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Abstract

Synthesizing a novel view from different viewpoints has

been an essential problem in 3D vision. Among a variety

of view synthesis tasks, single image based view synthe-

sis is particularly challenging. Recent works address this

problem by a fixed number of image planes of discrete dis-

parities, which tend to generate structurally inconsistent re-

sults on wide-baseline, scene-complicated datasets such as

KITTI. In this paper, we propose the Self-Guided Elastic

Displacement Network (SG-EDN), which explicitly models

the geometric transformation by a novel non-discrete scene

representation called layered displacement maps (LDM). To

generate realistic views, we exploit the positional charac-

teristics of the displacement maps and design a multi-scale

structural pyramid for self-guided filtering on the displace-

ment maps. To optimize efficiency and scene-adaptivity,

we allow the effective range of each displacement map to

be ‘elastic’, with fully learnable parameters. Experimen-

tal results confirm that our framework outperforms existing

methods in both quantitative and qualitative tests.

1. Introduction

The perception of the 3D shape in our world is a long

pursuing problem for computer vision research. Among a

variety of 3D vision tasks, reasoning from limited data or

partial observations is considered to be quite challenging,

including novel view synthesis: given one or more views of

a 3D scene, predict the projected image of the same scene,

but from a previously unseen viewing angle.

Although human beings can do well in hallucinating the

view from another perspective, computers still find it a chal-

lenging task. Over the past decades, researchers propose

to conduct view interpolation with a predefined 3D model

from multiple views [37, 3]. They usually demand a rela-

tively large amount of multi-view images (which are gener-

ally more than two images) as input, additional information
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Figure 1. Challenging examples in KITTI [20]. For thin objects

(e.g. poles) and smooth textures (e.g. car surface), structural con-

sistency could be a major issue in novel view synthesis task. Our

proposed framework is designed to handle the complex scenes for

wide-baseline stereo pairs, with effective scene representation and

self-guided filtering to enforce the structural consistency.

such as depth maps as an auxiliary hint. For a long time,

there have been very few practically usable frameworks for

single image based view synthesis. With recent rise of deep

learning, several works attempt to addressed this problem

by learning-based appearance warping [43], shifting planes

[39], spatially-variant kernels [23], and homographies [18].

Despite the progress, the single-image novel view syn-

thesis problem is far from being solved. The first issue is

structure coherence. As shown in Figure 1, when applied

on high-resolution stereo pairs of wide baselines and com-

plex scenes, these methods usually give structurally incon-
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Figure 2. For novel view synthesis problem, pixel correspondence

should not be restricted to one-to-one (e.g., disparity warping).

The toy example shows a scenario in which one red pixel vanishes,

and one blue pixel emerges, which is not one-to-one.

sistent results. Small and thin objects usually suffer severe

deformation, and ambiguity emerges in texture-less areas.

The main reason behind this is that it directly depends on

photometric reconstruction loss as supervision thus cannot

enforce structural consistency.

The second issue is inflexibility in pixel correspondence.

As shown in Figure 2, unlike other 3D vision tasks, ‘pixel

shift’ in view synthesis requires a more flexible pixel cor-

respondence setting. In transformation between two view-

points, pixels can vanish, surfaces can shrink, objects can be

de-occluded. Only using pixel-to-pixel model or wrapping

by disparity cannot well formulate the process; instead, we

need a flexible pixel correspondence model that naturally

supports many-to-many pixel correspondence.

The third issue is continuity versus efficiency. On the

one hand, plane-sweep based methods like Deep3D [39]

and MPI [42, 32] approximate the transformation by a small

fixed number of shifting planes, which is computationally

efficient but does not support fine-grained disparities in two

consecutive planes. On the other hand, spatially-variant

kernels [5] have continuous shifting range but come with

high computation and memory cost. Therefore, we need an

effective 3D representation for learning the view synthesis

task, which should be able to model any shifting operation

with a continuous range, and of low cost.

To address the three issues, we proposed the Self-Guided

Elastic Displacement Network (SG-EDN). We design a new

3D representation in the spatial domain by modeling the

pixel displacement between two views. It supports the

many-to-many pixel correspondence desired in the view

synthesis task. Modeling the pixel displacement also guar-

antees that objects on the displacement map lie in the same

position as the objects in the input image. Taking advan-

tage of that property, we embed a guided filtering process

in the network to enforce structural consistency between

the input image and the displacement maps. To leverage

efficiency and continuity, we introduce a new3D represen-

tation for view synthesis task, which is Layered Displace-

ment Maps (LDMs), which is inspired by multi-plane image

(MPIs) [42] and layered depth images (LDIs) [10].

Different from prior representations where each plane

only corresponds to a fixed depth or disparities, each dis-

placement map in LDM corresponds to a continuous range

of displacements. Furthermore, instead of manually setting

the displacement range for each interval, we create a small

module inside the network to learn the optimized choice

for each interval. This design ensures that each interval is

maximally utilized, where the change from ‘static’ to ‘elas-

tic’ grants more flexible displacement predictions with less

computational costs.

In short, our contributions are threefold:

• We propose a new framework SG-EDN for the chal-

lenging task of novel view synthesis from a single im-

age. The network explicitly enforces structural and ge-

ometric consistency by using the input image as self-

guidance for spatial transformation estimation.

• We derive a new 3D representation layered displace-

ment maps (LDM) for the novel view synthesis task.

Different from previous presentations that use discrete

approximated depths, our representation supports any

continuous prediction for displacements.

• We introduce an elastic module that can learn the ef-

fective range of displacement maps based on input data

distribution. This design grants more flexibility in dis-

placement predictions with less computational cost.

2. Related Work

Rendering-Based NVS View synthesis has been exten-

sively studied in the traditional computer graphics. Many

previous works have been proposed to consider novel view

synthesis as a rendering problem, including interpolating

rays from dense imagery and light fields [8, 17, 21], recon-

structing the 3D scene representation based on multiple in-

puts images [19, 11]. These methods mainly require multi-

ple views (usually more than 3) as inputs. Besides methods

setting a high standard for input data, there are other ap-

proaches that require a bank of known 3D structures or tex-

tures as an example for view synthesis, including instance-

based 3D model matching [27], and texture matching [22].

Geometry-Based NVS In computer vision, NVS re-

ceives more attention on the correctness of the predicted ge-

ometry [30, 31]. Instead of depending on dense reconstruc-

tion in the rendering process [8, 17], many works consider

the occluded areas in multi-view stereopsis, where some

pixels are missing in other views. Traditional approaches

first reconstruct a partial scene with non-occluded areas,

then fill the holes of occlusion by additional information

like depth [44]. While such methods have relatively robust

geometry modeling, they need multi-view images as input,

as long as depth information as an additional guide.

Learning-Based NVS, The powerful capability of deep

neural network inspires later works to learn from diverse

scene data. DeepStereo [6] is proposed as one of the

pioneering works to learn novel view synthesis from the
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world’s imagery. Learning-based rendering systems’ per-

formance has also been improved by using more delicate

deep architectures [15, 33, 25]. In the meanwhile, recent

research has also addressed the importance of conducting

synthesis based on fewer input images. A learning-based

rendering system is proposed in [42], which takes two views

from a narrow-baseline stereo camera and use view extrap-

olation to magnify the baseline to fit wider baselines. There

is only few research attempt to tackle the view synthesis

problem from a single image. Appearance flow [43] esti-

mates the photometric difference to model the transforma-

tion between the views. Deep3D [39] proposes to generate

3D movies from 2D videos. Beside scene-level, objective-

level view synthesis is also studied in [33, 24, 40].

Structural-Geometric Coherence For novel view syn-

thesis from a single image, preserving structural and geo-

metric coherence is especially hard. One of the main rea-

sons is that a single image as input does not have rich ge-

ometric cues to enforce structural constraints. Few prior

works have explicitly modeled such constraints for single-

image NVS. [28] proposed a collection of 3D models and

used the most similar exemplar as a guide for an input im-

age. New methods use plane-sweep with region selection

mechanism to model the geometry [18, 39, 42], but the

depth corresponding to each selected planes is discrete, and

no further structural constraints for thin objects is enforced.

3. Our Approach

The task of single image-based novel view synthesis

(NVS) can be formulated as follows: Given an input image

I , we aim to predict the latent novel view Î from a differ-

ent viewing angle. In a rectified stereo setting, this scenario

can be simplified into the following: For a rectified stereo

pair with a specific baseline,1 given image IL from the left

camera, our goal is to predict image IR for the right camera.

3.1. LDM Scene Representation

As shown in Table 1, there are potentially many ways to

represent the spatial transformation between the input im-

age IL and output image IR. A proper scene representation

for novel view synthesis should not only encode the geomet-

ric information in its design but also be efficient and con-

tinuous, meaning that fine-grained spatial transformation of

any range can be well modeled by this representation.

One intuitive approach is to use disparity to warp the left

view to the right view. However, disparity warping makes

an overly strong assumption: we only need one-to-one pixel

correspondence to solve the problem. As shown in Figure 2,

the transformation from the input view to the novel view

1Baseline varies on datasets, from around 1cm (dual-cameras on mo-

bile phones), to 6-8cm (human stereopsis), all the way up to 50-100cm

(KITTI). More substantial baseline usually corresponds to more challenges

like occlusion and long-range displacement.

Figure 3. Scene representations for NVS task. All shapes are of

45 degrees intersection with the camera plane. MPI [42] represen-

tation uses a number of image planes with discrete depth (in the

example is 2,4,8) for approximation, which is suboptimal for these

shapes in between the planes. Our LDM representation is shown in

the right, where each plane corresponds to a displacement interval

([0,2], [2,4], or [4,8]). This design supports continuous displace-

ment and can model any displacement within its range.

usually involves a sheer transformation or occlusion. They

are not one-to-one but many-to-many pixel correspondence.

To capture the many-to-many pixel correspondence, we

propose a new scene representation called layered displace-

ment maps (LDM). The idea is is inspired by layered depth

images (LDI) in [10, 35] and multi-plane images (MPI) in

[42], which constructs n image planes P of discrete depth

dk to describe the 3D scene for view synthesis:

{P d1 , ..., P dk , ..., P dn}, P dk

i,j ∈ [0, 255]

where Pdk
is a slice of plane-sweep from the input image

IL of depth dk. In fact, Pdk
shares the same size as IL

and IR, which is H × W × 3. As the modeling assump-

tion indicates, Pdk
should include objects around depth dk

in the scene. Applying n planes with discrete depth as ap-

proximation has its limitations: (1) not capable of captur-

ing depth in between the planes (2) inconsistent for objects

across multiple planes. Although this approximation some-

how works for datasets with small baselines and short-range

displacement (such as human stereopsis), it is not theoret-

ically sound when applied on wider baseline datasets with

long-range spatial transformation.

To overcome the aforementioned drawbacks, we build

the scene representation in the spatial domain by model-

ing the displacement between the views, instead of directly

predicting the appearance of the novel view. One simpli-

fied illustration of our representation is shown in Figure 3.

Rather than directly predicting the multi-plane RGB images

after the shift operation, our representation predicts a set of

displacement maps (planes) D to describe the displacement

per pixel:

{D1, ..., Dk, ..., Dn}, Dk
i,j ∈ [λk−1, λk]

where each map Dk is of size H×W ×1 and should be re-
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Table 1. Various scene representations for NVS task. We compare the memory cost (* denotes approximation on KITTI dataset), domain

of modelling (ST for spatial transformation domain, AP for appearance domain), number of inputs, continuity, and pixel correspondence.

Disparity Warpping [7] Selection Mask [39] Dynamic Filters [23] MPI [42, 32] LDM (Ours)

Mem. Cost H ×W × 1 H ×W × 192 H ×W × 192 H ×W × 150
∗ H ×W × 24

Operation Domain ST AP ST AP ST

Num. of Inputs? 1 1 1 2 1

Continuous? ✓ ✗ ✗ ✗ ✓

Many-to-Many? ✗ ✓ ✓ ✓ ✓

sponsible for estimating a specific range of the displacement

[λk−1, λk]. Thus the displacement prediction of each pixel

could lie in a continuous range. The upper bound λk−1 and

lower bound λk of the range can be manually determined or

learned from the data distribution. For a pixel with position

i, j, the pixel correspondence from the input left view IL to

the novel right view IR can be formulated as:

IR(i, j) =
n
∑

k=1

IL(i+Dk
i,j , j) (1)

where the final pixel at IR(i, j) is an aggregation of at most

n plausible pixels at different displacement range from IL.

As discussed before, the LDM representation could degrade

to disparity map with a special case of n = 1, and λ0 = 0,

λ1 = max(disp). To capture the potential one-to-many

pixel correspondence, we will discuss the choice of n in our

experiment section. In practice, objects at the front should

have a longer range of horizontal shift, which is captured by

Dk with intervals lying in large displacement.

Nevertheless, directly combining n plausible pixels from

the source view does not agree with the internal 3D geom-

etry. The source of rare-occurring pixels (e.g., thin objects

in KITTI dataset) is strictly restricted and might not be as

many as n. Besides, occlusion is not well-formulated in

the representation, which means after the displacement, the

pixels for objects at the back should be replaced by pixels of

the objects in the front. To alleviate such a problem, we ad-

ditionally introduce a set of confidence maps C in our LDM

representation:

{C1, ..., Ck, ..., Cn}, Ck
i,j ∈ [0, 1]

where Ck is of sizeH×W ×1, and Ck
i,j corresponds to the

transparency of the pixel i, j when aggregating n plausible

pixels. So the pixel correspondence now becomes:

IR(i, j) =
n
∑

k=1

Ck(i+Dk
i,j , j) ∗ IL(i+Dk

i,j , j) (2)

where ∗ denotes the dot product. In our SG-EDN design,

the displacement map Dk, the confidence map Ck, and the

upper bound λk and lower bound λk−1 can all be learned

inside our SG-EDN framework.

3.2. Self­Guided Structure Filtering

The benefits of adopting our LDM representations are

not limited to its capability depicting inherent geometry in a

continuous manner. Moreover, predicting the spatial trans-

formation instead of the directly predicting the shifted RGB

images grants a crucial characteristic: Differs from shifted

RGB images with already different positions, objects on the

displacement map lie in the same position as in objects in

the input image plane. In other words, where there is an

edge or structure in the image plane, there should be a sim-

ilar edge at the displacement maps; the only unknown is-

sue is which map. Taking advantage of that characteristic,

we could exploit the structural hints for objects in the in-

put image to refine the object shape of the corresponding

(activated) displacement map.

Edge-aware filters are particularly proficient in revealing

the structures and edges of an object but ignoring smooth

textures in the object surface. When predicting the novel

view, regions with smooth textures and similar color to

the background usually result in ambiguities for match-

ing, which is a hard-to-solve problem for view synthesis

and stereo matching. However, edge-aware filtering can

be operated on the spatial domain of our LDM represen-

tations, where the objects in the displacement map are usu-

ally smooth inside with an edge, which can be refined by

structural hints from the input view.

To enforce the structural consistency, we proposed to

embed deep guided filter [38] in our network so that the

input image IL serves as a self-guidance for structure hints.

Guided image filter was originally proposed in [9]. It as-

sumes that the filter output Oi is a linear transform of guid-

ance Gi in any window ωk centered at pixel k:

Oi = akGi + bk, ∀i ∈ ωk, (3)

where i is the index of the pixel. The linear coefficients

(ak, bk) is assumed to be constant in the window wk. The

local linear model ensures that O has an edge only if G has

an edge because ∇O = a ·∇G. In addition, the filter output

Oi should be similar to the input Pi with the constraint:

E(ak, bk) =
∑

k:i∈ωk

((Oi − Pi)
2 + ǫa2k), (4)

where ǫ is a regularization parameter. By minimizing

E(ak, bk), we can get the filtered output O. We use ni

to denote the difference between Oi and Pi. In our task,

we use the left view IL as the guide G, and the s-th dis-

placement map Ds of the LDM as the output O. One real-

world example showing this effect of the filtering process is

shown in Figure 4. According to the property of guided fil-

ter, the gradient in the s-th displacement map ∇Ds should
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Figure 4. Illustration of the guided filtering process. We use a

patch from KITTI dataset [20] to demonstrate the filtering effect.

Since the image in the unfiltered displacement map shares the

same position with the original input image, we are able to use

left image as structure guide for filtering. After filtering, edges in

the output displacement map is closer to the original shape.

be structurally consistent with the gradient of the guide im-

age ∇IL. We take advantage of the edge-preserving prop-

erty of the deep guided filters, which help to refine the dis-

placement maps based on the shape knowledge, thus lead to

structurally robust predictions.

3.3. Elastic Displacement Network

The overview of our SG-EDN framework is shown in

Figure 6, which contains several components: a feature ex-

tractor to extract features from the input view and encode

the spatial-domain information; a structure pyramid to ex-

tract crucial structural hints as self-guidance; a transforma-

tion estimator linked with the previous feature extractor to

refine the shape and edge of the prediction using the self-

guidance; finally a blending components to turn the pre-

dicted displacement maps, confidence maps, and interval

bounds into the LDM representation and render the final

novel view. Additionally, we insert two deep guided filter

layers after the last two upsampling operations, which take

guidance maps of half-size/full-size respectively and refine

the structure of the prediction in a coarse-to-fine manner.

Backbone Network We choose design similar to U-Net

[29] as the backbone for our feature extractor and transfor-

mation estimator. We made several modifications to it for

our view synthesis task: for the convolution layers in the

feature extractor (the encoder part), we use dilated convo-

lution of dilation 1,3,5 consecutively, which is found to be

helpful in generating fine-grained predictions for small ob-

jects in the semantic segmentation task [4]. Adding dilation

into the feature extractor aims at increasing the receptive

fields, which could be critical in long-range displacements

for wide baseline novel view synthesis. Another modi-

Figure 5. Intermediate displacement maps. The three rows are dis-

placement maps corresponding to the foreground, middleground,

and background. We use the heat map to visualize the value of the

displacement map (purple denotes low and yellow denotes high).

With the structural guide, some of the noise in the unfiltered dis-

placement maps can be removed. It can be observed that the final

displacement maps are with most refined edges.

fication is that we use the dense upsampling convolution

(DUC) [36] to substitute the deterministic bilinear upsam-

pling layer. Doing that could ensure the upsampling process

to be learnable, with a light-weighted extra cost in the trade

of better scene adaptivity.

Structure Pyramid As for the design of the structure

pyramid, we use several convolution layers with an average

pooling layer to generate self-guidance with full image size

and half image size. Considering each displacement map

Dk corresponds to its range [λk−1, λk], where ideally only

the shapes of displacement within that range should appear

on the map. The convolution layer generates a H ×W × n

self-guidance, where each channel corresponds to one dis-

placement map.

Blending There are three branches of our network for

three types of output: the displacement mapsD of sizeH×
W×n; the corresponding confidence mapsH×W×n, with

a sigmoid layer to restrict its value between 0 and 1; and λk
to determine the range of each displacement map. Instead

of setting the range to be uniform, we find that for each

image in a view synthesis dataset, the distribution of the

pixel displacements could be divergent. For some popular

displacement ranges where most pixels lie within the range,

it should have denser displacement maps for fine-grained

estimation. For some range with scant pixel distribution,

one or two displacement maps should be enough to cover.

From that intuition, we design a small module to predict

the range of each displacement map and let the range to be

‘elastic’ for different images and datasets. For the range

prediction branch, we first apply average pooling to shrink

the spatial size of the feature maps, considering the range

prediction only cares about the overall distribution. After

several convolutions, we flatten the feature maps channel-
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Figure 6. Illustration of our SG-EDN framework. The upper left part of this figure describes the high-level functionality of each module.

The rest of the figure illustrates the detailed design of each module. There are two branches for the input view: the main branch is a

feature extractor connected with a spatial transformation estimator; the supplementary branch includes a convolutional pyramid to generate

self-guidance in full and half resolution, which is later used in the guided filtering process to preserve structural consistency. The backbone

network predicts the displacement maps D, confidence maps C, and displacement range parameters λ, which later constructs the LDM

representation. The last step is the blending process based on the LDM representation, which essentially shifts the pixels in the original

input view by differential sampling. After that, the novel view is obtained as output.

wisely and feed the feature vector into a fully connected

layer and a softmax layer, which output a probability vector

v of size n× 1. The final range λk is calculated by:

λk =
vk

∑k−1

i vk
λmax (5)

where λmax is a predefined parameter and usually corre-

lated with the maximum disparity of the dataset. With λk,

we can re-normalize the values in the displacement map:

D̄k =
Dk − min(Dk)

max(Dk)− min(Dk)
∗ (λk − λk−1) + λk−1 (6)

Here we use D̄k to denote displacements maps after nor-

malization. To perform the final displacement, we use the

differentiable image sampling [13] to obtain the final novel

view image IR:

IR(i, j) =
n
∑

k=1

Ck(i, j)∗IL(i+D̄
k
i,j , j)∗Φ(i+D̄

k
i,j , j) (7)

where Ck(i, j) is the corresponding confidence map, and Φ
denotes the sampling kernel, here we use the bilinear kernel

for 2D differentiable sampling.

3.4. Optimization

As discussed in Figure 2, different from fixed regression

tasks like depth estimation, the nature of novel view synthe-

sis problem involves complicated ‘one-to-many’ pixel cor-

respondences. Since there is no direct supervision for the

inherent scene representation, we aims to learn the inherent

scene representations by indirect supervision between the

predicted novel view IR and the ground-truth ÎR
Photo Loss The first loss is the photometric loss consist-

ing of the l1-loss and MS-SSIM, where the l1 loss supervise

the pixel-level predictions and MS-SSIM should reflect the

structural differences for scale-variant objects:

Lphoto = α · ‖ÎR − IR‖1 + (1− α) · (ÎR, IR)SSIM (8)

and the value of α is the balancing hyperparameter, which

is set to be 0.84 in our experiment as suggested in [41].

Content Loss To consider the context of large local re-

gions and their high-level semantic differences. We propose

to use the perceptual loss proposed in [14]. It is defined as

the l2-norm between feature representations of the restored

right view ÎR and the latent right view IR:

Lfeat =
1

CjHjWj

∥

∥

∥
ψj(ÎR)− ψj(IR)

∥

∥

∥
(9)

where ψj() denotes the feature map from the j-th VGG-19

convolutional layer and Cj , Hj , Wj are the number, height

and width of the feature maps, respectively.

Adversarial Loss Although IR can well supervise most

regions of the scenes, there are always some regions need-

ing generative modeling. For the pixels that are previously
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Figure 7. Qualitative evaluation on KITTI dataset. For each scene, from the top to the bottom are SepConv [23], Deep3D [39], LRDepth

[7], and SG-EDN (ours), ground-truth right image. Each of the four scene contains typically challenging regions for novel view synthesis:

small objects like poles and signs, and ambiguous texture-less areas like the the white walls.

occluded in the input view or objects with larger projection

areas in the novel view, there exist many plausible solutions

other than IR. Simply regressing on IR would lead to blurry

results for such regions. Inspired by the insights in image

inpainting task [26], we apply the adversarial loss Ladv to

determine whether the generated region is realistic or not.

We configure our discriminator with architecture similar to

Pix2Pix [12], but only inputs the 3-channel novel view IR
to the discriminator. The overall loss function for the guided

view synthesis framework is:

Ltotal = β · Lphoto + (1− β) · Lfeat + σ · Ladv (10)

where β and σ are hyper-parameters to balance loss terms.

4. Experiments

4.1. Experimental Settings

Datasets We first set up the comparison on KITTI

dataset [20], which contains various types of scenes with

a large baseline, with a large range of displacements. We

train all the models on the same dataset if it is not originally

trained on KITTI, using the official release code. We use

KITTI RAW for training, which contains a total of 42382

rectified stereo pairs captured from 61 scenes. We bench-

mark all the models on the images provided for testing in

KITTI 2015 dataset. Additionally, we include the MPI Sin-

tel Stereo [2] dataset and an additional 3D movie dataset for

ablation study and visual quality examination.

Evaluation Metrics We use the same metrics in previ-

ous works [18, 39]: RMSE, PSNR, and SSIM, where the

first two metrics focus on evaluating the pixel-wise differ-

ences, and SSIM aims at assessing the structural differ-

ences, which is closer to human visual perception and more

crucial to 3D vision task. Additionally, considering our task

Table 2. Benchmark on KITTI dataset. Our model outperforms the

previous methods. We include SSIM and Inception score as ad-

dition to pixel-level metrics, producing geometrically correct and

photometrically pleasing view is more crucial.

RMSE↓ PSNR↑ SSIM↑ Inception↑

SepConv 28.03 19.17 0.685 3.469

Deep3D 27.46 19.65 0.692 3.591

LRDepth 30.49 18.62 0.663 3.624

Ours(n=16, static) 26.54 19.93 0.713 3.573

Ours(n=16, elastic) 25.97 20.01 0.716 3.621

Ours(n=24, static) 26.05 20.35 0.720 3.782

Ours(n=24, elastic) 25.36 20.79 0.725 3.789

is a synthesis task, we also include the learning-based in-

ception score [1] as additional image quality and realism

metric. We random sample small patches and feed into In-

ceptionV3 [34] network to get the inception score.

Implementation Details In the training step, we config-

ure the deep guided filtering layer with radius r of 3 pixels

and the searching threshold ǫ of 1e−2. We set the three bal-

ancing factors α, β and σ to be 0.84 (as suggested in [41]),

0.5, and 0.1 respectively. For KITTI dataset, we set the

λmax to be 192. For MPI Sintel dataset, we set the λmax to

be 96. For KITTI dataset, we use the size of 1280 ∗ 320 for

training, which is very close to the original size of KITTI

images. For MPI Sintel dataset, we use the size of 800∗320
for training. We adopt Adam [16] optimizer to for our net-

work with β1 = 0.9 and β2 = 0.999. For the training

strategy, the initial learning rate is set to be 1e−5 and is set

to be multiplied by 0.9 after every epoch.

4.2. Comparison and Benchmarks

Quantitative Results The results are shown in Table

2, where we include the SepConv [22], Deep3D [39] and

LRDepth [7] as comparison. We particularly emphasize on

SSIM, which is critical for visual perception and geome-
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Figure 8. Comparison of results w. and w/o. structural guidance.

In each column, from top to bottom are: the left view as input,

novel view generated without the structure guide, novel view gen-

erated with structure guide, the ground-truth right view. It can be

observed that structure consistency in the ambiguous regions and

thin objects has been significantly improved with our design.

try reasoning. It can be observed that with our baseline

setting of 16 displacement maps and no elastic modules,

our framework already archives better performance, which

mainly contributed by the design of continuous scene rep-

resentation and the structure-guided filtering process.

Qualitative Results For qualitative evaluation, we care-

fully examine the KITTI testing dataset and choose sev-

eral images as the most challenging cases for our assess-

ment. The scene in the images should contain small, thin,

or rarely-occurring objects, ambiguous texture-less regions

which are hard for pixel correspondence search. An over-

all qualitative comparison is shown in Figure 7, where our

framework specializes in challenging cases and generate

more structurally convincing results.

4.3. Performance Analysis

Framework Visualization We visualize the intermedi-

ate displacement maps before and after the guided filtering

process. The visualization is shown in Figure 5. One in-

teresting fact is that each displacement layer contains noisy

regions before the filtering, and each structure guide map

specifically emphasizes different structural components of

the scene. After the guided filtering process, the contents in

the displacement maps are more focused on the objects in

their assigned ranges. A close-up illustration of the guided

filtering process is also in Figure 4, which uses a simple

object to demonstrate the mechanism behind the filtering

layer, as well as why shared object position in input image

and displacement maps matters.

LDM Configuration We include the comparison of

numbers of displacement maps and the range assigning

mechanism. There are two choices or mechanism, elastic

Figure 9. Qualitative results on 3D movie dataset. Since SepConv

[23] aims at video interpolation in the original paper, we train our

model and SepConv on our 3D movie dataset and test its visual

quality. For each scene, from top to bottom are: results from Sep-

Conv [23], results from our framework, the groundtruth right view.

Although the scene is not as challenging as KITTI, we can still ob-

serve sharper and more realistic results in our framework.

or static, where elastic means our design with learned λk
range parameter, and static means that we uniformly assign

the range according to the number of displacement maps.

As shown in Table 2, we observe improvements in evalua-

tion metrics when we increase the number of n from 16 to

24, also when changing from static to elastic.

Guided Structure Filtering We use a controlled-variant

setting to check the real effect of the guided filtering pro-

cess on MPI Sintel dataset[2]. The metric for evaluation

is shown in Table 3. Challenging cases containing varying

ranges of displacements are shown in Figure 8.

Table 3. Effect of structure guide on MPI Sintel datset. We train

two networks w. and w/o. guided filtering and structure pyramids.

RMSE↓ PSNR↑ SSIM↑

Ours(w/o. structure guide) 26.78 20.21 0.718

Ours(w. structure guide) 24.29 21.65 0.745

5. Conclusion

Our work presents the self-guided elastic displacement

network (SG-EDN) and a new scene representation called

the layered depth map(LDM). To tackle the difficult task

of novel view synthesis for datasets with complex scenes,

long-range displacements, we propose to use the structural

hints from the input view as the structural guide and cre-

ate a new scene representation embedded in our framework.

To leverage both efficiency and performance, we design an

elastic module for learning the range distribution from in-

put images. Experiments show that our framework excels

in structural and geometric consistency.
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