
Local Binary Pattern Networks

Jeng-Hau Lin1, Justin Lazarow1, Yunfan Yang1, Dezhi Hong1, Rajesh K. Gupta1, Zhuowen Tu2,1

1Computer Science and Engineering, 2Cognitive Science, UC San Diego

{jel252, jlazarow, yuy, dehong, rgupta, ztu}@ucsd.edu

Abstract

Emerging edge devices such as sensor nodes are increas-

ingly being tasked with non-trivial tasks related to sensor

data processing and even application-level inferences from

this sensor data. These devices are, however, extraordi-

narily resource-constrained in terms of CPU power (often

Cortex M0-3 class CPUs), available memory (in few KB to

MBytes), and energy. Under these constraints, we explore a

novel approach to character recognition using local binary

pattern networks, or LBPNet, that can learn and perform

bit-wise operations in an end-to-end fashion. LBPNet has

its advantage for characters whose features are composed

of structured strokes and distinctive outlines. LBPNet uses

local binary comparisons and random projections in place

of conventional convolution (or approximation of convolu-

tion) operations, providing an important means to improve

memory efficiency as well as inference speed. We evaluate

LBPNet on a number of character recognition benchmark

datasets as well as several object classification datasets and

demonstrate its effectiveness and efficiency.

1. Introduction

Rigid and deformable objects like optical characters are

interesting patterns to study in computer vision and ma-

chine learning. In particular, instances found in the wild

– handwriting, street signs, and house addresses (as shown

in Fig. 1) – are of high importance to the emerging mo-

bile edge systems such as augmented reality glasses or

delivery UAVs. The recent innovations in Convolutional

Neural Networks (CNN) [22] have achieved state-of-the-

art performance on these OCR tasks [35]. As deep learn-

ing (DL) models evolve and take on increasingly complex

pattern recognition tasks, they, however, demand tremen-

dous computational resources with correspondingly higher

performance machines and accelerators that continue to be

fielded by system designers. This can limit their use to only

applications that can afford the energy and/or cost of such

systems. By contrast, the universe of embedded devices, es-

pecially when used as intelligent edge devices in the emerg-

Figure 1. Examples from character recognition datasets.

ing distributed systems, presents a higher range of potential

applications from augmented reality systems to smart city

systems. As a result, seeking for memory and computation-

ally efficient deep learning methods becomes crucial to the

continued proliferation of machine learning capabilities to

new platforms and systems, especially mobile sensing de-

vices with ultra-small resource footprints.

Various methods have been proposed to perform network

pruning [23, 11], compression [12, 16], or sparsification

[25], in order to reduce deep model’s complexity. Impres-

sive results have also been achieved lately by binarizing se-

lected operations in CNNs [6, 15, 29]. At their core, these

efforts seek to approximate the internal computational gran-

ularity of CNNs, from network structures to variable preci-

sions, while still keeping the underlying convolutional op-

eration exact or approximate. However, the nature of char-

acter images has not been fully taken advantage yet.

In this work, we propose a light-weight and compact

deep learning approach, LBPNet, which leverages the na-

ture of character images. Particularly, we focus on the

character classification task and explore an alternative to

convolutional operations – the local binary patterns (LBP),

which employs numerous predefined sampling points that

are mostly on the perimeter of a circle, compares them with

the pixel value at the center using logical operations, and

yields an ordered array of logical outputs to extract the pat-

terns in an image. This operation makes LBP particularly

suitable for recognizing characters comprising discrimina-

825

Figure 2. The LBPNet Architecture: The LBP operation generates feature

maps via comparison and bit allocation, and the random projection fuses

the intermediate channels to a final output.

tive outlines and structured strokes. We note that our work

has roots in research before the current generation of DL

methods, namely, the adoption of LBP [28]. Although LBP

gives rise to a surprisingly rich representation [32] of im-

age patterns and has proven complementary to SIFT-kind

features [26], it has been under-explored in the DL research

community, where the feature learning primarily refers to

the CNN features in a hierarchy [20, 13].

Multiple innovations and important properties within

LBPNet distinguish it from previous attempts:

• Convolution-free. We employ the LBP that involves

only logic operations to extract features of images, which

is in stark contrast to previous attempts trying to either

directly binarize the CNN operations [15, 29] or approx-

imate LBP with convolution operations [19] comprising

of expensive, power-hungry multipliers and slow accu-

mulation operations.

• Learnable LBP kernel. The sampling points in a tra-

ditional LBP kernel were at fixed locations upon initial-

ization [32, 19], and only the linear combinations of the

output features were learned. We, instead, learn the sam-

pling patterns and prove the effectiveness of LBPNet’s

learning via the optical flow theory and gradient descent.

• Compact model size. CNN-based models are stored

in dense matrices which usually takes mega-byte stor-

age space, while LBPNet learns discrete and sparse pat-

terns. Without further encoding or compression, the typ-

ical sizes of the kernels in LBPNets are on the kilo-byte

level, yielding 1000X reduction in parameter size.

• Fast inference speed. The accumulation in convolution

impedes CNN’s inference speed. Even though the basic

linear algebra subprogram (BLAS) library utilizes tech-

niques such as loop unrolling and tiling, there still exists

the accumulation of small accumulating blocks. How-

ever, LBPNet’s memory indexing, comparison, and bit-

allocation have no data-dependency on the neighboring

computing elements, and can thus be parallelized. This

significantly boosts the inference speed for LBPNet on

common single-instruction-multiple-data (SIMD) archi-

tectural systems like GPUs or pipeline-parallel systems

like FPGAs or ASICs.

• Optimized backprop and end-to-end learning. The

backprop of LBPNet follows the framework of the state-

of-the-art fastest implementation of Conv Layer, Spatial-

ConvolutionMM [5]. Owing to the sparse sampling pat-

terns in LBPNet, we can replace part of the gradient com-

putation with more straightforward CUDA-C routines.

2. Related Work

Related work regarding OCR and the model reduction of

CNN falls within four primary categories.

Character Recognition. In addition to the CNN-based so-

lutions to character recognition like BNN [15], the random

forest [33, 34] was prevailing as well. However, it usu-

ally required multiple techniques such as feature extraction,

clustering, or error correction codes to improve recognition

accuracy. Our method, instead, provides a compact end-to-

end and computationally efficient solution to OCR.

Active or Deformable Convolution. Among the notable

line of recent work that learns local patterns are active con-

volution [18] and deformable convolution [7]. While they

indeed learn data-dependent convolution kernels, which

still heavily rely on multiplication and addition operations,

they do not explicitly seek to improve the network effi-

ciency. By contrast, our LBP kernels learn the best location

for the sampling points in an end-to-end fashion via simple

yet effective logic operations, without the need for multipli-

cation and addition operations required in convolutions.

Binarization for CNN. Binarizing CNNs to reduce the

model size has been an active research direction [6, 15, 29].

Through binarizing the weights and/or activations, these

works replace multiplications with logic operations ,thus

reducing the model size. However, non-binary operations

such as batch normalization in BNN [15] and scaling and

shifting in XOR-Net [29] still require floating-point opera-

tions. Both BNN and XNOR-Net can be considered as the

discretization of real-valued CNNs, and thus the two works

are still fundamentally based on spatial convolution — we

instead leverage the less computationally hungry LBP that

employs logic operations.

CNN Approximation for LBP Operation. Recent work

on local binary convolutional neural networks (LBCNN)

[19] takes an opposite direction to BNN [15]. LBCNN

utilizes the difference between pixel values together with

a ReLU layer to simulate the LBP operations. During train-

ing, the sparse binarized difference filters are fixed, and

only the successive 1-by-1 convolution kernel, serving as a

channel fusion mechanism, and the parameters in the batch

normalization layer (BNLayer), are learned. However, the

feature maps of LBCNN are still made up of floating-point

numbers, and this results in significantly increased model

826

Figure 3. (a) A traditional local binary pattern. (b)-(d) Our learnable local

binary patterns. The red arrows denote pushing forces during training.

complexity as we shall show later in Table 3 and Table ??

in the supplementary material.

Although BNN and LBCNN have achieved some degree

of model compression on OCR tasks, they still relied heav-

ily on using batch normalization layers, which must be per-

formed in floating numbers for the linear transform. While

implementing hardware accelerators, people have found

that the four BatchNorm parameters at most can be quan-

tized from 32-bit floating numbers to 16-bit fixed numbers

without significant accuracy loss [37]. Because the size and

computation of a BatchNorm2D layer are linear in the size

of the feature maps, LBCNN is still too cumbersome for IoT

devices built with limited memory and compute resources.

Even for binarized neural networks, the convolutional ker-

nels and batch normalization layer parameters are still so

large that an off-chip DRAM and on-chip buffering mecha-

nism are required [37, 30]. Therefore, we propose LBPNet

to directly learn the sparse and discrete LBP kernels, which

are typically as tiny as several kilobytes. Please refer to the

supplementary material for more detailed comparisons with

CNN-based methods.

3. Local Binary Pattern Network

In LBPNet, the forward propagation is composed of two

key procedures: the LBP operation and channel fusion. In

this section, we elaborate on them, describe the carefully

designed network structure of LBPNet, and present a back-

of-the-envelope calculation of hardware gains of LBPNet.

3.1. LBP Kernel and Operation

Fig. 3 (a) shows a traditional LBP with a fixed structure:

there are eight sampling points (the green circles) surround-

ing a pivot point (the meshed star) at the center of the kernel.

The pixel at each of the sampling points will be compared

with the one at the center, and if the sampled pixel value

is larger than that at the center, we output a bit “1”; other-

wise, the output is set to “0”. These eight 1-bit comparison

outcomes are assigned to a bit array according to a prede-

fined order, either clockwise or counter-clockwise. The bit

array is interpreted as an integer and can be further used

with learning methods such as support vector machine, his-

togram analysis, multi-layer perceptrons, etc.

In LBPNet, we make the fixed sampling points in a tra-

ditional LBP kernel adaptive and learnable, as shown in

Fig. 3(b)-(d): The learnable patterns are first initialized at

random locations within a given area following a uniform

Figure 4. An example of the LBP operation on two input channels

– ch.a and ch.b: There are four sampling points in each 3-by-3

LBP kernel, and each sampling point produces a logic bit which is

assigned to a certain position (marked with arrows) in the output

array (shown at the bottom in pink and yellow).

distribution and then pushed to better locations to minimize

the classification error using our proposed mechanism. The

sizes of the sampling points (in green) correspond to the bit

positions of the comparison outcomes in the output bit ar-

ray – a larger circle corresponds to a more significant bit.

The red arrows represent the driving forces that can push

the sampling points, and we defer the details of the defor-

mation mechanism to the next section. The model size of an

LBPNet is tiny compared with CNN because the learnable

parameters in LBPNet are the sparse and discrete sampling

indices within the window. Finally, multiple patterns in dif-

ferent channels form a kernel of LBPNet.

Fig. 4 shows a snapshot of the LBP operation. Given two

input channels, ch.a and ch.b, we perform the LBP opera-

tion on each channel with different 3-by-3 kernel patterns.

We only put four sampling points, as an example, in each

kernel to avoid cluttered figures, and the two 4-bit binary

response arrays are shown at the bottom (in pink and yel-

low). For clarity, we use green dashed arrows to mark the

corresponding pixels for the resulting bits and list the com-

parison equation under each bit. In LBPNet, we slide the

LBP kernel over an entire image, as convolution is done in

CNN, to produce a complete feature map, and we perform

the LBP operation on each input channel of the image.

3.2. Channel Fusion with Random Projection

With the LBP operation, the number of resulting chan-

nels might grow exponentially: suppose we have N LBP

layers, and each uses K kernels, the number of output chan-

nels in the last layer will be O(KN). Akin to channel-wise

addition in a normal convolutional operation, we need a

channel fusion mechanism to avoid the potential explosion.

We resort to random projection [4] as a dimension-reducing

and distance-preserving step to select output bits among in-

termediate channels for the concerned output channel, as

827

Figure 5. An example of LBP channel fusion. The two 4-bit re-

sponses in Fig. 4 are fused and assigned to pixel s13 in the output

feature map.

Figure 6. Multiple Network Structures: (a) the well-known building block

of residual networks. (b) The transition-type building block uses a 1-by-1

convolutional layer as an alternate channel fusion for the preceding LBP

layer; this structure is considered as a baseline in evaluation. (c) The mul-

tiplication and accumulation (MAC) free building block of our LBPNet.

shown in Fig. 5. The random projection is implemented

with a predefined mapping table for each output channel,

viz, the mapping between the bit in the output pixel and

the channel of the image is fixed upon initialization, and all

output pixels in the same output channel follow the same

mapping. For example, in Fig. 5, the two pink bits in the

output pixel come from ch.a while the two yellow bits come

from ch.b. As a result, only the most and least significant

bits on ch.a and the two middle bits on the ch.b need to be

computed. In other words, for an n-bit output pixel, the ran-

dom projection will select only n channels to make n com-

parisons, eliminating the need of comparing all sampling

points with the pivots. The fusion step essentially makes

the number of comparisons independent from the number

of channels Kin and reduces the memory complexity from

O(KinKout) to O(nKout), where Kout is the number of

output channels. Although Kin is removed from the mem-

ory complexity, it still affects the algorithm because a larger

Kin will result in more variations–there would be
(

Kin
n

)

combinations–for the projection.

3.3. Network Structures of LBPNet

The network structure of LBPNet must be carefully de-

signed. Owing to the binary nature of the comparison, the

outcome of an LBP layer is very similar to the result of dif-

ference filtering. In other words, our LBP layer is good at

extracting high-frequency components in the spatial domain

but relatively weak at understanding low-frequency compo-

Table 1. The number of logic gates for arithmetic units. Energy usage for

technology node: 45nm.

Device #bits #gates Energy (J)

Adder
4 20 ≤ 3E-14

32 160 9E-13

Multiplier 32 ≥144 3.7E-12

Comparator 4 15 ≤ 3E-14

nents. Therefore, we use a residual-like structure to com-

pensate for this weakness of LBPNet. Fig. 6 shows three

kinds of residual-net-like building blocks. Fig. 6 (a) is the

typical building block for residual networks, where the con-

volutional kernels learn to obtain the residual of the output

after the addition. Similarly, in LBPNet, because the pix-

els in the LBP output feature maps are always positive, we

use a shifted rectified linear layer (shifted-ReLU) accord-

ingly to increase nonlinearities, as shown in Fig. 6 (c). The

shifted-ReLU truncates any magnitudes below the half of

the maximum of the LBP output. Specifically, if a pattern

has n sampling points, the shifted-ReLU is defined as

f(x) =

{

x, x > 2n−1 − 1
2n−1 − 1, otherwise.

As mentioned earlier, the low-frequency components

evanesce as the information passes through several LBP lay-

ers. To preserve the low-frequency components while mak-

ing the basic block multiplication-and-accumulation free

(MAC-free), we introduce a joint operation, which con-

catenates the input tensor of the block and the output ten-

sor of the shifted-ReLU along the channel dimension. The

number of channels is under controlled since the increasing

trend is linear in the number of input channels.

Throughout the forward propagation, there are no mul-

tiplication or addition operations. Only comparison and

memory access are used. Therefore, the design of LBPNets

is efficient with regard to both software and hardware.

3.4. Hardware Benefits

LBPNet avoids the computation-heavy convolution op-

erations and thus saves hardware costs. Table 1 lists the ref-

erence numbers of logic gates of the concerned arithmetic

units. A ripple-carry full-adder requires 5 gates for each bit.

A 32-bit multiplier includes a data-path logic and a control

logic. Because there are too many feasible implementations

of the control logic circuits, we conservatively use an open

range to give a sense about the hardware expense. The com-

parison can be implemented on a pure combinational logic

circuit comprised of 15 gates, which also means that only

the infinitesimal internal gate delays dominate the compu-

tation latency. The comparison operation is not only cheap

regarding its gate count but also fast due to the absence of

sequential logic internally. Slight difference in the number

of logic gates may apply if different synthesis tools or man-

ufacturers are chosen. Assuming the buffering mechanism

for LBPNet hardware accelerator is the same with CNN’s,

828

which means we always buffer more pixels than we need,

the data buffering consumes the same energy and on-chip

memory. With the capability of an LBP layer as strong as

a convolutional layer concerning classification accuracy, re-

placing the convolution operations with comparison ideally

gives us a 27X saving in hardware cost. Another impor-

tant benefit is energy savings. The energy demand for each

arithmetic device has been shown in [14]. If we replace all

convolution operations with comparisons, the energy con-

sumption is reduced by 153X theoretically. Moreover, the

core of LBPNet is composed of bit-shifting and bitwise-

OR, and both of them do not have the concurrent access-

ing issue as in convolution’s accumulation process. If we

implement an LBPNet hardware accelerator, no matter on

FPGA or ASIC flow, the absence of the concurrent issue

will guarantee a speedup over CNN hardware accelerator.

For more justification, please refer to the forward algorithm

in the supplementary manuscript.

4. Backward Propagation of LBPNet

4.1. Differentiability of Comparison

The only problem preventing LBPNet from being
trained with ordinary gradient descent methods is the non-
differentiability of comparison, which can be solved if we
model the comparison operation with a shifted and scaled
hyperbolic tangent function as

Ilbp > Ipivot
modeled

→
1

2

(

tanh

(

Ilbp − Ipivot

α

)

+ 1

)

,

where α is a scaling parameter to accommodate the number

of sampling points from a previous LBP layer, Ilbp is the

sampled pixel in a learnable LBP kernel, and Ipivot is the

sampled pixel at the pivot. We provide a sensitivity analy-

sis of α w.r.t. classification accuracy in the supplementary

manuscript. The hyperbolic tangent function is differen-

tiable and has a simple closed-form for the implementation.

4.2. Deformation with Optical Flow

In the optical flow theory, the aperture problem provides
a sustainable reasoning — training can effectively push
sampling points to extract common features for classifica-
tion. The optical flow equation [3] states:

∂I

∂x
Vx +

∂I

∂y
Vy = −

∂I

∂t
, (1)

where the left-hand side of the optical flow equation can be

interpreted as a dot-product of the image gradient (∂I
∂x

x̂ +
∂I
∂y

ŷ) and optical flow (Vxx̂+Vy ŷ), and this product equals

the negative derivative of luminance versus time across dif-

ferent images, where x̂ and ŷ denote the two orthogonal unit

vectors on the 2-D coordinate, and the infinitesimal time

difference ∂t can be controlled to be a constant.

In the Lucas-Kanade method [27], the optical flow is

constrained to be constant in a neighborhood around each

point in the image. Therefore, the optical flow equation can

be rewritten as

Av = b, (2)

where A =











Ix1
Iy1

Ix2
Iy2

...
...

Ixm
Iym











, b =











−It1
−It2

...

−Itm











, v =

[

vx
vy

]

, Ixi
=

∂I[i]
∂x

, Iyi
= ∂I[i]

∂y
, Iti = ∂I[i]

∂t
, and m is the number of

sampled pixels. The unknown optical flow vector v can,

therefore, be solved since the number of equations depends

on the number of pixels sampled, which can be designed to

make the equation over-determined.

Applying the singular value decomposition (SVD) to the

image gradient matrix A in Eq. (2) and move all three de-

composition matrices to the right-hand side (RHS), we get

the optical flow vector:

v = VD−1U⊤b, (3)

where U and V are the left and right singular matrices

which comprise orthonormal column vectors and possess

the property of U⊤U = I and V⊤V = I , and D is a di-

agonal matrix containing the singular values on its diagonal

trace. VD−1U⊤ forms a left generalized inverse of A.

We now show how this solution to the optical flow prob-

lem can provide useful gradient signal to the sampling

points of an LBP pattern. Applying the chain rule within

backpropagation to the sampling points (please refer to the

appendices for more details of LBPNet’s chain rule equa-

tions.):

g = kA, (4)

where k =
[

go1
∂Fm1

∂Ilbp1
, go2

∂Fm2

∂Ilbp2
, . . . , gom

∂Fmm

∂Ilbpm

]

, g =
[

∂loss
∂x

, ∂loss
∂y

]

, and A is the image gradient matrix in

Eq. (2), go is the error propogated from the succeed-

ing layer, Fm is the output feature map, ∂Fmi

∂Ilbpi
=

1
α

[

1− tanh2
(

Ilbpi−Ipivoti

α

)]

, and (Ilbpi
, Ipivoti) is a pair

of sampled pixels for comparison.

With the gradient of loss and the optical flow vector, we

can derive the relation between gradient descent and the

minimization of pixel difference as follows.

Multiply Eq. (4) to Eq. (3) from the left to get Eq. 5:

gv = kUU⊤b. (5)

Please note that UU⊤ = I only when A is invertible.

Eq. 5 can be interpreted as gv = k′b, where k′ is a

transformed error vector. When the gradient descent mini-

mizes the loss to a local minimum on the error surface, the

gradient of loss w.r.t. positions g will converge be min-

imized presumably. Thereby the LHS of Eq. 5 will be re-

duced, and the dot product of k′ and the temporal difference

b decreases. LBPNet, therefore, senses weaker and weaker

differences between images.

829

Table 2. Details of the datasets used in our experiments.
#Class #Example State-of-Art error rate

DHCD 46 46x2,000 1.53% [1]

ICDAR-DIGITS 10 988 -

ICDAR-UpperCase 26 5,288 10% [31]

ICDAR-LowerCase 26 5,453 -

Chars74K-EnglishImg 62 7,705 52.91% [9]

Chars74K-EnglishHnd 62 3,410 23.33% [21]

Chars74K-EnglishFnt 62 62,992 30.29% [9]

4.3. Implementation

None of the existing DL libraries can be used to imple-

ment LBPNet because the logical operation such as com-

parison and bit-allocation are radically different from the

arithmetic ones, and the deformation of sampling patterns

violates the regularity on which conventional DL libraries

rely. We, hence, directly use BLAS library to deliver a cus-

tom GPU kernel in order to provide a high-level interface

for conventional DL libraries to integrate with the funda-

mental LBPNet operations.

We adopt the implementation of spatial convolution in

Torch, SpatialConvolutionMM [5], in order to trade mem-

ory redundancy via building Toeplitz matrices for speed-ups

and leverage the GPU supported primitive functions, e.g.,

im2col, col2im, GEMM, and GEMV. We refer readers to

the supplementary manuscript for the detailed forward and

backward propagation algorithms.

5. Evaluation

We conduct a series of experiments on five datasets –

MNIST, SVHN, DHCD, ICDAR2005, and Chars74K – to

demonstrate the capability of LBPNet. Some example im-

ages in these character datasets are shown in Fig. 1. To

demonstrate its potential in general applicability, we further

evaluate LBPNet on a broader set of tasks including face

and pedestrian detection as well as affNIST and observe

promising results.

5.1. Datasets

Images in the MNIST dataset are hand-written numbers

from 0 to 9 in 28×28 grayscale bitmap format. The dataset

provides a training set of 60, 000 examples and a test set

of 10, 000 examples. Both staff and students wrote the

manuscripts. Most of the images can be easily recognized

and classified, but there is still a portion of sloppy images

in MNIST. SVHN is a photo dataset of house numbers. Al-

though cropped, images in SVHN include some distracting

numbers around the labeled number in the middle of the

image. The distracting parts increase the difficulty of clas-

sifying the printed numbers. There are 73, 257 training ex-

amples and 26, 032 test examples in SVHN. Table 2 sum-

marizes the details of the remaining seven datasets in our

experiments. Fig. 1 shows some example images of the nine

datasets. DHCD has handwritten Devangari characters. IC-

DAR2005 contains three subsets, which are photos of num-

bers, lowercase and uppercase English characters. We shall

note that the ICDAR2005 dataset was created mainly for

text localization and recognition in the wild. We use the

cropped ICDAR, because we only focus on the recognition

task. Chars74K combines both numbers and English char-

acters together and is considered to be challenging because

an alphanumeric dataset that includes some labels is more

prone to errors, e.g., classifying character O to number zero

or vice versa. The three subsets of Chars74K are cropped

photos, handwritten pictures, and printed fonts.

5.2. Experimental Setup

In all the experiments, we use all the training examples

to train the LBPNet and validate on the provided test sets.

There is no data augmentation used in the experiments.

In addition to the LBPNet shown in Fig. 6 (c), we im-

plement another version of LBPNet as a comparison: we

utilize a 1 × 1 convolution to learn a combination of the

LBP feature maps, as illustrated in Fig. 6 (b). While this

convolution still incurs too many multiplication and accu-

mulation operations, especially when the number of LBP

kernels increases, we shall demonstrate how this version of

LBPNet performs for comparison purposes. In the rest of

this section, we call the LBPNet using 1× 1 convolution as

the channel fusion mechanism LBPNet (1×1), and our pro-

posed LBPNet utilizing random projections LBPNet (RP)

(totally convolution-free). The number of sampling points

in a pattern is set to 4, and the size of the window within

which the pattern can be deformed is 5 × 5. A brief sen-

sitivity analysis of the number of sampling points versus

classification accuracy on MNIST is provided in the sup-

plementary manuscript.

LBPNet also has a multilayer perceptron (MLP) block,

which consists of two fully-connected layers of 512 neurons

and #class, respectively. In addition to the nonlinearities,

there is one batch normalization layer. The MLP block’s

performance without any convolutional layers or LBP lay-

ers on the three datasets is shown in Table 3, and the results

on SVHN are in the supplementary manuscript. The model

size and speed of the MLP block are excluded in the com-

parisons since all the models have an MLP block, and so we

focus on the convolutional layers and LBP Layers.

To understand the capability of LBPNet when compared

with existing convolution-based methods, we build two

feed-forward streamline CNNs as baselines. CNN-baseline

is designed with the same number of layers and kernels

as our LBPNet; the other CNN-lite is designed subject to

the same memory footprint as the LBPNet (RP). The ba-

sic block of the CNNs contains a spatial convolution layer

(Conv) followed by a batch normalization layer and a recti-

fied linear layer (ReLU).

In the BNN paper [15], classification on MNIST is per-

formed with a binarized multilayer perceptron network. We

adopt the binarized convolutional neural network (BCNN)

830

Table 3. The performance of LBPNet on MNIST.

Error ↓
Size ↓ #Operation ↓

Reduction ↑
(Bytes) (GOPs)

MLP Block 24.22% - - -

CNN-baseline 0.44% 1.41M 0.089 1X

CNN-lite 1.20% 792 0.0004 219X

BCNN-6L 0.47% 1.89M 0.304 0.292X

BCNN-6L-noBN 88.65% 146.5K 0.303 0.293X

BCNN-3L-noBN 89.60% 5.94K 0.087 1.02X

LBCNN-75L 0.49% 12.2M 6.884 0.013X

LBCNN-75L-noBN 90.20% 2.8M 6.882 0.013X

LBCNN-3L-noBN 90.20% 244K 0.276 0.322X

LBPNet (this work)

LBPNet (1x1) 0.50% 1.27M 0.011 7.80X

LBPNet (RP) 0.50% 715.5 0.0007 136X

in [15] for SVHN to perform the classification and repro-

duce the same accuracy as shown in [24] on MNIST.

5.3. Experimental Results

Table 3 summarizes the experimental results of LBPNet

on MNIST together with the baseline and previous works.

We consider three metrics: classification error rate, model

size, and the number of operations during inference. As a

reference, we also provide a reduction in the number of op-

erations compared with the baseline CNN. The number of

operations in giga-operation (GOP) is used for a fair com-

parison of computation complexity regardless of platforms

and implementation optimizations, such as loop tiling or un-

rolling, pipelining, and memory partitioning.

MNIST. The CNN-baseline and LBPNet (RP) share the

same network structure, i.e., 39-40-80, and the CNN-lite is

limited to the same memory size, and so its network struc-

ture is 2-3. The structure of 39-40-80 was selected from

an exploration of structural engineering to shrink the size of

LBPNet while achieving the accuracy higher than 99%. The

baseline CNN achieves the lowest classification error rate

0.44%. The BCNN-6L achieves a decent speedup while

maintaining the classification accuracy. Notwithstanding,

LBCNN-75L claimed its saving in memory footprint, to

achieve 0.49% error rate, 75 layers of LBCNN basic blocks

are used. As a result, LBCNN-75L loses speedups. Both the

3-layer LBPNet (1x1) with 40 LBP kernels and 40 1-by-1
convolutional kernels and the 3-layer LBPNet (RP) achieve

an error rate of 0.50%. Despite the slightly inferior perfor-

mance, LBPNet (RP) reduces the model size to 715.5 bytes

and the number of operations to 0.7MOPs. Even BCNN

cannot be on par with such a vast memory and computation

reduction. The CNN-lite demonstrates that, if we shrink a

CNN model down to the same memory size as the LBP-

Net (RP), the classification performance of CNN is com-

promised.

In addition to reproducing the results of BCNN-6L and

LBCNN-75L with their open-sourced code, we remove the

batch normalization layer inside every basic block (BCNN-

6L-noBN and LBCNN-75L-noBN) and reduce the model

to 3 layers (BCNN-3L-noBN and LBCNN-3L-noBN) for

a fair comparison with LBPNet (RP). Then, we train the

Figure 7. Classification error trade-off curves of a 3-layer LBPNet and a

3-layer CNN on the INRIA pedestrian dataset [8]. We also plot the results

in Fig.8(a) of [10] for comparison with the other five approaches.

models without batch normalization layers from scratch.

As shown in Table 3, once the batch normalization lay-

ers are removed, interestingly and surprisingly, both BCNN

and LBCNN result in high error rates – almost identical to

random guess – 90%. In other words, neither BCNN nor

LBCNN can learn useful features without BatchNorm Lay-

ers. Meanwhile, LBPNet still achieves comparable accu-

racy to CNN’s without the support of batch normalization.

SVHN. For the results on SVHN, we observe a similar pat-

tern to the results on MNIST. Therefore, we defer the results

and discussion on SVHN to the supplementary manuscript.

More OCR Results. Table 4 lists the results of LBPNet

(RP) on all the character recognition datasets studied in this

paper. The network structures of both the baseline CNNs

and LBPNets are designed to be the same for a fair compar-

ison. The model sizes are the actual file sizes (without com-

pression) of the LBP layers, including the discrete LBP ker-

nels and random projection maps. Regarding the model size

reduction, it is noteworthy that the wider the model is (i.e.,

more kernels), the higher the memory reduction rate we can

obtain, with the cause explained earlier in section 3.2.

LBPNets deliver competitive results with the baseline

CNNs listed in Table 2. In other words, LBPNet reduces

resource demands while maintaining the classification per-

formance on OCR tasks.

5.4. Results on Other Objects and Deformable Pat­
terns

We also explore how LBPNet performs on datasets con-

taining general objects. Throughout the following experi-

ments, we built CNNs and LBPNets with structures similar

to the one for MNIST, as detailed in the first row of Table 4.

We observe that LBPNet is able to achieve the same order

of reductions in model size and operations.

Pedestrian: We first evaluate LBPNet on the INRIA pedes-

trian dataset [8], which consists of cropped positive and

negative images. Note that we did not implement an image-

based object detector since this is not the focus of this study.

Fig. 7 shows the trade-off curves of a 3-layer LBPNet (37-

40-80) and a 3-layer CNN (37-40-80).

Face: We also examine how well LBPNet performs on the

831

Table 4. The structures and experimental results of LBPNet on all considered datasets.

Model Structure Error↓ Size↓ Size Red. ↑ GOPs ↓ Op Red. ↑

MNIST
CNN-3L 39-40-80 0.44% 1.41M - 0.089 -

LBPNet (RP) 39-40-80 0.50% 715.5 1971X 0.0007 136X

SVHN
CNN-8L 37-40-80-80-160-160-320-320 6.69% 10.11M - 1.86G -

LBPNet (RP) 37-40-80-80-160-160-320-320 7.10% 10.62K 952X 0.010 193X

DHCD
CNN 63-64-128-256 0.72% 4.61M - 0.637 -

LBPNet (RP) 63-64-128-256 0.81% 2.30K 2004X 0.002 304X

ICDAR-Digits
CNN 3-4 0.00% 44.47K - 0.0002 -

LBPNet (RP) 3-4 0.00% 31.5 1411X 0.00003 7.76X

ICDAR-LowerCase
CNN 3-4 0.00% 44.47K - 0.0002 -

LBPNet (RP) 3-4 0.00% 31.5 1411X 0.00003 7.76X

ICDAR-UpperCase
CNN 3-4 0.00% 44.47K - 0.0002 -

LBPNet (RP) 3-4 0.00% 31.5 1411X 0.00003 7.76X

Chars74K-EnglishImg
CNN 63-64-128-256-512 40.54% 12.17M - 2.487 -

LBPNet (RP) 63-64-128-256-512 41.69% 4.793K 2539X 0.004 152X

Chars74K-EnglishHnd
CNN 63-64-128 28.68% 1.95M - 0.174 -

LBPNet (RP) 63-64-128 26.63% 1.15K 1699X 0.001 610X

Chars74K-EnglishFnt
CNN 63-64-128 21.91% 1.95M - 0.174 -

LBPNet (RP) 63-64-128 22.74% 1.15K 1699X 0.001M 610X

Table 5. The performance of LBPNet on two traffic sign datasets.

Model Structure Error↓

GTSRB
CNN 61-64-128-256-512 1.16%

LBPNet(RP) 61-64-128-256-512 1.99%

BTSC
CNN 39-40-80 2.30%

LBPNet(RP) 39-40-80 2.51%

FDDB dataset [17] for face classification. Same as pre-

viously, we perform training and testing on a dataset of

cropped images; we use the annotated positive face exam-

ples with cropped four non-person frames in every training

image to create negative face examples, for the purposes

of both training and testing. The structures of the LBPNet

and CNN are the same as before (37-40-80), and LBPNet

achieves 97.78% while the baseline CNN reaches 97.55%.

affNIST: We conduct another experiment on affNIST 1,

which contains 32 translation variations of MNIST (includ-

ing the original MNIST). To accelerate the experiment, we

randomly draw three variations of each original example to

get training and testing subsets of affNIST. We repeat the

same process to draw examples and train the networks ten

times to get an averaged result. The network structure of

LBPNet and the baseline CNN are the same, 39-40-80. To

improve the translation invariance of the networks, we use

two max-pooling layers following the first and second LBP

layer or the convolutional layer. With the training and test-

ing on the subsets of affNIST, LBPNet achieves 93.18%,

and CNN achieves 94.88%.

Traffic Sign: Traffic sign recognition (TSR) is an essential

task in autonomous driving systems. Dispatching low-level

tasks such as TSR to low-cost/low-power compute nodes to

relieve the workload for central SIMD workstation is the

modern trend in system designs. The state-of-the-art error

rates are 0.29% [2] and 1.08% [36] for GTSRB and BTSC,

respectively. Table 5 lists the classification error rates on the

two traffic sign classification datasets. Although the results

on the two datasets are slightly weaker than the baseline,

the reductions in model size and operations, which are on

1https://www.cs.toronto.edu/ tijmen/affNIST/

the order as shown in Table 4, hold promise for deploying

TSR tasks on low-cost compute nodes.

Limitation of LBPNets: As described qualitatively be-

fore, LBPNet is strong at extracting outlines and strokes.

If the information mostly resides in the gradual transition

of pixel magnitudes, LBPNets will deliver inferior perfor-

mance compared to CNNs’. We defer the experimental re-

sults on CIFAR-10 and the corresponding discussion of the

limitations to the supplementary material.

6. Conclusion and Future Work

In this work, we have built a convolution-free, end-to-

end LBPNet upon basic bitwise operations and verified

its effectiveness on character recognition datasets. With-

out significant loss in classification accuracy, LBPNet can

achieve orders of magnitude reductions in inference opera-

tion (100X) and model size (1000X), when compared with

the baseline CNNs. The learning of local binary patterns

yields unprecedented model efficiency since, to the best of

our knowledge, there is no compression/discretization of

CNNs that can achieve a kilobyte level model size while

still maintaining the comparable accuracy to CNNs’ on the

character recognition tasks. We also provide encouraging

preliminary results on more general tasks such as pedestrian

and face detections. LBPNet points to a promising direc-

tion for building a new generation of lightweight, hardware-

friendly deep learning algorithms to deploy on resource-

constrained edge devices.

7. Acknowledgement

We thank the funding supports by NSF IIS-1717431,

NSF IIS-1618477, Samsung Research America, and Qual-

comm Inc.

832

References

[1] S. Acharya, A. K. Pant, and P. K. Gyawali. Deep learning

based large scale handwritten devanagari character recog-

nition. In the 2015 9th International Conference on Soft-

ware, Knowledge, Information Management and Applica-

tions (SKIMA), pages 1–6. IEEE, 2015.

[2] Á. Arcos-Garcı́a, J. A. Álvarez-Garcı́a, and L. M. Soria-

Morillo. Deep neural network for traffic sign recognition

systems: An analysis of spatial transformers and stochastic

optimisation methods. Neural Networks, 99:158–165, 2018.

[3] J. L. Barron, D. J. Fleet, and S. S. Beauchemin. Performance

of optical flow techniques. International Journal of Com-

puter Vision (IJCV), 12(1):43–77, 1994.

[4] E. Bingham and H. Mannila. Random projection in dimen-

sionality reduction: Applications to image and text data. In

the 7th Special Interest Group on Knowledge Discovery and

Data Mining (SIGKDD). ACM, 2001.

[5] K. Chellapilla, S. Puri, and P. Simard. High performance

convolutional neural networks for document processing. In

the 10th International Workshop on Frontiers in Handwrit-

ing Recognition. Suvisoft, 2006.

[6] M. Courbariaux, Y. Bengio, and J.-P. David. BinaryConnect:

Training Deep Neural Networks with Binary Weights During

Propagations. In Advances in Neural Information Processing

Systems (NIPS), pages 3123–3131, 2015.

[7] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei.

Deformable convolutional networks. In the IEEE Interna-

tional Conference on Computer Vision (ICCV). IEEE, 2017.

[8] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In the IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR), pages 886–893, 2005.

[9] T. E. De Campos, B. R. Babu, M. Varma, et al. Character

recognition in natural images. In International Conference

on Computer Vision Theory and Applications (VISAPP), vol-

ume 7, 2009.

[10] P. Dollár, C. Wojek, B. Schiele, and P. Perona. Pedestrian

detection: A benchmark. In the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 304–

311. IEEE, 2009.

[11] Y. Guo, A. Yao, and Y. Chen. Dynamic network surgery for

efficient dnns. In Advances in Neural Information Process-

ing Systems (NIPS), 2016.

[12] S. Han, H. Mao, and W. J. Dally. Deep compression: Com-

pressing deep neural networks with pruning, trained quanti-

zation and huffman coding. In International Conference on

Learning Representations (ICLR), 2016.

[13] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2016.

[14] M. Horowitz. Computing’s energy problem (and what we

can do about it). In the IEEE International Solid-State Cir-

cuits Conference Digest of Technical Papers (ISSCC), pages

10–14. IEEE, 2014.

[15] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and

Y. Bengio. Binarized neural networks. In Advances in Neural

Information Processing Systems (NIPS), pages 4107–4115,

2016.

[16] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.

Dally, and K. Keutzer. Squeezenet: Alexnet-level accuracy

with 50x fewer parameters and <0.5 mb model size. arXiv

preprint arXiv:1602.07360, 2016.

[17] V. Jain and E. Learned-Miller. Fddb: A benchmark for face

detection in unconstrained settings. Technical Report UM-

CS-2010-009, University of Massachusetts, Amherst, 2010.

[18] Y. Jeon and J. Kim. Active convolution: Learning the shape

of convolution for image classification. In the IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

2017.

[19] F. Juefei-Xu, V. N. Boddeti, and M. Savvides. Local binary

convolutional neural networks. In the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2017.

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in Neural Information Processing Systems (NIPS),

pages 1097–1105, 2012.

[21] A. Kumar, S. Goyal, and M. Varma. Resource-efficient

machine learning in 2 kb ram for the internet of things.

In the 34th International Conference on Machine Learning

(ICML), pages 1935–1944, 2017.

[22] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.

Howard, W. Hubbard, and L. D. Jackel. Backpropagation

applied to handwritten zip code recognition. Neural Compu-

tation, 1(4):541–551, 1989.

[23] Y. LeCun, J. S. Denker, S. A. Solla, R. E. Howard, and L. D.

Jackel. Optimal brain damage. In Advances in Neural Infor-

mation Processing Systems (NIPS), 1989.

[24] J.-H. Lin, T. Xing, R. Zhao, M. Srivastava, Z. Zhang, Z. Tu,

and R. Gupta. Binarized convolutional neural networks with

separable filters for efficient hardware acceleration. In Com-

puter Vision and Pattern Recognition Workshop (CVPRW),

2017.

[25] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky.

Sparse convolutional neural networks. In the IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

2015.

[26] D. G. Lowe. Distinctive image features from scale-invariant

keypoints. In International Journal of Computer Vision

(IJCV), volume 60.2, pages 91–110. Springer, 2004.

[27] B. D. Lucas, T. Kanade, et al. An iterative image registra-

tion technique with an application to stereo vision. In Inter-

national Joint Conference on Artificial Intelligence (IJCAI).

Vancouver, British Columbia, 1981.

[28] T. Ojala, M. Pietikäinen, and D. Harwood. A comparative

study of texture measures with classification based on fea-

tured distributions. Pattern Recognition, 29(1):51–59, 1996.

[29] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi.

XNOR-Net: ImageNet Classification Using Binary Convo-

lutional Neural Networks. In European Conference on Com-

puter Vision (ECCV). Springer, Cham, 2016.

[30] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott,

P. Leong, M. Jahre, and K. Vissers. Finn: A frame-

work for fast, scalable binarized neural network inference.

In the ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays (FPGA), pages 65–74. ACM,

2017.

833

[31] T. Wang, D. J. Wu, A. Coates, and A. Y. Ng. End-to-end text

recognition with convolutional neural networks. In the 21st

International Conference on Pattern Recognition (ICPR),

pages 3304–3308. IEEE, 2012.

[32] X. Wang, T. X. Han, and S. Yan. An hog-lbp human detector

with partial occlusion handling. In the 2009 IEEE 12th the

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2009.

[33] C. Yao, X. Bai, and W. Liu. A unified framework for multi-

oriented text detection and recognition. IEEE Transactions

on Image Processing, 23(11):4737–4749, 2014.

[34] C. Yao, X. Bai, B. Shi, and W. Liu. Strokelets: A learned

multi-scale representation for scene text recognition. In the

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 4042–4049. IEEE, 2014.

[35] F. Yin, Q.-F. Wang, X.-Y. Zhang, and C.-L. Liu. Icdar 2013

chinese handwriting recognition competition. In Interna-

tional Conference on Document Analysis and Recognition

(ICDAR), pages 1464–1470. IEEE, 2013.

[36] Y. Yu, J. Li, C. Wen, H. Guan, H. Luo, and C. Wang.

Bag-of-visual-phrases and hierarchical deep models for traf-

fic sign detection and recognition in mobile laser scanning

data. ISPRS Journal of Photogrammetry and Remote Sens-

ing (P&RS), 113:106–123, 2016.

[37] R. Zhao, W. Song, W. Zhang, T. Xing, J.-H. Lin, M. Srivas-

tava, R. Gupta, and Z. Zhang. Accelerating binarized con-

volutional neural networks with software-programmable fp-

gas. In the ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays (FPGA), pages 15–24. ACM,

2017.

834

