
2-MAP: Aligned Visualizations for Comparison of High-Dimensional Point Sets

Xiaotong Liu1, Zeyu Zhang1, Roxana Leontie1, Abby Stylianou2, Robert Pless1

1George Washington University, 2Saint Louis University

liuxiaotong2017@gwu.edu

Abstract

Visualization tools like t-SNE and UMAP give insight

into the high-dimensional structure of datasets. When there

are related datasets (such as the high-dimensional repre-

sentations of image data created by two different Deep

Learning architectures), roughly aligning those visualiza-

tions helps to highlight both the similarities and differences.

In this paper we propose a method to align multiple low

dimensional UMAP visualizations by adding an alignment

term to the UMAP loss function. We provide an automated

procedure to find a weight for this term that encourages the

alignment but only minimally changes the fidelity of the un-

derlying embedding.

1. Introduction

The visualization of high-dimensional data is an increas-

ingly important tool in the machine learning development

pipeline. One approach to this visualization is to use di-

mensionality reduction tools like t-SNE [1] or UMAP [2],

which produce a low-dimensional embedding of the high d

bimensional points that attempts to preserve and display the

local neighborhoods and clustering relationships that exist

in the original representation.

These approaches, however, are not well suited for the

comparison of multiple related high-dimensional represen-

tations, even though this sort of comparison is often the rea-

son for the visualization, for example, to compare the rela-

tionships between raw data and a learned representation of

that data, or to compare two different representations of the

same dataset. In these cases, the low-dimensional visualiza-

tions produced by dimensionality reduction tools like t-SNE

and UMAP may not be well aligned, making it difficulty to

see how the representations compare and contrast.

There is often flexibility in how a high-dimensional

point set might be mapped from high-dimensions to low-

dimensions — for example, points in clusters in the high-

dimensional space may be mapped well to clusters in low-

dimensional space, but there may be various, equally good,

configurations of those clusters relative to each other. This

(a) UMAP - Raw Data (b) UMAP - 10D PCA

(c) 2-MAP - Raw Data (d) 2-MAP - 10D PCA

Figure 1: Using MNIST digits as a simple example, we

show (a) a UMAP visualization of the raw data (1a) and,

(b) a 10-dimensional PCA representation of the data. (c),(d)

show the aligned 2-MAP visualization. Because the points

are loosely aligned with each other, it is easier to find simi-

larities and differences between the two visualizations.

flexibility suggests an opportunity to align multiple visual-

izations of the related high-dimensional data without sub-

stantially changing the fidelity of each visualization, mak-

ing them significantly easier to compare. This is the goal of

this paper.

Figure 1 (top) shows an example of the UMAP visual-

ization of raw MNIST digits, and the UMAP visualization

of the 10-D PCA representation of the MNIST digits. The

bottom shows our aligned visualizations. Two things are no-

table. First, comparing the bottom left and bottom right vi-

sualizations of two related high-dimensional point sets, the

clusters for each class are in about the same place. For ex-

ample, the round, red class is on the left side, the elongated,

green class is on the right. This makes it easier to visually

see the differences between the representations. Second,

each visualization is locally similar to the unaligned ver-

sion. For example, in the raw data on the left, the “teapot”

2550

shape of the blue cluster, and the “rabbit ear” shape of the

overlapping of the three clusters in the center are preserved.

Similarly, in the PCA visualization on the right, the red and

chartreuse clusters remain connected, as do the purple and

gray clusters. This suggests that the visualizations, while

aligned, remain similarly good at visualizing the original

high-dimensional point set.

This alignment is achieved by running a modified ver-

sion of UMAP, called 2-MAP, which simultaneously em-

beds both high dimensional representations, and includes an

addition alignment loss to encourage the low dimensional

embeddings to be well aligned. The key question in im-

plementing such an alignment is how to balance the fidelity

of each embedding to its high dimensional representation

with the degree of alignment of the low dimensional em-

beddings.

In this work we explore this balance, and build an end-

to-end, parameter free tool to create aligned visualizations.

Specifically, our contributions are:

• the derivation of a simple algorithm that modifies the

popular and robust UMAP dimensionality reduction

tool to optimize the embedding of two related datasets

with an additional weighted alignment term;

• an approach to automatically choose the weight of the

alignment term to minimally affect the fidelity of each

embedding;

• an extension of this to work for more than two sequen-

tially related representations, such as the evolution of

deep learning representations during training; and

• several examples of the 2-MAP visualization approach

in different application domains.

Code for reproducing all experiments in this paper, and to

create the aligned 2-MAP embedding of any pair of related

high-dimensional point sets can be accessed at: https:

//github.com/GWUvision/2-MAP.

2. Background

t-SNE [1] and UMAP [2] are popular tools to create 2D

visualizations of high-dimensional data. While these visual-

izations are known to have limitations, they offer visual de-

pictions of how the points are clustered and/or distributed.

Both approaches optimize a cost function the encourages

the local distribution of points in the low-dimension space

be similar to the local distribution of points in the high-

dimensional space. Both are popular because their results

often give good intuition about the structure of point sets

when more classical approaches like PCA, MDS [3] or

Sammon Mapping [4] fail, or when the assumptions on

the manifold structures used by more complex non-linear

approaches including Isomap [5], LLE [6], and Laplacian

Eigenmaps [7] do not apply.

t-SNE is known to have limitations [8] arising from map-

ping a high-dimensional space down to two dimensions.

UMAP shares some of these limitations that arise from any

projection of points onto a much lower dimension, but more

explictly preserves larger scale structures [2], is usually

faster to compute, and is becoming the standard for many

problem domains [9], so we focus on making an aligned

version of UMAP.

While often the purpose of showing t-SNE or UMAP vi-

sualization is to give qualitative comparisons of two em-

beddings, allowing one to see, for example, generally how

many clusters there are. But richer comparisons require

some way to find correspondences between the represen-

tations to each other. One approach to this is interactive

visualizations, for example, the SleepWalk system provides

a number of interactive tools, so that hovering over a point

in one embedding highlights the same point in another em-

bedding [10], allowing a user to compare the local neigh-

borhood of the same point.

We know of only one work [11] that explicitly seeks

to align the t-SNE embeddings of related high-dimensional

point sets together. Our approach is similar to theirs – they

suggest simultaneously optimizing the standard t-SNE on

each each dataset and including an alignment error term that

penalizes the Euclidean distance between the embedded lo-

cation of corresponding points. However, they give no guid-

ance about how to set that parameter, creating the risk of

incorrect visualizations of each high-dimensional point set

because they are too aligned (and constraints from one high-

dimensional representation have leaked into the other), or

joint visualizations that are not as aligned as they could be.

3. 2-MAP

In this section, we will introduce our visualization

method for data comparison, 2-MAP, which is based

on Uniform Manifold Approximation and Projection

(UMAP) [2].

3.1. UMAP Algorithm

The UMAP algorithm for dimensionality reduction has

two phases: in the first phase, a weighted graph of the

high-dimensional data is created, by turning distance be-

tween nearby high-dimensional points into weighs; the sec-

ond phase involves the optimization of a cost function to

find a low-dimensional embedding which has the closest

structure to the original data. In the following description

of the UMAP algorithm, we follow the notation from [12].

In the first phase, the weights of the graph are given by:

vij = e−[(rij−ρi)/σi] (1)

2551

R
aw

d
at

a
1

0
-d

P
C

A

α = 10−7 α = 10−6 α = 10−5 α = 10−4 α = 10−3 α = 10−2 α = 10−1

Figure 2: A visualization of the scale selection process aligning the MNIST raw data and MNIST 10-D PCA result. (top)

Shows the mean and standard deviation of the U-MAP optimization score (for unaligned embeddings) from 10 random

initializations, as well as and the U-MAP cost when optimized with different weights α for the alignment errors.

Where rij is distance between high dimensional points i
and j, ρi is the distance of point i with its nearest neighbor,

k is the neighborhood size, and σi is a normalization term

which makes
∑

j vij = log2 k.

When point j isn’t in the k-nearest neighborhood of

point i, the weight vij is set to 0. The adjacency ma-

trix V contains all vij , and is symmetrized by: Vs =
V + V T − V ◦ V T , where ◦ is the Hadamard product.

In the second phase, UMAP solves for the low-

dimensional topological structure that optimizes the cross

entropy loss with the high-dimensional topological struc-

ture:

C =
∑

ij

[

vij log
vij
wij

+ (1− vij) log
1− vij
1− wij

]

(2)

The distances in the low-dimensional approximation are

estimated by the following family of curves:

wij =
1

(1 + ad2bij)
(3)

where dij is the pairwise distance between points i and j,

and a and b are hyperparameters that modify the shape of

the curve (the default parameters in the original UMAP im-

plementation are a = 1.277 and b = 0.895 [13]).

3.2. 2MAP Algorithm

While UMAP is useful for visualizing high-dimensional

representations of a dataset with a low-dimensional embed-

ding that preserves the local structure of the data, it is not

easy to compare different high-dimensional representations

of the same data (e.g., the original MNIST digits versus a

low-dimensional embedding of the data as seen in Figure 1).

To address this need, we introduce the 2-MAP approach

to visualizing multiple high-dimensional representations of

the same data.

In order to compare two or more representations of the

same data easily, we attempt to align corresponding points

in the different representations to the same location in the

low-dimensional embedding. We do this by simultaneously

performing the UMAP optimization while adding an addi-

tional pairwise penalty to the loss function. UMAP is usu-

ally optimized by directly computing the gradient of the loss

function, , or, adding a new gradient to ensure the differ-

ent low dimensional embeddings converge to similar global

structures while maintaining local structures that are faith-

ful to the high dimensional representation.

Assume we want to visualize two high-dimensional rep-

resentations, A and B, of the same data. The 2-MAP loss

function is computed as follows:

2552

C = CA + CB + α
∑

i

||yAi − yBi|| (4)

This equation combines two UMAP processes together

by adding a penalty term to the two original UMAP losses

(CA and CB). This penalty term is the sum of Euclidean

distances between all corresponding points in both maps

(yAi and yBi). This encourages the two low dimensional

mappings to be similar in global structure, enabling clear

comparisons between the two visualizations. A hyper-

parameter α defines the relative importance of this align-

ment penalty in the overall cost function.

3.3. Hyperparameter Selection

A large alignment penalty in the 2-MAP loss function

results in low-dimensional mappings that do not accurately

represent the local structure of the high-dimensional rep-

resentations (preserving this local structure is the benefit of

UMAP for visualization). In order to avoid this, we first per-

form a slight modification to the UMAP loss function that

facilitates comparison between embeddings, and addition-

ally propose a method to automatically select an appropri-

ate α (the scaling parameter in Equation 4) that sufficiently

preserves the local structure.

3.3.1 Cost Function for Comparison

In the original UMAP algorithm, cross entropy loss is used

to measure the difference between the high-dimensional and

low-dimensional topological structures. UMAP optimizes

this loss based the neighborhood graph structure.

This is, however, problematic in the 2-MAP applica-

tion. In the construction of the weighted graph of the high-

dimensional data, UMAP sets the weights, vij , between

points outside of the k-nearest neighborhood to zero.

The optimization then seeks low-dimensional point lo-

cations that make the corresponding wij weights 0, which

can only be realized if the points are infinitely far apart in

the low-dimensional embedding. If there are multiple con-

nected components in the original graph, this implies that

the optimization can always improve by pushing the dis-

joint components farther apart. The is a problem faced by

any UMAP implementation, but because UMAP is usually

used for visualization the exact cost is not so important and

the optimization is cut off after some number of steps.

In our case, to validate that an aligned visualization is

as good as an un-aligned visualization we need to compare

the costs. Stopping after the same number of steps does

not work because the joint optimization of 2-MAP does

not converge at the same rate as separately optimizing each

UMAP separately, and we end up comparing embeddings

that have gone through different amounts of the ”I’ve found

the right embedding, now I’m just pushing the clusters far-

ther apart” phase.

In order to address this, we measure a modified version

of the cross entropy loss for 2-MAP defined in in Equation 6

(For keep UMAP own properties, the original cross entropy

loss is still used for the actual optimization):

CM =
∑

ij

Cij (5)

Cij =

{

vij log
vij
wij

if vij = 0

vij log
vij
wij

+ (1− vij) log
1−vij
1−wij

otherwise

(6)

This modification removes the part of the cost function

that encourages disconnected points to be pushed farther

apart, and therefore gives a measurements that can be better

compared between different UMAP optimizations.

3.3.2 Scale Selection

In order to select an appropriate scaling term, α, that suffi-

ciently preserves the local structure, we consider running

UMAP on a single high-dimensional dataset many times

with random initializations – each of these runs will re-

sult in a different low-dimensional embedding of the same

high-dimensional data. We use the modified loss function

from Equation 6, and get the cost for a number of randomly

initialized low-dimensional UMAP embeddings. We can

then compute the mean and standard deviation of these (un-

aligned) embeddings as statistics of the cost of a ‘normal’

UMAP embedding. This provides a bound for acceptable

costs for an aligned 2-MAP embedding: if the cost of an

aligned low-dimensional 2-MAP embedding less than the

mean plus one standard deviation of the unaligned UMAP

embedding, then we accept it as preserving sufficiently pre-

serving the local structure of the high-dimensional data.

In order to search for the optimal α value, we first com-

pute the mean and standard deviation for randomly ini-

tialized unaligned embeddings. We then run 2-MAP with

α = 0.1 and measure the 2-MAP cost. If it isn’t in accept-

able range described above, we decrease α to 0.1 times α,

repeating this step until the 2-MAP cost is in the acceptable

range.

In Figure 2, we use such strategy on the MNIST dataset,

comparing the raw MNIST digit data with a 10-dimensional

PCA embedding of the digits. We compute the loss from

Equation 6 for the two dataset separately ten times using

random initialization, and get the mean and standard de-

viation of those costs to define the acceptable cost for the

aligned embeddings. Figure 2 shows the acceptable range

(the mean cost of the unaligned representations are shown in

red, and the +/− one standard deviation bounds in green),

2553

G
au

ss
ia

n
L

in
ea

r

α = 0 α = 10−6 α = 10−4 α = 10−2

Figure 3: The effect of the alignment parameter α when aligning a data set with four 100-D Gaussian distributions with a

100-D random walk. The top plot shows that as the scale of the alignment term increases, the 2-MAP cost also increases.

The four pairs of figures on the bottom show the aligned 2-MAP visualizations for increasing values of α.

with the cost of the aligned 2-MAP embeddings for differ-

ent α values, as well as their corresponding visualizations.

According to our algorithm, when α < 10−3 for

this data, the resulting 2-MAP visualizations can reflect

the high-dimensional structure well, while still preserving

each representation’s local structure. When α is not large

enough, the 2-MAP visualizations keep their own structure

and are well aligned. When α is too large, the 2-MAP vi-

sualizations are very similar to each other, but not represen-

tative of the actual local structure of each high-dimensional

representation.

If the two high-dimensional datasets are sufficiently dif-

ferent to each other, the only acceptable weight of α may

be extremely small, resulting in 2-MAP visualizations that

are not aligned – this is the desired behavior. We do not

want to artificially create aligned visualizations that are not

faithful to the original high-dimensional data. In order to

demonstrate this, we perform an experiment with two fake

datasets. One is built by combining four Gaussian distribu-

tions in 100 dimensions, while the other is a random walk

path in 100 dimensions. These two datasets have two very

different high-dimensional structures. In Figure 3, we show

that with the highest acceptable scaling term (α < 10−6), 2-

MAP does not yield a well-aligned visualization result. The

2-MAP embeddings are essentially identical to the orig-

inal UMAP embeddings. When we set a large penalty

α = 10−2, the 2-MAP result does not accurately reflect

the high-dimensional data.

3.4. Summary of Algorithm

To summarize the 2-MAP algorithm, for a given pair of

high-dimensional datasets, A and B:

1. Measure the variation of the normal, unaligned low-

dimensional embeddings, a and b, by running UMAP

10 times and recording the mean (µab = µa+µb)) and

standard deviation (σab = σa + σb)) of the modified

cost from Equation 6.

2. For decreasing values of α, solve for the aligned low-

dimensional embedding, aaligned and baligned, that min-

imize the modified cost in Equation 6, stopping when

that cost is less than µab + σab.

We have found the embedding to be not very sensitive

to the exact value of α, so we decrease α by a factor of 10

each time.

3.4.1 thruMAP

The 2-map algorithm can be extended to a sequence of high-

dimensional datasets, A1, A2, . . . , An, to create a temporal

sequence of aligned embeddings. We call this version of the

algorithm thruMAP, and it is implemented as follows:

2554

1. Run 2-MAP(A1, A2)

2. For i = 3 . . . n:

(a) Estimate the mean µai
and variation σai

of the

normal, unaligned low-dimensional embeddings,

ai, by running UMAP 10 times and recording

modified cost from Equation 6.

(b) For decreasing values of α, optimize the 2-MAP

loss function, only allowing the new embed-

ding ai to vary (holding ai−1 constant), stopping

when the modified cost is less than µai
+ σai

This does not give any guarantee that the overall set of

embeddings are the best aligned embeddings, but it does

guarantee that each embedding is similar to the un-aligned

embedding of that representation.

4. Example Use Cases

To highlight the potential applications of aligned visual-

izations, we explore three possible use cases with represen-

tations learned from words and images. The first case com-

pares image embeddings defined by the features at different

layers of a convolutional neural network. In the second case

we show that the alignment makes it easier to compare word

embeddings trained with two different datasets. The third

case, shows the evolution of a network during training, with

aligned visualizations of the representations learned after

different epochs.

In all cases, the weight of the 2-MAP alignment term was

set with the fully automatic approach defined in the previous

section, making this approach to 2-MAP require no more

user input than it would take to run UMAP on one dataset.

4.1. Learned Image Representations

An extensive line of research in image retrieval seeks

the learn image representations that capture semantic sim-

ilarities. Recent work compares the image retrieval per-

formance of representations based on the final fully con-

nected (FC) layer of a CNN, with representations based on

the penultimate Global Average Pooling (GAP) layer [16].

That work shows that features extracted from the GAP layer

generalize significantly better to new data and new classes.

Here, we use the 2-MAP algorithm to visualize this phe-

nomenon.

Training on the popular CAR-196 dataset[14], which in-

cludes 196 different classes of cars, we use Resnet-50 [17]

as our backbone network, optimized by N-Pair Loss [15].

After training, we pass all training data and validation data

through this trained model, recording the representation

vector from the global average pooling (GAP) layer output

and the fully connected (FC) output layer. Figure 4 shows

(a) Training - GAP (b) Training - FC

(c) Validation - GAP (d) Validation - FC

(e) (f)

Figure 4: Using the CAR-196 [14] dataset, trained with N-

Pair loss [15], we show on the top a 2-MAP visualization

of the training data, with the global average pooling (GAP)

layer representation on the left, and the fully connected (FC)

layer representation on the right. On the middle, we show

the 2-MAP visualizations of the validation data. The train-

ing data 2-MAP results are well aligned, making it to notice

clusters that are well separated in the FC representation but

not well separated in the GAP representation. Examples of

these clusters are shown in Figures 4e and 4f. In the valida-

tion data, the two datasets are sufficiently different that our

strategy does not align them.

the aligned 2-MAP embeddings of the GAP and FC repre-

sentations of the training data (top), and of the validation

data (middle).

The structure of the FC and GAP representations in the

validation data is quite different, and there is no good align-

ment, so our alignment procedure returns unrelated embed-

dings (although the additional structure in the embedding

of the validation data still highlights why the GAP layer

2555

(a) UMAP - GloVe (b) UMAP - ViCo

(c) 2-MAP - GloVe (d) 2-MAP - ViCo

(e) Selected region from GloVe 2-MAP

Figure 5: Comparing GloVe and ViCo word embedding fea-

tures using UMAP and 2-MAP. We show (a) UMAP visu-

alizations for the GloVe (5a) and (b) ViCo (5b) features.

Corresponding aligned 2-MAP visualizations are shown in

(c,d). Zooming in shows words that are similar in the GloVe

embedding but not in the ViCo embedding. The aligned 2-

MAP visualizations make it easy to find these sorts of dif-

ferences.

may give better image retrieval results). The relationship

between the GAP layer and the FC layer is more interesting

to compare in the aligned embeddings of the training data

representations. Because they are aligned, it is easier to find

the regions that have differences between the two embed-

dings. We highlight two examples with small red boxes in

places where the GAP layer embedding nearly merges two

classes, but the FC layer separates them well. The align-

ment helps to find these locations. Zooming into these re-

gions, the (bottom row) shows a few examples highlighting

that the nearby clusters are very similar car models. Further-

more, the specific images that are embedded between clus-

ters in the GAP embedding are the viewpoints from which

those models look even more similar, with extremely simi-

lar tail lights.

4.2. Word Embeddings

Similarly to learned image representations, there is also

significant work in learning how to represent language. In

the word embedding task, the goal is to learn a represen-

tation where meaningfully similar words have similar rep-

resentations. In this task, a low dimensional (2D or poten-

tially 3D) visualization is a powerful tool to show and anal-

yse the ability of a model. In this section we show how

2-MAP can be used to compare two different word embed-

ding approaches on the same dataset. The GloVe word em-

bedding features are trained using text only [18], while the

ViCo word embedding features are trained using both text

and associated images [19]. Figure 5 shows the UMAP and

2-MAP visualizations of both embeddings.

The 2-MAP visualization facilitates clear comparisons

between the two approaches. In particular, our eyes were

immediately drawn to the differences between the red and

green clusters in the bottom left of the 2-MAP visualiza-

tions – in the GloVe visualization (bottom left), there are

interspersed points from the two classes (outlined in black)

that are obviously not confused in the ViCo visualization

(bottom right). The red cluster corresponds to words in the

class ‘food’, while the green cluster corresponds to the ‘an-

imal’ class. In Figure 5e, we zoom in on this region and

look at the actual words that are being confused. The words

that GloVe embeds very nearby include ‘chicken’, ‘meat’,

‘lamb’ and ‘fish’ – all words whose correct class is disam-

biguated when images are able to help clarify whether the

word is referring to the animal or to meat, as in the ViCo

word embedding approach.

4.3. Visualizing Network Evolution

Aligning visualizations to each other makes it easier to

observe how representations change over time. We again

consider the CARS-196 dataset and use 2-MAP to observe

how the representation changes during the training. Fig-

ure 6 shows the output of the thruMAP algorithm giving

2556

tr
ai

n
in

g
v
al

id
at

io
n

epoch: init 5 10 15 20

Figure 6: For the CAR dataset, we learn an image representation by training Resnet50 [17] with N-pair loss [15]. This

figure shows how representations of training data and validation data change during the training process. The plot on the top

shows the training and validation accuracy during training. The aligned 2-MAP visualizations on the bottom show how the

representations of the training data and validation data change as training progresses.

aligned embeddings of both the training data (top) and the

validation data (bottom).

Because they are aligned, it is easy to see how quickly

most of the training data for this problem is separated into

clusters, with a few classes remaining more overlapping and

only becoming separated after many iterations. The valida-

tion data is less well clustered (sensibly, since the network

has not seen these classes), and the evolution of this repre-

sentation shows progress at a similar time-scale. Both the

timing of when substantial changes are happening, and the

final clustering is consistent with the change in accuracy as

a function of training iterations.

5. Discussion

Comparing multiple high-dimensional representations of

the same dataset is challenging. In the domain of image

representation learning, this is mostly done by comparing

image retrieval results. Standard visualizations based on

UMAP or t-SNE are not optimal for such comparisons be-

cause they may embed similar representations in very dif-

ferent ways. Sometimes these differences reflect truly im-

portant differences in the structure of the high-dimensional

representation, but sometimes the differences arise from ar-

bitrary choices in how to map local relationships in the high-

dimensional space onto the low-dimensional embedding.

Variations in those arbitrary choices are why one high-

dimensional representation may have many different em-

beddings with approximately the same cost, but this also

suggests that it is possible to re-arrange the two embeddings

to be similar to each other without increasing the cost. We

give a simple approach to do this, and show several exam-

ples of how this could be used by the research community to

better understand or explain different behaviors in the rep-

resentation learning field.

We extended this approach to a sequence of high-

dimensional representations. Future work could consider

a larger collection of representations that all need to be

aligned. However, it can be challenging to compare many

different embeddings side by side, even if they are well

aligned, suggesting the need for additional work in how best

to visualize and interact with this information.

2557

References

[1] Laurens van der Maaten and Geoffrey Hinton. Visu-

alizing data using t-sne. Journal of machine learning

research, 9(Nov):2579–2605, 2008.

[2] Leland McInnes, John Healy, and James Melville.

Umap: Uniform manifold approximation and pro-

jection for dimension reduction. arXiv preprint

arXiv:1802.03426, 2018.

[3] Trevor F Cox and Michael AA Cox. Multidimensional

scaling. Chapman and Hall/CRC, 2000.

[4] John W Sammon. A nonlinear mapping for data

structure analysis. IEEE Transactions on computers,

100(5):401–409, 1969.

[5] Joshua B Tenenbaum, Vin De Silva, and John C Lang-

ford. A global geometric framework for nonlinear

dimensionality reduction. Science, 290(5500):2319–

2323, 2000.

[6] Sam T Roweis and Lawrence K Saul. Nonlinear di-

mensionality reduction by locally linear embedding.

Science, 290(5500):2323–2326, 2000.

[7] Mikhail Belkin and Partha Niyogi. Laplacian eigen-

maps and spectral techniques for embedding and clus-

tering. In Advances in neural information processing

systems, pages 585–591, 2002.

[8] Martin Wattenberg, Fernanda Viégas, and Ian John-

son. How to use t-SNE effectively. Distill, 1(10):e2,

2016.

[9] Etienne Becht, Charles-Antoine Dutertre, Im-

manuel WH Kwok, Lai Guan Ng, Florent Ginhoux,

and Evan W Newell. Evaluation of UMAP as an

alternative to t-sne for single-cell data. bioRxiv, page

298430, 2018.

[10] Svetlana Ovchinnikova and Simon Anders. Explor-

ing dimension-reduced embeddings with sleepwalk.

bioRxiv, 2019.

[11] Paulo E. Rauber, Alexandre X. Falcão, and Alexan-

dru C. Telea. Visualizing time-dependent data us-

ing dynamic t-sne. In Proceedings of the Eurograph-

ics / IEEE VGTC Conference on Visualization: Short

Papers, EuroVis ’16, pages 73–77, Goslar Germany,

Germany, 2016. Eurographics Association.

[12] James Melville. smallvis documentation. Avail-

able at https://jlmelville.github.io/

smallvis/.

[13] Leland McInnes, John Healy, Nathaniel Saul, and

Lukas Grossberger. Umap: Uniform manifold approx-

imation and projection. The Journal of Open Source

Software, 3(29):861, 2018.

[14] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-

Fei. 3d object representations for fine-grained catego-

rization. In 4th International IEEE Workshop on 3D

Representation and Recognition (3dRR-13), Sydney,

Australia, 2013.

[15] Kihyuk Sohn. Improved deep metric learning with

multi-class n-pair loss objective. In D. D. Lee,

M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Gar-

nett, editors, Advances in Neural Information Process-

ing Systems 29, pages 1857–1865. Curran Associates,

Inc., 2016.

[16] Nam Vo and James Hays. Generalization in metric

learning: Should the embedding layer be embedding

layer? In 2019 IEEE Winter Conference on Appli-

cations of Computer Vision (WACV), pages 589–598.

IEEE, 2019.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep residual learning for image recognition. In

Proc. IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), June 2016.

[18] Jeffrey Pennington, Richard Socher, and Christopher

Manning. Glove: Global vectors for word repre-

sentation. In Proceedings of the 2014 conference

on empirical methods in natural language processing

(EMNLP), pages 1532–1543, 2014.

[19] Tanmay Gupta, Alexander Schwing, and Derek

Hoiem. ViCo: Word embeddings from visual co-

occurrences. arXiv preprint arXiv:1908.08527, 2019.

2558

