidean distance between two different vectors. Accord-

ing to batch setting during training process, we randomly

sample k person ids with j clips for each id to con-

sist a batch = {(C1, ...Cj)1, (C1, ...Cj)2, ..., (C1, ...Cj)k}.

Along with our model, a proposed min-max loss is used,

with which we can enlarge the feature vector distance of

inter-class and reduce that of intra-class at the same time.

Since when aggregating among clips, our model is trained

by unsupervised clip-level attention learning, min-max loss

function can guide the training process effectively and the

model can extract more discriminative tracklet-level fea-

tures. The pipeline for our proposed method is shown in

Figure 1.

3.2. SpatialTemporal Aggregation within Clips

Considering the limitation of computational memory and

probable distraction in overlong sequences, video tracklets

are separated down into several clips with a fixed length.

Typically, a video tracklet contains tens to hundreds of con-

secutive image frames, and the aggregation should be op-

erated step by step. Firstly, a CNN model is adopted as

an image feature generator. After we get features from all

image frames, a rough spatial-temporal aggregation is oper-

ated inside the clip.

Existing paper [2] mentioned several temporal aggrega-

tion methods after image feature extractor. The generic

idea of this rough spatial-temporal aggregation is to make

use of video temporal information among several consecu-

tive frames. A well-designed attention mechanism network

could perform more outstanding than simple average/max

pooling all images in each clip. Figure 2 shows the idea

of the temporal attention aggregation method. Attention

scores can be obtained from consecutive spatial features by

taking temporal information into consideration. For each

frame, the d-dimensional spatial feature is fIi with image

attention score ai, i ∈ [1, T ]. So the feature of each clip

can be calculated by weighted average fC = 1

T

T
∑

i=1

ai · fIi .

Same as image-level feature vectors, the clip-level feature

vectors are also d-dimensional.

3.3. Temporal Aggregation with Cliplevel Atten
tion

Ideally, to improve the performance of such spatial-

temporal aggregation, we could either utilize a better spa-

tial feature extractor or enrich temporal information with a

longer length of clips. Because of the limitation mentioned

Figure 2. Spatial-Temporal Attention Aggregation Module [2].

in Sec. 3.2, the length of clips cannot be set too large. For

public video-based Re-ID datasets, such as MARS [13], the

frame length of one certain video is not specific, and there

is usually no noticeable difference between two consecutive

frames. Comparative experiments show that complex tem-

poral modeling brings no remarkable improvement.

To fix this problem, we innovatively propose a refined

clip-level aggregation, in which we can obtain more dis-

criminative features by training clip-level attention weights.

The clip-level attention can be learned by a weight predic-

tor, then the predicted scores are used for temporal aggrega-

tion by weighted average to obtain a discriminative tracklet-

level feature. We upgrade the weight-predictor to a higher

clip-based level than the image-based level, this allows our

model to have more receptive fields and more timing in-

formation to score every clip, assigning higher weights to

more representative clips. Figure 3 shows how our refined

Temporal Aggregation with Clip-level Attention works.

After we obtain all clip-level feature vectors in one video

tracklet by the first-step aggregation, we have a set of fea-

tures FC = {fC1
, fC2

, , ..., fCm
} as input of clip-level ag-

gregation. The second-step aggregation is separated into

two branches. The upper branch in Figure 3 is a clip-level

weight predictor as mentioned before. In detail, this layer

is a FC Layer. Each input feature vector produces a corre-

sponding clip-level weight through this layer:

W = W · FC

= W · {fC1
, fC2

, , ..., fCm
}

= {W · fC1
,W · fC2

, , ...,W · fCm
}

= {w1, w2, ..., wm}

(1)

In our clip-level aggregation, d-dimensional clip-level fea-

ture vectors from first-step rough aggregation are regarded

as middle-stage features and directly used for clip-level at-

tention generation.
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Figure 3. Refined Aggregation with Clip-level Attention

The lower branch is the embedding layer. In order to

generate the final features, an embedding layer is added to

increase the network depth and to obtain higher-level fea-

tures. Meanwhile, it can decrease the dimensions of the

final tracklet-level feature vectors. We denote the embed-

ding transform as T (·) with D-dimensional output and the

whole Embedding Layer can be expressed as:

E = T (FC)

= T ({fC1
, fC2

, , ..., fCm
})

= {T (fC1
), T (fC2

), ..., T (fCm
)}

= {fE1
, fE2

, , ..., fEm
}

(2)

With output from two branches, we operate the second-step

refined temporal aggregation. The temporal aggregation

with clip-level attention W can be operated by the weighted

average:

f =
1

m
(W · E) =

1

m

m
∑

i=1

wifEi

=
1

m
(w1fE1

+ w2fE2
+ ...+ wmfEm

)

(3)

where W is the set of clip-level attention weights. E is the

embedded features set. m is the number of clips divided

from one tracklet and f is the final D-dimensional tracklet-

level feature vector.

3.4. Multiloss Function

As is described in Sec. 3.3, clip-level attention is

achieved by an unsupervised strategy because there is no

annotation of attention for video clips. Clip-level atten-

tion is automatically learned by our model. To make this

strategy work out during the training process, a novel multi-

loss function is designed. Figure 1 shows how the pipeline

works during the training process, from which we can no-

tice that the unit for training is a video clip. Guided by

our loss function, the clip-level attention can be optimized

to make training samples separated among different classes

and clustered within the same classes.

The overall loss function of our proposed TACAN model

can be formulated as:

L = Ls + Lt + Lm (4)

Softmax loss Ls is used as classification loss. With the su-

pervision of person IDs, softmax loss guides the network

to generate accurate classification. Another part of our loss

function is to make constraints on feature distance. It is a

combination of hard triplet loss Lt and min-max objective

Lm. Triplet loss can be formulated as:

Lt =

N
∑

i=1

[

α+ ‖fa
i − f

p
i ‖

2

2
− ‖fa

i − fn
i ‖

2

2

]

+

(5)

where fa
i , f

p
i , fn

i are the anchor feature, positive feature

and negative feature, respectively. To improve performance

after introducing triplet loss, we use the batch hard positive

and negative features, which means:

{

f
p
i = argmaxfp

i
‖fa

i − f
p
i ‖

2

2

fn
i = argminfn

i
‖fa

i − fn
i ‖

2

2

(6)

Inspired by the work [19], we propose the min-max loss

as an extension in this part. Min-max loss aims to directly

minimize the intra-class distances and maximize the inter-

class distances among the feature vectors after the embed-

ding layer. We use mk to denote the mean vector of class k

with same person ID and use m to denote the overall mean

vector of a batch. The calculation of the intra-class distance

S
(I)
k for class k can be denoted as:

S
(I)
k =

∑

i∈πk

(fi −mk)
T(fi −mk) (7)

The total intra-class distance S(I) and total inter-class dis-

tance S(B) can be formulated as:















S(I) =
K
∑

k=1

S
(I)
k

S(B) =
K
∑

k=1

nk(mk −m)T(mk −m)

(8)

Min-max loss aims at minimizing the intra-class distance

S(I) while maximizing the inter-class distance S(B). So

the loss function can be defined as:

Lm =
S(I)

S(B)
(9)

Overall, Ls is the softmax loss for classification. Lt is

the triplet loss which can enlarge feature distances among

different classes while Lm is the min-max objective func-

tion which can compress features within identical classes.

Since during the testing stage we search for features with

the nearest feature distance as matches, the combination of

Lt and Lm can definitely enhance the model performance.
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Method mAP Rank-1 Rank-5 Rank-20

baseline(ResNet50+Ls) 61.4 72.6 87.2 93.2

ResNet50+Ls+Lt 76.2 82.6 93.9 96.8

ResNet50+TA+Ls+Lt 76.8 83.9 93.9 97.2

ResNet50+TA+CA+Ls+Lt 81.6 86.3 95.4 98.1

ResNet50+TA+CA+L 83.0 88.2 96.0 98.3

SENet50+TA+CA+L 84.0 89.1 96.1 98.0

Table 1. Module-wise performance on the MARS dataset. ST is a shorthand

for spatial-temporal aggregation module, and CA is a shorthand for clip-level

attention module.

4. Experiments

This section reports the experimental results of our pro-

posed TACAN model. Experiments are mainly conducted

on the MARS [13] dataset. Firstly, we introduce the

MARS dataset. Then through comparative experiments,

we show how each component in the proposed TACAN

model improves the overall performance. Next we also re-

port results based on three additional datasets, the iLIDS-

VID dataset [24], PRID-2011 dataset [7] and DukeMTMC-

VideoReID [18], to validate the robustness of our method.

Finally, we mention the implementation details.

4.1. Datasets and Measurement

MARS contains 20,478 traclets of 1261 person IDs

which are captured at Tsinghua University campus from 6

non-overlapping camera views. The dataset is divided into

a training set with 625 person IDs and a testing set with 626

person IDs. There are 8,298 tracklets for the training set and

12,180 tracklets (1,980 in query and 9,330 in gallery) for the

testing set. As an extension of the Market-1501 dataset [28],

MARS is one of the largest public video-based person re-

identification datasets.

In the following experiments, the model accuracy is mea-

sured by the Cumulative Matching Characteristic (CMC) ta-

ble and the mean average precision (mAP) score. We eval-

uate all models on the MARS dataset to keep these mea-

surements the same as that from the original MARS dataset

released [13].

4.2. Performance Comparison of Different Modules

The baseline approach contains only ResNet50 model

trained by softmax loss Ls. Both image-level feature ag-

gregation and clip-level feature fusion are based on average

pooling. Table 1 shows the module-wise performances on

the MARS dataset.

As can be seen from Table 1, after applying Ls and Lt,

the mAP score and the Rank-1 score were improved by

14.8% and 10.0% respectively. When we added the TA

module, the model had a slight performance boost. When

the CA module was added to the network, the representa-

tion capacity was significantly improved where the mAP

was increased to 81.6% and the Rank-1 was increased to

Method mAP Rank-1 Rank-5 Rank-20

ASTPN[26] - 44 70 81

JSTRN[31] 50.7 70.6 90.0 97.6

STAN[11] 65.8 82.3 - -

RQEN[20] 71.1 77.8 88.8 94.3

STIM[16] 72.7 84.4 93.2 96.3

SCAN[27] 76.7 86.6 94.8 97.1

TA[2] 76.7 83.3 93.8 97.4

ResNet3D NL[14] 77.0 84.3 94.6 -

STAL[1] 73.5 82.2 92.8 98.0

VRSTC[9] 82.3 88.5 96.5 -

TACAN(ResNet) 83.0 88.2 96.0 98.3

TACAN(SEnet) 84.0 89.1 96.1 98.0

Table 2. The comparison with existing video-based Re-ID approaches

on MARS. TACAN using ResNet50 as backbone can already reach

the state-of-the-art, but using SEnet50 will achieve better perfor-

mance. Therefore, we recommend using SEnet as the backbone.

86.3%. After applying the multi-loss L = Ls + Lt + Lm,

we achieved 83.0% mAP score and 88.2% Rank-1 score.

Finally, when we adopted the SENet50 model as our back-

bone to complete our proposed TACAN framework, we ob-

tained an additional 1% performance improvement on both

mAP and Rank-1 scores, and the performance outperformed

all listed benchmark methods as shown in Table 2 below. It

is seen from Table 2 that, our network outperforms the best

literature [9] by 0.6% in Rank-1 score, and 1.7% by the

mAP score.

4.3. The Visualization of Model Effects

Since the proposed method in this paper uses an unsuper-

vised strategy to learn clip-level attention. This clip-level

attention is automatically learned by our model and it de-

notes the weight of one certain video clip that can be used

for tracklet feature aggregation. We expect the model can

give out a higher clip-level attention value for clips with

better quality.

In our experiment setting, the sequence length for one

clip was 4, which means there were 4 images in a video

clip. In Figure 4, each sub-figure contains three consecu-

tive clips picked from a certain tracklet of MARS dataset.

From this figure, we clearly see that our model can give a

higher score when the pedestrian bounding boxes are visi-

ble without any occlusion. In the opposite case, the score is

decreased to weaken the effects of features with occlusion.

In these two examples, main bodies for re-identification are

overlapped with other person. When the overlapping hap-

pens, the model gives lower clip-attention values.

In order to show the effectiveness of clip-level atten-

tion(CA) more clearly, Figure 6 takes a longer tracklet as

an example to illustrate how CA works on a tracklet. Com-

paring clip2, clip15, clip20, clip30, clip34, we can see that
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Figure 4. Consecutive video clips with corresponding clip-level

attention values given out by pre-trained model.

CA is not sensitive to background changes, which means

the focus of CA is on the foreground(pedestrian) rather than

the background. Comparing clip21 to clip30, we can see

that when severe occlusion occurs, clip-level attention is de-

scending to weaken the effect of the negative sample on the

final feature vector. When the occlusion disappears, the CA

is increased to allow subsequent positive sample features to

have more effect. It shows that by introducing clip-level at-

tention, our model can give out more representative feature

vectors since the final tracklet-level features are more corre-

lated with good quality video clips which can obtain higher

clip-level attention for our model.

To visualize how min-max loss influenced the model per-

formance, 5 person IDs (121 tracklets in total) were ran-

domly selected from MARS. We used pre-trained models to

extract features from these tracklets. With t-SNE [17] algo-

rithm, we could obtain 2-dimensional features which made

it easier to visualize. By introducing min-max loss in our

proposed method, it was expected that features can be more

clustered in feature space. Figure 5 shows the visualization

of these tracklet-level features represented by two different

models, which were trained without/with min-max loss.

Table 3 shows the quantification of the clustering effect.

We used the Largest Euclidean Distance in a cluster to mea-

sure the clustering effect:

diam(C) = max
1<=i<j<=|C|

(dist(xi,xj)) (10)

where |C| is the number of samples in one cluster, dist(·)
here is Euclidean distance and (xi,xj) are two different

features vectors in the feature space. The features are more

clustered with a smaller Largest Euclidean Distance. It is

clear that extracted by the model with min-max loss, fea-

tures are gathered much more together and more discrimi-

native for the same identity.

4.4. Extended Datasets Validation

PRID-2011[7] consists of 400 video sequences of 200

Figure 5. Clustering effect visualization. Using the t-SNE algo-

rithm to reduce feature dimensions. The left image used the model

trained without min-max loss. The right image used the model

trained with min-max loss.

samples without min-max loss with min-max loss

sample1 0.9204 0.8882

sample2 0.7038 0.5321

sample3 0.8364 0.6553

sample4 0.8448 0.6056

sample5 0.8931 0.6629

Table 3. Clustering effect quantification. Using the Largest

Euclidean Distance in a cluster to measure the clustering

effect.

people captured at uncrowded outdoor scenes by 2 non-

overlapping camera views. The video sequences are be-

tween 5 and 675 frames in length and have an average of

100. Because of the simple and clean background and rare

cluttered occlusions, PRID-2011 is relatively less challeng-

ing than the MARS dataset.

iLIDS-VID[24] contains 600 video sequences of 300

people captured at an airport arrival lobby from 2 non-

overlapping camera views. The video sequences are be-

tween 23 and 192 frames in length and have an average of

73. This dataset is more challenging due to clothing similar-

ities among people, lighting and viewpoint variations across

camera views, cluttered background and occlusions.

Both of the datasets are randomly half-half separated

into training and testing sets. Because these two datasets

were captured by only two cameras, during testing, data

from one camera is regarded as query and the other as

gallery. We repeated the separation of training and test-

ing process ten times and averaged the results into the final

score as shown in Table 4.

DukeMTMC-VideoReID[25] is a subset of the

DukeMTMC tracking dataset [18]. Training set consists

of 702 person IDs with 2196 tracklets. Testing set is also

separated into query and gallery. There are 702 person IDs

with one tracklet for each ID in query set and there are

1110 person IDs with 2636 tracklets in total for gallery set.

It can be seen from Table 4 and Table 5 that, our method

outperforms the best existing method by 3.1% on mAP
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Figure 6. The visualization of one certain tracklet from MARS. Only 15 representative clips are selected and showed instead of the whole

tracklet(190 frames in it). We use different colors to mark different situations. Green denotes the CA scores are more than 0.9460 and has a

high level of effect for the final feature. Yellow denotes the CA scores are between 0.9240 and 0.9460, which have the medium level effect.

Red denotes the CA scores are less than 0.9240, which means occlusion occurs on corresponding clips and such clips have less effect on

the final feature vectors.

Method
iLIDS-VID PRID-2011

mAP Rank-1 mAP Rank-1

ASTPN[26] - 62 - 77

JSTRN[31] - 55.2 - 79.4

STAN[11] - 80.2 - 93.2

RQEN[20] - 80.0 - 93.4

STIM[16] - 84.3 - 92.7

SCAN[27] 89.9 88.0 95.8 95.3

ResNet3D NL[14] - 81.3 - 91.2

STAL[1] - 82.8 - 92.7

VRSTC[9] - 83.4 - -

TACAN(ours) 93.0 88.9 96.7 95.3

Table 4. The comparison with existing video-based Re-ID ap-

proaches on iLIDS-VID and PRID-2011

Method mAP Rank-1 Rank-5 Rank-10

EUG[25] 78.3 83.6 94.6 97.6

VRSTC[9] 93.5 95.0 99.1 99.4

TACAN(ours) 95.4 96.2 99.4 99.6

Table 5. The comparison of metrics on DukeMTMC-VideoReID

score and 0.8% on Rank-1 score for iLIDS-VID, and by

0.9% on mAP score for PRID-2011. For DukeMTMC-

VideoReID, our method is also better than other methods

on mAP and all CMC scores. These results validate the ef-

fectiveness and robustness of our proposed approach.

4.5. Implementation Details

We use the image feature extractor models pre-trained

on the ImageNet dataset. Both ResNet50 [5] and SENet50

[10] are used in our experiments. Each input video frame is

resized to 224× 112 pixels. All training and testing are per-

formed on a single GPU. Limited to computing resources,

the clip length T is set to 4 while the batch size n is set to

32. The number of instances with the same identity is set

to 4 which means we randomly sample 4 sets of tracklets

each pedestrian for the training stage. The dimension of

middle-stage feature (clip-level feature) d = 2048, and the

dimension of embedding tracklet-level feature is D = 1024.

The network is updated by stochastic gradient descent algo-

rithm. The initial learning rate is 0.0003 with learning rate

decay strategy during training.

5. Conclusions

In this paper, we proposed a novel Temporal Aggrega-

tion with Clip-level Attention Network (TACAN) which is

an end-to-end CNN model for video-based person Re-ID.

TACAN shows better accuracy benefiting from temporal ag-

gregation and clip-level attention, where clip-level attention

is learned automatically from each clip of frames and then

used to weighted combine the clip-level feature into a fi-

nal tracklet-level representation. In addition, we adopt the

min-max loss for video-based Re-ID along with hard triplet

loss, which makes the training process more effective. Ex-

periments show that our proposed TACAN model reaches

superior performance on four popular benchmarks over ex-

isting state-of-the-art methods.

3383



References

[1] G. Chen, J. Lu, and J. Zhou. Spatial-temporal attention-

aware learning for video-based person re-identification.

IEEE Transactions on Image Processing, pages 4192–4205,

2019.

[2] J. Gao and R. Nevatia. Revisiting temporal modeling for

video-based person reid. arXiv preprint arXiv:1805.02104,

2018.

[3] M. Geng, Y. Wang, X. Tao, and Y. Tian. Deep transfer learn-

ing for person re-identification. ArXiv e-prints, 2016.

[4] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-

erative adversarial nets. In Advances in Neural Information

Processing Systems 27, pages 2672–2680, 2014.

[5] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

770–778, 2016.

[6] A. Hermans, L. Beyer, and B. Leibe. In defense of the triplet

loss for person re-identification. ArXiv e-prints, 2017.

[7] M. Hirzer, C. Beleznai, P. Roth, and H. Bischof. Person

re-identification by descriptive and discriminative classifica-

tion. In Image Analysis, pages 91–102, 2011.

[8] E. Hoffer and N. Ailon. Deep metric learning using triplet

network. In International Workshop on Similarity-Based

Pattern Recognition, pages 84–92. Springer, 2015.

[9] R. Hou, B. Ma, H. Chang, X. Gu, S. Shan, and X. Chen.

Vrstc: Occlusion-free video person re-identification. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 7183–7192, 2019.

[10] H. Jie, S. Li, S. Albanie, S. Gang, and E. Wu. Squeeze-and-

excitation networks. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 2019.

[11] S. Li, S. Bak, P. Carr, and X. Wang. Diversity regu-

larized spatiotemporal attention for video-based person re-

identification. In CVPR, 2018.

[12] W. Li, R. Zhao, T. Xiao, and X. Wang. Deepreid: Deep

filter pairing neural network for person re-identification. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 152–159, 2014.

[13] Z. Liang, B. Zhi, Y. Sun, J. Wang, S. Chi, S. Wang, and

T. Qi. Mars: A video benchmark for large-scale person re-

identification. In Computer Vision – ECCV 2016, 2016.

[14] X. Liao, L. He, Z. Yang, and C. Zhang. Video-based person

re-identification via 3d convolutional networks and non-local

attention. In Computer Vision – ACCV 2018, 2019.

[15] Y. Liu, J. Yan, and W. Ouyang. Quality aware network for

set to set recognition. In CVPR, pages 4694–4703, 2017.

[16] Y. Liu, Z. Yuan, W. Zhou, and H. Li. Spatial and temporal

mutual promotion for video-based person re-identification.

In AAAI, 2019.

[17] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne.

Journal of machine learning research, 9(Nov):2579–2605,

2008.

[18] E. Ristani, F. Solera, R. Zou, R. Cucchiara, and C. Tomasi.

Performance measures and a data set for multi-target, multi-

camera tracking. In European Conference on Computer

Vision workshop on Benchmarking Multi-Target Tracking,

2016.

[19] W. Shi, Y. Gong, X. Tao, J. Wang, and N. Zheng. Im-

proving cnn performance accuracies with min–max objec-

tive. IEEE transactions on neural networks and learning

systems, 29(7):2872–2885, 2017.

[20] G. Song, B. Leng, Y. Liu, C. Hetang, and S. Cai. Region-

based quality estimation network for large-scale person re-

identification. In Thirty-Second AAAI Conference on Artifi-

cial Intelligence, 2018.

[21] Y. Sun, L. Zheng, Y. Yang, Q. Tian, and S. Wang. Beyond

part models: Person retrieval with refined part pooling (and

a strong convolutional baseline). In Proceedings of the Eu-

ropean Conference on Computer Vision (ECCV), pages 480–

496, 2018.

[22] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.

Rethinking the inception architecture for computer vision. In

CVPR, 2016.

[23] G. Wang, Y. Yuan, C. Xiong, J. Li, and Z. Xi. Learning

discriminative features with multiple granularities for person

re-identification. ArXiv e-prints, 2018.

[24] T. Wang, S. Gong, X. Zhu, and S. Wang. Person re-

identification by video ranking. In Computer Vision – ECCV

2014, 2014.

[25] Y. Wu, Y. Lin, X. Dong, Y. Yan, W. Ouyang, and Y. Yang.

Exploit the unknown gradually: One-shot video-based per-

son re-identification by stepwise learning. In The IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), June 2018.

[26] S. Xu, C. Yu, G. Kang, Y. Yang, S. Chang, and Z. Pan. Jointly

attentive spatial-temporal pooling networks for video-based

person re-identification. In IEEE International Conference

on Computer Vision, 2017.

[27] R. Zhang, H. Sun, J. Li, Y. Ge, L. Lin, P. Luo, and X. Wang.

Scan: Self-and-collaborative attention network for video per-

son re-identification. IEEE Trans. on Image Processing,

2019.

[28] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian.

Scalable person re-identification: A benchmark. In Com-

puter Vision, IEEE International Conference on, 2015.

[29] Z. Zheng, L. Zheng, and Y. Yang. Unlabeled samples gener-

ated by gan improve the person re-identification baseline in

vitro. In Proceedings of the IEEE International Conference

on Computer Vision, pages 3754–3762, 2017.

[30] S. Zhou, J. Wang, D. Meng, Y. Liang, Y. Gong, and

N. Zheng. Discriminative feature learning with foreground

attention for person re-identification. IEEE Transactions on

Image Processing, 2019.

[31] Y. Zhou, Zhen adn Huang, W. Wang, L. Wang, and T. Tan.

See the forest for the trees: Joint spatial and tempo-

ral recurrent neural networks for video-based person re-

identification. In CVPR, 2017.

3384


