
Internet of Things (IoT) Discovery Using Deep Neural Networks

Ephraim Lo

North Point Defense

elo@northpointdefense.com

JoHannah Kohl

North Point Defense

jkohl@northpointdefense.com

Abstract

We present a novel approach to Internet of Things (IoT)

discovery using Deep Neural Network (DNN) based ob-

ject detection. Traditional methods of IoT discovery are

based on either manual or automated monitoring of prede-

termined channel frequencies. Our method takes the spec-

trogram images that a human analyst visually scans for

manual spectrum exploration and applies the state-of-the-

art You Only Look Once (YOLO) object detection algorithm

to detect and localize signal objects in time and frequency.

We focus specifically on the class of signals that employ the

Long Range (LoRa) modulation scheme, which uses chirp

spread spectrum technology to provide high network effi-

ciency and robustness against both in- and out-of-band in-

terference. Our detection system is designed with scalabil-

ity for real or near real-time processing capabilities and

achieves 81.82% mAP in real-time on a fourth generation

mobile Intel CPU without GPU support. Lastly, we present

preliminary detection results for other IoT signals including

Zigbee, Bluetooth, and Wi-Fi.

1. Introduction

The Internet of Things (IoT) is a network of devices that

enable connectivity, interactivity, and the exchange of data

with a broad set of applications, ranging from consumer

level home automation and wearable technologies to large-

scale infrastructure development. These IoT devices com-

municate using intermittent transmissions that need to be

robust to interference and can employ proprietary technol-

ogy with flexible transmission frequencies. With the ubiq-

uity of such devices, it has become increasingly difficult

to identify and catalog the wireless spectrum. While com-

mercial hardware solutions exist for Radio Frequency (RF)

sniffing, they are often limited to predetermined channel

frequencies.

For more generalized discovery, the simplest method re-

quires an experienced analyst to manually scan the RF with

a spectrum analyzer or receiver paired with a digital water-

fall display of the spectrum. Once a signal of interest has

been visually identified, it can be subsequently filtered and

routed to follow-on processing (demodulation, payload ex-

traction, validation). However, due to expanding frequency

coverage requirements coupled with increasingly transient

IoT communications, the likelihood of missed transmis-

sions is significantly increased. Methods such as energy de-

tection and matched filtering are susceptible to these same

issues and can yield unacceptably high rates of false posi-

tives. Other recent approaches [1–3], leverage Deep Learn-

ing (DL) to automatically classify wireless signals, but typ-

ically assume a baseband In-phase/Quadrature (IQ) input

that has already been isolated from concurrent signal activ-

ity.

Our novel approach to IoT discovery takes as an input the

spectrogram images that a human would view and applies

Deep Neural Network (DNN) based object detection. We

re-imagine signals as objects that exist within an “image”

of the spectrum and leverage object detection algorithms

to localize these signal objects in time and frequency by

predicting bounding box coordinates and class probabilities

jointly.

We focus our efforts on the class of signals that employ

Long Range (LoRa) communication technology, a deriva-

tive of chirp spread spectrum [4]. These signals exhibit

distinct time-frequency visualizations comprised of up- and

down-chirps that naturally fit our object detection paradigm.

See Figure 1.

Figure 1. Wideband spectrogram image with illustration of bound-

ing boxes.

806



Maximizing discovery potential requires using high

bandwidth Software-Defined Radio (SDR) solutions. How-

ever, these high sampling rates result in the generation of

vast quantities of spectrogram images. For example, sam-

pling at 32 MHz would generate over 30 Frames Per Second

(FPS) assuming a 4096-FFT split into four 1024x1024 im-

ages. Even with the assistance of current GPU hardware

for accelerated inference, state-of-the-art object detection

systems often struggle to process 20 FPS, while CPU-only

inference throughput can easily be an order of magnitude

lower. This places a significant burden on the detection sys-

tem to achieve real or near real-time processing.

Currently, one of the fastest object detection approaches

is the You Only Look Once (YOLO) algorithm [5]. De-

spite being fast, YOLO also has comparable accuracy to

other state-of-the-art detectors and can be scaled depend-

ing on Size, Weight, and Power (SWaP) constraints. On

a fourth generation Intel R© CoreTM i7-4700EQ processor

at 2.4 GHz with 8GB RAM without discrete GPU support,

we were able to achieve real-time processing of 24 MHz

bandwidth with 81.82% mAP on a set of real LoRa signals

collected over-the-air from just under 2 miles away.

2. Related Work

Traditional algorithmic approaches to signal detection

in RF systems typically fall into one of two categories:

generalized methods that cannot take advantage of con-

textual emission information and specialized methods that

only work on the signals they are designed for. However,

an alternate approach has emerged with the growth of DL

technology that achieves the robustness of specialized ap-

proaches, but with high generalization capability.

2.1. Onedimensional case

In [1], autoencoders were applied to raw IQ samples for

the problem of modulation classification and in [2], Convo-

lutional Neural Networks (CNNs) were leveraged to detect

weak signals in strong background noise. To simulate re-

alistic data, Cheng [2] adopted the Longley-Rice channel

model with additive white Gaussian noise to simulate to-

pographical factors at various receiver and transmitter loca-

tions. However, a major limitation of such approaches is

the assumption that the time series input is free from both

in- and out-of-band interfering signals. Bitar [3] addressed

this by collecting thousands of over-the-air samples at vary-

ing Signal-to-Noise Ratios (SNR) with both homogeneous

cases of each signal type, as well as heterogeneous co-

interfering cases. They demonstrated that CNN models can

outperform traditional machine learning techniques in iden-

tifying Wi-Fi, Zigbee, and Bluetooth signals in the presence

of co-channel interference. However, Bitar [3] ignored real-

istic transmission channel effects and oversimplified the in-

terference scenarios by collecting in a semi-anechoic cham-

ber with a limited number of transmitting devices.

2.2. Twodimensional case

DL has been applied to audio spectrograms for tasks

ranging from birdsong classification in [6,7] to CNN-based

audio enhancement in [8]. Furthermore, Pham [9] utilized

CNNs to exploit the texture and structure of patterns in these

spectrograms to detect audio events such as car horns, dog

barks, and gunshots. Lastly, Boddapati, et al. [10] designed

an environmental sound classifier using object recognition

DNNs with various image representations for temporal lo-

calization of audio events.

In the RF domain, Lees et al. [11] demonstrated that

DNNs greatly outperformed classical signal detection meth-

ods in detecting SPN-43 air traffic control radar using spec-

trograms. Their DNN detector was trained and tested on

over 14,000 spectrograms containing realistic channel con-

ditions and out-of-band emissions collected from the 3.5

GHz band. By only using real-world data, Lees et al. [11]

had difficulty balancing their training, validation, and test

sets with sufficient representation of each radar signal class.

O’Shea [12] employed YOLO to detect and localize signals

with varying single carrier modulation types from spectro-

gram images for the DARPA Battle of the ModRecs com-

petition. They built a GNU Radio simulator to generate

training datasets with labeled, wideband radio data and re-

ported promising qualitative performance, but did not spec-

ify training parameters or quantitative mAP results.

3. Object detection

Recent advances in object detection systems have tran-

sitioned from highly inefficient sliding window approaches

to a single network evaluation, from image pixels directly

to bounding box locations and associated class predictions.

Current state-of-the-art detection systems include R-CNN,

Faster R-CNN, Single Shot Multibox Detector (SSD), and

YOLO [5, 13–17]. While two stage detectors (R-CNN,

Faster R-CNN) reach the highest accuracy rates, one stage

detectors (SSD, YOLO) have only slightly lower accuracy

and run significantly faster. Although it is difficult to defini-

tively compare algorithms due to inconsistent test condi-

tions, including hardware setups and evolving code bases,

research consistently places YOLO among the leading algo-

rithms where inference speed is concerned. This advantage

is our main motivation for selecting the YOLO algorithm as

the basis for our detection system.

3.1. You only look once

YOLO was first introduced in 2016 [5]. Since then, the

authors have released two subsequent versions that built

upon their original algorithm. YOLOv1 made significant

localization errors and had relatively low recall, especially

807



in comparison to region proposal methods such as R-CNN.

YOLOv2 mitigated those deficiencies while maintaining its

speed by adjusting the architecture and introducing anchor

boxes [13]. YOLOv3 more significantly modified the base-

line network by doubling the number of convolutional lay-

ers and linking predictions from three separate scales to im-

prove small object detection with a minor speed penalty

[14]. Additionally, there are “tiny” versions of each net-

work that reduce the number of layers, sacrificing accuracy

for speed. We determined that this detection performance

hit was unacceptably large, and so we only considered the

larger networks. Analysis of inference throughput shows

that YOLOv2 is the fastest of the three standard architec-

tures and as such, it was selected for our research efforts.

For the rest of this paper, we will refer to it as simply YOLO

and its smaller variant as Tiny-YOLO.

3.2. Network architecture

YOLO is implemented in a custom neural network back-

end called Darknet. This network has 19 convolutional lay-

ers and 5 maxpooling layers. For a detailed network ar-

chitecture description, see Table 1. Since the model only

uses convolutional and pooling layers, it can be resized ar-

bitrarily during training. By periodically randomizing the

network size, the network learns to predict well across a

variety of input dimensions. This provides the additional

benefit that with only a single training run, we can scale the

network size as necessary to meet processing requirements.

Reducing network size increases inference speed, albeit at

the cost of reduced accuracy [13].

3.3. Training

The input image is divided into an SxS grid, where each

grid cell is responsible for detecting objects that are cen-

tered within that cell. These cells predict B bounding boxes

consisting of x, y, w, h along with associated confidence

scores using anchor boxes. The (x, y) coordinates repre-

sent the center of the box relative to its cell boundaries. The

(w, h) represent the width and height of the box. Finally,

the confidence scores reflect both the conditional class prob-

ability and how well the predicted box fits the object and are

defined as:

Ci = Pr(Classi|Object) ∗ Pr(Object) ∗ IOU truth
pred

= Pr(Classi) ∗ IOU truth
pred ,

(1)

where IOU is the intersection over union between the pre-

dicted bounding box and ground truth.

Because each grid can predict multiple bounding boxes,

some large objects or objects that span numerous adjacent

cells may result in excessive detections. Non-maximum

suppression (NMS) can be used to remove these superflu-

ous predictions. The anchor priors can be handpicked or

Type Filters Size Output

Convolutional 32 3 x 3 288 x 288

Maxpool 2 x 2/2 144 x 144

Convolutional 64 3 x 3 144 x 144

Maxpool 2 x 2/2 72 x 72

Convolutional 128 3 x 3 72 x 72

Convolutional 64 1 x 1 72 x 72

Convolutional 128 3 x 3 72 x 72

Maxpool 2 x 2/2 36 x 36

Convolutional 256 3 x 3 36 x 36

Convolutional 128 1 x 1 36 x 36

Convolutional 256 3 x 3 36 x 36

Maxpool 2 x 2/2 18 x 18

Convolutional 512 3 x 3 18 x 18

Convolutional 256 1 x 1 18 x 18

Convolutional 512 3 x 3 18 x 18

Convolutional 256 1 x 1 18 x 18

Convolutional 512 3 x 3 18 x 18

Maxpool 2 x 2/2 9 x 9

Convolutional 1024 3 x 3 9 x 9

Convolutional 512 1 x 1 9 x 9

Convolutional 1024 3 x 3 9 x 9

Convolutional 512 1 x 1 9 x 9

Convolutional 1024 3 x 3 9 x 9

Convolutional 1000 1 x 1 9 x 9

Avgpool 1000

Softmax

Table 1. Darknet-19 architecture given an input image size of

288x288.

generated by running k-means clustering on the training set

ground truth to improve training stability and convergence.

During training, a multi-part loss function is optimized

that has adjustable weights to tailor the resultant model to

meet detection objectives and is defined as:

λcoord

S2

∑

i=0

B
∑

j=0

α
obj
ij

[

(xi − x̂i)
2 + (yi − ŷi)

2
]

+λcoord

S2

∑

i=0

B
∑

j=0

α
obj
ij

[

(

√

wi −

√

x̂i

)

2

+

(

√

hi −

√

ĥi

)2
]

+

S2

∑

i=0

B
∑

j=0

α
obj
ij (Ci − Ĉi)

2

+λnoobj

S2

∑

i=0

B
∑

j=0

α
noobj
ij (Ci − Ĉi)

2

+

S2

∑

i=0

α
obj
i

∑

c∈classes

(pi(c)− p̂i(c))
2
,

(2)

where αobj
i denotes if an object appears in cell i and αobj

ij

specifies that the jth bounding box, which has the highest

808



IOU with the ground truth, is responsible for that object

prediction. By adjusting λcoord and λnoobj , the network

scales the penalty of predicting a bounding box with inac-

curate height and width and for predicting an object in a cell

when there isn’t any [5, 13].

4. Internet of things signal types

LoRa is a proprietary physical (PHY) layer implementa-

tion that uses spread spectrum modulation, providing high

resistance to natural interference, making it ideal for use in

challenging urban and suburban environments [4]. Addi-

tionally, as it defines only the PHY layer, it is compatible

with many network architectures such as LoRaWAN [18],

a low power, wide area networking protocol. Because Lo-

RaWAN targets critical IoT requirements including connec-

tivity, end-to-end security, and adaptability, it has emerged

as one of the fastest growing IoT communication technolo-

gies.

In LoRa modulation, the spreading is achieved by modu-

lating symbols onto up- and down-chirp signals with differ-

ent spreading factors. The symbol rate RS can be defined

as:

RS =
BW

2SF
symbols/sec, (3)

where BW is the modulation bandwidth in Hz and SF
refers to the spreading factor, ranging from 6 to 12. We

can then define the desired modulation bit rate Rb and chip

rate RC as:

Rb = SF ·RS bits/sec (4)

RC = RS · 2SF = BW chips/sec. (5)

A LoRa packet has the following basic structure [19]:

• Preamble: series of up-chirps.

• Sync: two modulated up-chirps that can be used for

differentiating LoRa signals and can be set to specific

values to distinguish public and private networks for

LoRaWAN.

• Start of frame delimiter: two and a quarter down-

chirps.

• Data: series of modulated up-chirps.

See Figure 2 for a LoRa packet example in a spectrogram

view.

In total, LoRa supports 70 variations, composed of ten

bandwidths and seven spreading factors, which we refer

to using the shorthand notation (BW,SF ). This results

Figure 2. LoRa packet example. The signal is comprised of a

preamble (red), sync word (green), start of frame delimiter (pur-

ple), and data (cyan).

Figure 3. Visualization of a single LoRa symbol at varying band-

widths and spread factors. The bottom four rows representing

bandwidths 62.5 to 500kHz are enhanced for visibility.

in a very challenging class set as we need multiple time-

frequency representations for adequate visualization result-

ing in much higher computational load. See Figure 3.

For example, consider the narrowest and slowest vari-

ant (7.8, 12) with the widest and fastest (500, 6). To pro-

vide enough time and frequency resolution to visualize the

(7.8, 12) signal at 32 MHz sampling rate, we could use

a large FFT size of 65536. A single symbol would span

16 FFT bins and 256 rows. However, a single symbol of

(500, 6) would span 1024 FFT bins and less than a single

809



Region Band (BW (kHz), SF)

Europe EU433, 863-870 (125,7:12), (250,7)

China CN470-510, 779-787 (125,7:12)

United States US902-928 (125/500,7:12)

Australia AU915-928 (125/500,7:12)

Table 2. LoRaWAN regional parameters. The band frequencies

include additional countries that adopt FCC regulations for that

associated ISM band.

row. Likewise, using a smaller FFT of 8192 would repre-

sent the 500 kHz signal with 128 FFT bins, but only 2 for the

7.8 kHz signal. To mitigate this problem, we limit our class

set with some rough guidance from LoRaWAN regional pa-

rameters, which are restricted to a much smaller subset of

bandwidths and spread factors [20]. See Table 2.

Several other IoT signals of interest that were inves-

tigated include Zigbee, Bluetooth, and Wi-Fi. Zigbee is

an IEEE 802.15.4-based specification that leverages direct

sequence spread spectrum along with both binary phase-

shift keying in the 868/915 MHz bands and offset quadra-

ture phase-shift keying in the 2.4 GHz band. Bluetooth

uses frequency hopping spread spectrum between 2.4 and

2.485 GHz where each hop is modulated using Gaussian

frequency-shift keying. And lastly, Wi-Fi refers to the radio

technologies based around the IEEE 802.11 standards.

5. Data, training, and testing setup

To develop a robust training set and mitigate the tedium

of manual annotation, we created an end-to-end simulation

pipeline. Initial testing was done on simulated data with

real-world performance evaluated on over-the-air LoRa col-

lects.

5.1. Simulation

Starting with the RF, background collects were taken

at various frequencies corresponding to some of the Lo-

RaWAN regional parameters discussed earlier. Then, LoRa

signals of various (BW,SF ) were digitally simulated

and inserted with random SNR, automatically generating

bounding box annotations. Because of LoRa’s high resis-

tance to in-band interference, we allowed the inserted LoRa

signals to be “overlaid” on top of pre-existing communi-

cations in the background. Spectrogram images were then

generated from these waveforms and we randomly adjusted

the noise floor to simulate various receiver scenarios. Ad-

ditionally, to simulate events such as random device failure

and dropped LoRa transmissions, we inserted LoRa frag-

ments that do not conform to the general packet structure,

i.e. no preamble, no modulated data. Lastly, to further in-

crease our training data diversity, we implemented domain-

specific image augmentations that simulate realistic receiver

and channel transmission conditions. For each training

Spread FactorBW

(kHz) 6 7 8 9 10 11 12

0.8 64 32 16 8 4 2 1

10.4 85.3 42.7 21.3 10.7 5.3 2.7 1.3

15.6 128 64 32 16 8 4 2

20.8 170.7 85.3 42.7 21.3 10.7 5.3 2.7

31.3 256 128 64 32 16 8 4

41.7 341.3 170.7 85.3 42.7 21.3 10.7 5.3

62.5 512 256 128 64 32 16 8

125 1024 512 256 128 64 32 16

250 2048 1024 512 256 128 64 32

500 4096 2048 1024 512 256 128 64

Table 3. Maximum number of symbols representable. This as-

sumes a sampling rate of 32MHz, 4096-FFT, decimation rate of 4,

and image size of 1024x1024. The bold highlighted cells corre-

spond to the nine classes currently supported.

batch, the images were randomly augmented with simulated

narrowband interfering signals, exponential chirps, multi-

path channel models, and analog-to-digital converter satu-

ration. We also included the default YOLO image augmen-

tations to simulate various lighting conditions but removed

random cropping and flipping as they are not relevant for

our problem set.

The receiver’s sampling rate is set to 32 MHz, and the

spectrogram images are generated using a 4096-FFT, skip-

ping every three rows to eventually form a fixed image

size of 1024x4096. We then exclude the edge frequencies

corresponding with the receiver’s roll-off filtering, roughly

20% of the total receive bandwidth. The remaining usable

bandwidth of 24 MHz is subsequently divided into three

1024x1024 images. We retain a square image to preserve

aspect ratio when resizing. Based on this frequency reso-

lution, a 125/250/500 kHz bandwidth signal can be repre-

sented by 16/32/64 bins respectively. The maximum num-

ber of representable symbols for each (BW,SF ) combina-

tion is shown in Table 3 and provides insight into how big

or small our signal objects can be.

At inference time, each 1024x1024 image is resized ac-

cording to the desired network size. Figure 4 depicts how

(BW,SF ) can affect visual features with different resizing

factors. As the resized image gets smaller, the representa-

tion fidelity of the signal degrades. This is more noticeable

for some (BW,SF ) combinations compared to others.

5.2. Collection

To send and verify over-the-air LoRa signals, we used

the transmitter and relay shown in Figure 5. The trans-

mitter was controlled via a switch that sends (125, 9) LoRa

packets continuously for as long as the switch is depressed

and the relay, upon successful reception of the transmitter

signal, sends a short acknowledgement reply that is also

(125, 9).

810



Figure 4. Visualization of LoRa representation fidelity when re-

sizing. The top two rows are LoRa signals with (125, 12) and

(125, 9), while the bottom two rows are (500, 12) and (500, 9).
Each original image of 1024x1024 on the left represents the same

amount of time. As symbol time directly corresponds with band-

width and spread factor, we can compare the maximum repre-

sentable symbols. Progressing from left to right, each column rep-

resents reducing the image size by an integer factor of 2.

Figure 5. LoRa transmitter (right) and acknowledgement relay

(left).

The collect setup, see Figure 6, is comprised of an omni

antenna connected to a DRS Polaris SDR tuned to 915 MHz

with 32 MHz receive bandwidth. A high-speed Thunderbolt

interface is used to transfer the IQ samples from the receiver

and spectrograms are computed in software. The acknowl-

edgement relay was located near the receiver and collects

were taken at various intervals with distances ranging from

325 m to 4750 m. In total, this “lorafarm” dataset is com-

posed of just over 2000 images.

6. Results

We trained YOLO with the nine classes emphasized in

Table 3. The object and coordinate weights for the loss

function were increased from the original YOLO values to

emphasize detection and localization as we are less con-

Figure 6. Collect setup using an 8 dBi omnidirectional antenna

(left) paired with a DRS 2-channel Polaris wideband tuner with

Thunderbolt interface (right).

cerned with false positives. Nine custom anchors were gen-

erated to provide better priors and improved training stabil-

ity. We also experimented with using a fixed training net-

work size of 416 (S = 13) as well as multi-scale training

(S = 10, . . . , 19). Default values for B, batch size, mo-

mentum, decay, and learning rate schedule were adopted

from [13]. Lastly, we used both pre-trained weights on

the COCO detection dataset as well as randomly initialized

weights. The random initialization yielded superior results

both in terms of detection performance, but also dramati-

cally reduced training epochs. This may be because our sig-

nal objects look markedly different from traditional image

datasets comprised of objects such as people, animals, and

various inanimate objects, thereby reducing transfer learn-

ing effectiveness.

To test our models, we used a simulated set of 1000 im-

ages and the lorafarm set. Many of the simulation param-

eters discussed in Section 5 were altered and expanded to

provide a more unbiased test evaluation. For all our tests,

we set the detection NMS threshold to 0.3. On the lora-

farm dataset, we achieved 81.82% mAP with real-time pro-

cessing using YOLO with a network size of 288, with a

peak mAP of 90.91% at 512. On our simulated dataset, we

achieved 63.69% at 288 and 89.49% mAP at 512. Tiny-

YOLO had 77.27% and 82.25% peak mAP on lorafarm and

simulated datasets respectively. See Figure 7 for more de-

tails.

We expected multi-scale to outperform fixed-size train-

ing at network sizes other than 416 and, for most cases,

this assumption held true. Interestingly, multi-scale training

outperformed fixed training even at 416 for both simulation

and lorafarm datasets. See Figure 8 for more details.

Several curated examples of the LoRa detection system

outputs are shown in Figures 9-11. We also trained a YOLO

model on Zigbee, Bluetooth, and Wi-Fi (802.11b) and an

example output is depicted in Figure 12. For illustration

purposes only, some of these images have had their bright-

ness and contrast adjusted by up to 40% to better display

811



Figure 7. Detection results for lorafarm (top) and simulated (bot-

tom) data sets for YOLO and Tiny-YOLO with various weight

initializations.

Figure 8. Results on lorafarm comparing multi-scale and fixed net-

work size training. Performance did not scale linearly with dis-

tance due to changing line-of-sight conditions.

background details.

Using the RF collect settings described in Section 5, a set

of three images needs to be processed in under 524.88 ms

to achieve real-time processing on our hardware platform.

Table 4 shows our timing benchmarks using TensorFlow

YOLO on an Intel R© CoreTM i7-4700EQ mobile processor

at 2.4GHz with 8 GB RAM without GPU support. While

Size
Pre-proc.

Time (ms)

Inference

Time (ms)

Total

Time (ms)

RT

Diff. (ms)

256 41.300 120 401.300 +123.580

288 41.369 150 491.369 +34.511

320 41.245 170 551.245 -24.365

352 41.298 210 671.298 -143.418

388 41.348 260 821.348 -292.468

416 41.300 280 881.300 -351.420

Table 4. Timing breakdown for SWaP constrained platform. Pre-

processing time includes FFT calculations, grayscale conversion

and image resizing. The inference times are for a single image

evaluation and total time assumes three images processed sequen-

tially. RT (real-time) differential is the amount of timing overhead

left before needing to process the next set of images for real-time

performance.

Tiny-YOLO could run at real-time speeds at the larger net-

work sizes, the detection results were unacceptably low and

thus not considered for the final detection system.

7. Conclusion

We have presented a robust, lightweight system for IoT

discovery using the YOLO object detection algorithm by

exploiting the unique time-frequency visualization of LoRa

class signals. Through careful analysis of the problem space

and extensive image augmentation and simulation, the re-

sultant detection system can learn generalizable representa-

tions of these signal objects.

Ultimately, just as a human would need different reso-

lution images to distinguish between all the LoRa variants,

we will need a variety of time-frequency resolution spec-

trograms. We hope to explore this in the future along with

ensemble DNNs. Additionally, to manage increased com-

putational burden, there are many software optimizations

that can be implemented such as batch inference, quanti-

zation to int8 or int16 precision, and utilizing Intel’s SIMD

instruction set [21]. Leveraging these techniques would also

enable our current system to increase inference throughput

and detection performance with higher resolution images.

References

[1] T. O’Shea and J. Hoydis. An introduction to deep learning

for the physical layer. IEEE Transactions on Cognitive Com-

munications and Networking, pages 563–575, 2017.

[2] T. Cheng, C. Liu, and W. Ding. Weak signal detection based

on deep learning. Proceedings of the 2019 4th International

Conference on Multimedia Systems and Signal Processing,

pages 114–118, 2019.

[3] N. Bitar, S. Muhammad, and H. Refai. Wireless technol-

ogy identification using deep convolutional neural networks.

IEEE 28th Annual International Symposium on Personal, In-

door, and Mobile Radio Communications (PIMRC), 2017.

812



Figure 9. Example detection on lorafarm at 3150 m. Bounding

box detections are drawn with unique colors and labeled with con-

fidence scores. The small transient bursts are unknown communi-

cations.

Figure 10. Example detection of lorafarm relay acknowledgement

signal. Since the relay is physically located near the receiver, it

has significant signal strength. The object detection system was

not trained on signals of such high SNR or bursts containing only

preamble symbols. The system still succeeds at identifying both

anomalies correctly.

[4] Semtech application note AN1200.22 lora modulation ba-

sics.

Figure 11. Example detection from simulation set. The back-

ground collect is from 783 MHz. Although the (500,11) signal,

highlighted in magenta, has a suboptimal visualization (dotted

chirp lines), the system can still localize and classify it correctly.

Figure 12. Example detection of Zigbee (magenta), Wi-Fi 802.11b

(cyan) and Bluetooth at 2.432 GHz. The Bluetooth class was split

into two classes representing short (green) and long (red) payloads.

The white bounding boxes are the ground-truth annotations.

[5] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You

only look once: Unified, real-time object detection. IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 779–788, 2016.

813



[6] J. Xie, C. Ding, W. Li, and C. Cai. Audio-only bird species

automated identification method with limited training data

based on multi-channel deep convolutional neural networks.

arXiv:1803.01107v1, 2018.

[7] E. Sprengel, M. Jaggi, Y. Kilcher, and T. Hofmann. Audio

based bird species identification using deep learning tech-

niques. Conference and Labs of the Evaluation Forum, 2016.

[8] S. Fu, T. Hu, Y. Tsao, and X. Lu. Complex spectogram

enhancement by convolutional neural network with multi-

metrics learning. IEEE 27th International Workshop on Ma-

chine Learning for Signal Processing, 2017.

[9] P. Pham, J. Li, J. Szurley, and S. Das. Eventness: object

detection of spectrograms for temporal localization of audio

events. arXiv:1712.09668v2, 2018.

[10] V. Boddapati, A. Petef, J. Rasmusson, and L. Lundberg.

Classifying environmental sounds using image recognition

networks. Procedia Computer Science, 112:2048–2056,

2017.

[11] W. M. Lees, A. Wunderlich, P. Jeavons, P. D. Hale, and M. R.

Souryal. Deep learning classification of 3.5 ghz band spec-

trograms with application to spectrum sensing. IEEE Trans-

actions on Cognitive Communications and Networking, 5(2),

2019.

[12] T. O’Shea, T. Roy, and T. Clancy. Learning robust general

radio signal detection using computer vision methods. 51st

Asilomar Conference on Signals, Systems, and Computers,

2017.

[13] J. Redmon and A. Farhadi. Yolo9000: Better, faster, stronger.

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 13(1):6517–6525, 2017.

[14] J. Redmon and A. Farhadi. Yolov3: An incremental improve-

ment. arXiv preprint arXiv:1804.02767, 2018.

[15] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.Y.

Fu, and A.C. Berg. Ssd: Single shot multibox detector.

arXiv:1512.02325v5, 2016.

[16] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. arXiv:1311.2524v5, 2014.

[17] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: To-

wards real-time object detection with region proposal net-

works. arXiv:1506.01497v3, 2016.

[18] Lora alliance lorawan 1.1 specification. 2017.

[19] Semtech application note an1200.22 lora modulation basics

rev. 2. 2015.

[20] Lora alliance lorawan 1.1 regional parameters rev b. 2018.

[21] V. Vanhoucke, A. Senior, and M.Z. Mao. Improving the

speed of neural networks on cpus. Deep Learning and Un-

supervised Feature Learning Workshop, 2011.

814


