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Abstract

Object detection tasks for sonar image confront two

major challenges, scarcity of dataset and perturbation of

noise, which cause overfitting to models. The state-of-the-

art object detection designed for optical images cannot ad-

dress the issues because of the inherent differentiation be-

tween the optical image and sonar image. To tackle this

problem, in this paper, we propose an adversarial train-

ing method to generalize the detector by introducing per-

turbation with specific noise property of sonar images dur-

ing training stage. We design a sideway network which we

name Noise Adversarial Network (NAN). The NAN is em-

bedded into the state-of-the-art detector to generate adver-

sarial examples which serve as assistant decision-making

items to predict both class and bounding box, aiming to im-

prove the generalization and noise robustness of the detec-

tor. To provide prior knowledge of noise perturbation to

NAN, we also design a Noise Block (NB) for introducing

noise in the upstream layers, which further improves noise

robustness. Following the Faster R-CNN framework, the re-

sults of our experiments indicate a 8.9% mAP boost on our

sonar image dataset. The detector equipped with NAN and

NB also outperforms the baseline on noised test sets. Fur-

thermore, it gains a 2.4% mAP boost on the optical image

dataset PASCAL VOC 2007.

1. Introduction

Sonar (sound navigation and ranging) image, generated

by imaging sonar system leveraging acoustic echo, depicts

the underwater environment [2]. Object detection tasks for

sonar images aim at locating and recognizing the object in-

stances in sonar images. It serves as a prerequisite for an

extensive set of downstream underwater vision tasks, such

as sea mines detection [9] and fish tracking [6]. Classical

approaches for object detection in sonar images contain var-
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(a) Original sonar images
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plane wreckage: 0.318

(b) Sonar images with speckle noise (µ=0, σ2=0.1)

Figure 1. Deterioration of sonar images with speckle noise. We

use Faster R-CNN [32] with ResNet-101 [19] to train and test on

our sonar image dataset. (a) The detector performs well when test

on original sonar images. However, (b) the accuracy severely de-

grades when the sonar images are attacked by speckle noise with

zero mean and variance σ2
= 0.1. The three images in (b) illus-

trate wrong bounding box regression, false alarm and misclassifi-

cation, respectively.

ious representations of template matching (TM) [29, 21],

utilizing engineered features to implement both classifica-

tion and localization. Other detection tasks in sonar im-

ages are based on paired highlight-shadow regions [10] and

step-by-step feature extraction [42]. However, the above-

mentioned methods have exceeding dependency of hand-

engineered features which cannot interpret inherent repre-

sentation of sonar images, inevitably inducing ineffective

learning of sonar image data.

Thanks to Convolutional Neural Networks (CNNs), the

Deep Learning techniques achieve quality results in opti-

cal image datasets such as ImageNet [8] and COCO [19].

The CNN-based object detectors designed for optical im-

ages can be directly used on sonar image detection tasks
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because of the similarity between the features of object in-

stances in optical images and sonar images [24, 38, 23]. For

example, both a plane wreckage in a sonar image and an

airplane in an optical image show the analogous inswept

fuselage.

However, directly applying the state-of-the-art architec-

tures such as Faster R-CNN [32] or SSD [26] to sonar image

induces two major deficiencies. One is that the quantity of

available sonar images is scarce. Different from the abun-

dant optical image datasets [8, 19, 11], high-quality sonar

images are hard to be gathered due to the high cost of ex-

ploration, let along an integrated public sonar image dataset

with diversity. The other is that the perturbation of noise is

diversified. The sonar imaging is usually accompanied by

various noises of different types and magnitudes, which is

caused by intricate underwater environment and imperfectly

compensated vehicle motion [43]. As Figures 1 shows,

these noises make sonar images degraded and plagues ex-

isting detection algorithms.

These two deficiencies inevitably lead to overfitting.

Specifically, the finite samples which are used to train de-

tectors make the parameters only fit the target values over

the sample space. Meanwhile, training with existing noised

sonar images cannot definitely match the test data which are

subsequently gathered, because the test data may be gener-

ated from different sea areas with different underwater ve-

hicles, inducing variety of noises. Furthermore, with the

perturbation of noise in sonar images, the CNN-based de-

tectors cannot reflect robustness in such detection tasks.

Inspired by adversarial learning [15, 28], a regulariza-

tion method preventing model from overfitting, we propose

a generalization method for detectors to tackle the problems

above: training sonar images with adversarial perturbation

which is generated from its own feature space. This per-

turbation has the property of noise which frequently arises

in sonar images. The architecture that generates adversarial

perturbation is a sideway network named Noise Adversarial

Network (NAN). Instead of adding noise by yielding pixels

directly, the NAN creates adversarial perturbation in con-

volutional feature space, which reduces computational cost

and guarantees the end-to-end training. We also design a

auxiliary component Noise Block (NB) to further improve

the noise robustness. In our experiment, we demonstrate

that the detector equipped with NAN and NB not only gains

substantial improvement in detection performance, but ob-

tains noise robustness compared with its baseline Faster R-

CNN[32] on our own sonar image dataset.

The main contributions of our work are (1) proposing

a Noise Adversarial Network (NAN) which enhances the

ability of sonar image detection tasks; (2) yielding a sonar

image dataset with remarkable variety, which will be shared

in the near future to facilitate the underwater researches;

(3) proving that this method not only improves performance

on sonar image dataset, but is applicative on optical image

dataset such as PASCAL VOC 2007.

2. Related Work

2.1. CNNbased Object Detector

Recently, significant progress has been made in the re-

search field of object detection via convolutional neural net-

works. With regard to two-stage detectors, R-CNN [13]

is one of the first architectures which brings CNN to ob-

ject detection takes. The following SPP-Net [18] and Fast

R-CNN [12] also achieves prominent performance on sev-

eral benchmarks (e.g., PASCAL VOC [11] and MS COCO

[19]). The dominant pipeline Faster R-CNN [32] revolu-

tionizes the CNN-based object detector by combining the

proposal generator and detector into a unified end-to-end

version. From then on, numerous intriguing two-stage de-

tectors has emerged [7, 25, 17], boosting the representa-

tional power and progressively improved performance.

2.2. Object Detection for Sonar Image

The detection for underwater objects in sonar images is a

universal task across various research domains. It facilitates

archaeology [35], guarantees the pipeline monitoring [31]

and maps habitat [45]. Classical detection methods yield

unreliable performance because of the overdependence on

environmental conditions such as seafloor elevation [44]

and illumination intensity [16]. Meanwhile, the methods

based on man-made features such as highlight-shadow pat-

terns [9] and template matching [29, 21] are also considered

as brittle algorithms with low generalization.

Recently, CNN-based object detectors yield an improve-

ment of accuracy on sonar images [39, 38, 23, 40, 24].

However, with the finite training data, neither strong gener-

alization nor robustness to noise is proven. The direct usage

of state-of-the-art object detectors on sonar images is prone

to overfitting.

Meanwhile, sonar images are notorious for speckle noise

perturbation [46]. To mitigate the effect of speckle noise

on detectors, a common wisdom is to introduce additional

noise besides the noise of the sonar image itself [49], which

is helpful to enhance the image and improve noise robust-

ness of detectors. Nevertheless, directly inducing speckle

noise to sonar image with fixed parameters is restricted to

a limited sample space. We conjecture that the parameters

of noise model are learnable and can be self-adaptively esti-

mated during the training stage, which is also applied in the

noise model estimation of sonar imagery [48].

2.3. Adversarial Learning with Random Perturba
tion

Random perturbation is a current regularization method

for generalization. It was proved in [1] that adding Gaus-
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sian perturbation to inputs illustrates an analogous effect to

regularization term in the objective function. The original

adversarial learning [37] induces the similar idea, showing

that training with generated adversarial examples can gen-

eralize models, which yields robustness against adversarial

examples while reducing the test error.

In object detection tasks, OHEM [33] extracts realistic

features from real images to make hard examples, strength-

ening robustness of models. A-Fast-RCNN [41] generates

the hard examples of occlusion and deformation in convo-

lutional feature space to learn invariance. Our work shows

analogous idea to A-Fast-RCNN [41]. However, instead of

using dropout or spatial transformation to block or deform

the convolutional features, we introduce adversarial noise

perturbation related to sonar image to generalize model as

well as improve robustness of noise attack.

3. Training with Noise Adversarial Network

We start this section with a definition of notations. Let

us assume that x ∈ S and y ∈ L denote an input image and

its label respectively, where S= {x1, x2, ..., xn} is the set

of all samples and L= {y1, y2, ..., yn} represents the set of

labels, each y includes the ground-truth class yc and bound-

ing box location yl. We also define that Dc(x) and Dl(x)
respectively represent the predicted class and bounding box

location, output values of an object detector.

3.1. Adversarial Learning for Object Detection

The current criterion in object detector can be written as,

LD = Lsoftmax(Dc(χ), yc)+

[yc /∈ bg]Lbbox(Dl(χ), yl),
(1)

where χ is the representative feature extracted from its cor-

responding input x. The χ can also be regarded as the origi-

nal example without perturbation. The first term is SoftMax

loss while the second one is bounding box loss which only

includes the foreground classes.

The adversarial learning based approach aims to gener-

ate adversarial example to fool the detector such as A-Fast-

RCNN [41]. In our approach, we directly use the adversar-

ial examples as a kind of extra representation derived from

the original examples. These adversarial examples serve as

assistant decision-making items to predict both class and

bounding box, which is same mechanism as original ones,

LP = Lsoftmax(Dc(χ+ radv), yc)+

[yc /∈ bg]Lbbox(Dl(χ+ radv), yl),
(2)

where radv denotes the perturbation noise that is generated

by our Noise Adversarial Network (NAN). The item χ +
radv is the adversarial example corresponding to χ. We also

measure the divergence between the distributions of original

Figure 2. The Faster R-CNN equipped with NAN (red box) and

NB (upper right). The NAN uses a convolutional layer with kernel

size k = 4 following two fully connected layers to predict vari-

ance σ2

i for each feature map χi from 1 to n in the mini-batch.

The variances are used to generate noises whose amplitudes fol-

low Rayleigh distribution. Then these noises are introduced into

the original feature maps to generate adversarial examples. NB

acts as a auxiliary component, only inducing speckle noise in the

upstream to provide prior knowledge for NAN without changing

the shape of features.

and adversarial examples to approximate a true distribution

which is robust to the noise attack radv . The loss function

can be written as,

Ladv(χ, θ) := DKL[q(y|χ), p(y|χ+ radv, θ)], (3)

where q(y|χ) represents the distribution of original exam-

ples which is supposed to be approximated to a true dis-

tribution by p(y|χ + radv, θ), the distribution of adversar-

ial examples. θ represents the vectors of the parameters of

NAN. DKL[q, p] measures the KL divergence between two

distributions q and p.

In our training approach, we use the abovementioned

three loss functions assembly to fine-tune the model to be

robust to various noise attack as well as gain generalization.

The loss of the model is the sum of the three loss.

Ltotal = LD + LP + Ladv (4)

3.2. Noise Adversarial Networks Design

Our Noise Adversarial Network (NAN) is prone to be

integrated in various state-of-the-art object detection frame-

works. For the purpose of easy comprehension and imple-

mentation, we choose Faster R-CNN [32] as our baseline

model. It also serves as a prerequisite detection framework

referenced by several subsequent detection tasks [22, 36, 4].

We embed NAN to the object detector to gain general-

ization as well as achieve noise robustness without compu-

tationally expensive cost. Therefore, the design of NAN is

supposed to follow the two principles. One is that the NAN

should generate noise perturbation of specific distribution

from convolutional feature space instead of adding random

pixel values on the input image. The other is that NAN
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should be easily embedded into a detector to guarantee end-

to-end training.

Properties of Noise in Sonar Image. The echo sig-

nals received by sonar are mainly affected by three kinds

of noises, namely environmental noise, reverberation and

self-noise while reverberation is the dominating one, espe-

cially in shallow water areas [30]. It is defined as the scat-

tered sound energy of water or heterogeneous bodies in wa-

ter boundary received by hydrophone [5]. The intensity of

reverberation varies with the distance of the scatterer and

the intensity of the transmitted signal. We only consider re-

verberation as the source of perturbation noise in our model.

According to Middleton’s seabed reverberation model [27],

the reverberation at moment t can be defined as the sum of

the real and imaginary parts,

X(t) = Re(t) + j Im(t). (5)

We assume that Vn(t) and ϕn(t) respectively represents

the instantaneous amplitude and the instantaneous phase of

the n-th scatterer. The real and imaginary parts can be for-

mulated as,

Re(t)=

N
∑

n=1

Vn(t) cosϕn(t), (6)

Im(t)=

N
∑

n=1

Vn(t) sinϕn(t), (7)

according to Central Limit Theorem(CLT) [27], Re(t) and

Im(t) will converge in Gaussian distribution if N is large

enough. Meanwhile, for the random scatters, Vn(t) and

ϕn(t) are random variables independent of each other.

ϕn(t) can be regarded as Uniform distribution from 0 to

2π [47]. Therefore, the mean of Re(t) and Im(t) can be

written down as,

〈Re(t)〉=
N
∑

n=1

〈Vn(t) cosϕn(t)〉

=
N
∑

n=1

[

〈Vn(t)〉 ·
1

2π

2π
∫

0

cosϕn(t)d(ϕn(t))

]

= 0

, (8)

〈Im(t)〉=
N
∑

n=1

〈Vn(t) sinϕn(t)〉

=
N
∑

n=1

[

〈Vn(t)〉 ·
1

2π

2π
∫

0

sinϕn(t)d(ϕn(t))

]

= 0

, (9)

where 〈A〉 is mean of A. Therefore, 〈Re(t) Im(t)〉 = 0
and the two parts have equivalent variance σ2. Since both

Re(t) and Im(t) follow the Gaussian distribution and they

are independent of each other, with the equivalent vari-

ance σ2 and zero mean, the amplitude of reverberation

|X(t)| =
√

Re2 + Im2 follows Rayleigh distribution.

Based on the above analysis, because of the widespread

scatterers, a single measurement for each pixel is in random

variability. The probability density function of its amplitude

follows Rayleigh distribution with zero mean and variance

σ2. If the parameter σ2 can be predicted, the noise with its

amplitude following Rayleigh distribution can be generated.

Details in Noise Adversarial Network. To ensure that

the noise can be generated in a simple but efficient way,

we propose a lightweight sideway network which includes

a convolutional layer followed by two cascaded fully con-

nected layers. The convolutional layer has a large k × k
kernel to aggregate representative features from RoI pool-

ing layer. Then the down-sampled feature maps are fed into

the following fully connected layers to predict the output.

This process is unsupervised because no label of noise is

used. The only purpose of NAN is to generate noise whose

amplitude follows Rayleigh distribution. Specifically, for

the two parameters of noise mean and variance, it only pre-

dict the variance σ2 of Re(t) and Im(t) because we had

proved that both real and imaginary parts had constant zero

mean.

In Faster R-CNN, length-fixed convolutional features are

generated from RoI pooling layer. These features represent

the high dimensional semantic information of foreground

object proposals. Motivated by A-Fast-RCNN [41], we uti-

lize the region-based features from RoI pooling layer as the

input of our Noise Adversarial Network to predict σ2. One

reason is that the structure of NAN is constant and length-

fixed features are prone to be manipulated. The other is that

embedding NAN following RoI pooling layer will not ruin

the integrality of the upstream parts such as backbone or

RPN networks.

Since the noise generation in NAN is unsupervised, in-

tuitively, it is necessary for NAN to obtain the prior knowl-

edge of speckle noise. We empirically embed a component

named Noise Block (NB) in the upstream network (e.g. fol-

lowing the first convolutional layer in ResNet-101) to in-

troduce noise in the features with low semantics but high

resolution. The NB is to provide prior knowledge to auto-

mate the choice of noise magnitude of NAN in a reasonable

range.

As Figure 2 shows, given a mini-batch of length-fixed

features generated from RoI pooling layer, each feature χi

in the mini-batch has a size of c × d × d, where c is the

number of channels and d denotes the spatial length (e.g.,

in ResNet-101 [19], c=1024, d=7 and the size of mini-batch

n=128). The feature χi is fed into the NAN to predict the

variance σi
2 of noise. The noise generated by NAN with its

amplitude follows Rayleigh distribution can be formulated

as,

noisei =

√

(noiseRe

i )
2
+ (noiseImi )

2
, (10)

where noiseRe

i and noiseImi denote the noise of real part

and imaginary part respectively in Eq.(5). Both of them

follow Gaussian distribution with zero mean. They have
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equivalent value of variance σi
2. The distribution can be

written down as,

noiseRe

i ∼ N(0, NAN(χi)), (11)

noiseImi ∼ N(0, NAN(χi)), (12)

where NAN(·) denotes the output of Noise Adversarial

Network. NAN(χi) represents the variance σi
2 predicted

from the i-th feature χi of the mini-batch.

The upper right of Figure 2 showcases the NB, which

follows the same principle of generation and addition of

speckle noise as NAN. To guarantee the unified input of fc

layer, we leverage RoI Align Pooling [17] to crop the fea-

ture map into a fixed size. Then the noised feature and the

original one are concatenated on the channel dimension, fed

into a 1×1 convolutional layer. It keeps the shape of feature

map remaining the same.

Noise Model. Once the variance σi
2 is predicted, noisei

which follows Rayleigh distribution can be generated by the

noise generator in a random way. The noisei has the iden-

tical shape to the feature χi and is added to the original fea-

ture to generate the adversarial example by a specific noise

model. We follow the idea in [3] that noise model is sup-

posed to cope with mutable signal dependence caused by

various imaging conditions,

Ai = χi+(χi)
γ
noisei (13)

where Ai represents the i-th generated adversarial example

of the mini-batch, γ is a non-negative exponential parameter

which is related to the dependence on the feature χi.

Training Approach. We design this adversarial learn-

ing method with a stage-wise training approach. It consists

of two stages. In the first stage, we initialize the standard

Faster R-CNN by pre-training from ImageNet [8] and train

this model without NAN, aiming to make the model have

an approximate distribution fitting of the object instances

in dataset. Then in the second stage, we jointly train the

pre-trained Faster R-CNN model and our NAN during each

iteration. The NAN model is initialized with Xavier [14]. In

a single forward propagation, the NAN generates noise with

Rayleigh distribution and adds it to the original feature abid-

ing by the formulation of Eq.(13), yielding the adversarial

examples to introduce perturbation for the detector. The

process of generation of adversarial examples only occurs

in the training stage. We remove the NAN in the test stage,

only leveraging the detector with trained weights, which en-

sures that no extra time cost will be induced. We treat NB

in the same way with NAN, analyzing its auxiliary function

in Section 4.4.

4. Experiments

We conduct our experiments on our own dataset and a

benchmark. On our dataset, we first compare our method

with the baseline and another two adversarial learning based

object detectors. Then we analyze the noise robustness and

generalization of NAN and NB. Furthermore, we apply this

method on PASCAL VOC 2007 to verify its correctness.

4.1. Collected Dataset

The purpose of our adversarial training method is to

generalize the standard object detectors to avoid overfitting

while obtain robustness to noise attack in sonar images. To

this end, we built up a sonar image dataset that satisfies the

following three requirements. First, the dataset contains re-

markable variety in terms of object size, illumination, po-

sition and noise distribution. Secondly, it is significant that

the dataset do not illustrate systematic bias such as a prefer-

ence of images that contains centered objects with ideal il-

lumination and orientation. Thirdly, the annotations of each

image need to be consistent, precise and exhaustive.

We gathered a set of 216 sonar images that were captured

by Side Scan Sonar (SSS) and Synthetic Aperture Sonar

(SAS) from public photo-sharing websites. These sonar im-

ages are taken without the purpose of computer vision tasks

such as object detection, which guarantee that these images

are not ‘biased’. The set of the images contains an exten-

sive range of observed conditions such as lighting as well

as ambient noise and the images are not excessively partial

to a particular object. These sonar images include three cat-

egories: corpse, shipwreck and plane wreckage. We split

them into two subsets A (168 images) and B (48 images),

then obtained 25 samples from each original image by ran-

dom cropping for data augmentation. The cropping size was

80% of the original size on each side. We got augmented

subsets A+ (4200 samples) and B+ (1200 samples), then

resized the 5400 samples to 600 × 600 pixels and marked

each object of the samples with an annotation following the

guideline of PASCAL VOC [11]. We use subset A+ and B+

for training and testing, respectively. There are no intersec-

tions between the train and the test set.

4.2. Implementation details and optimization

We train the detector with NAN following the afore-

mentioned two-stage approach in Section 3.2. We apply

stochastic gradient descent (SGD) for the two-stage train-

ing with 10K and 80K iterations, respectively. Both stage

starts a learning rate of 0.001, decreasing to 0.0001 after

0.8K and 60K, respectively. The entire model is trained

with a momentum of 0.9 and a weight decay of 0.0001 on

four NVIDIA GeForce GTX TITAN X GPUs with 12 GB

memory. The detector leverages RoIAlign Pooling [17] to

generate the length-fixed RoI features. No extra data aug-

mentation was used for the generated samples in Section 4.1

except standard horizontal image flipping. Each mini-batch

involves only one image per GPU with 128 (in ResNet-101)

or 256 (in VGG16) RoIs per image.
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Method Arch mAP cp shw plw

FCNN [12] VGG 65.6 39.5 86.1 71.1

FRCNN [32] VGG 68.8 48.8 86.3 71.3

FRCNN+ VGG 72.8 63.4 88.5 66.6

Ours VGG 80.4 81.3 87.7 72.3

OHEM [33] VGG 63.0 33.3 85.4 70.4

A-FCNN [41] VGG 61.1 19.1 87.3 76.9

FRCNN [32] ResNet 79.8 72.8 90.6 76.0

FRCNN+ ResNet 81.7 84.1 90.5 70.5

Ours ResNet 88.3 96.7 90.8 77.4

Table 1. Detection average precision (%). FRCNN+ refers to FR-

CNN [32] with our training schedule. Cp, shw and plw refer to the

three categories, corpse, shipwreck and plane wreckage, respec-

tively.

Method mAP cp shw plw

FRCNN+NA 83.5 81.1 90.4 79.1

Ours(FRCNN+NB) 85.8 92.5 90.6 74.4

Ours(FRCNN+NAN) 88.3 96.7 90.8 77.4

Ours(FRCNN+NAN+NB) 90.6 97.7 90.0 84.0

FRCNN+NAN+NB+NA 85.7 89.8 89.8 77.4

Table 2. Detection average precision (%) of ablation study with

NB (with ResNet-101). NA represents Noise Augmentation,

which means directly adding speckle noise (zero mean, variance

varying from 0 to 1) to sonar images.

Additionally, for the purpose of aggregating representa-

tive features as well as generating the adversarial examples

in a simple but efficient way, we set the kernel size k = 4
of convolutional layer in NAN with zero padding and one

stride. (Figure 2). We set the exponential parameter γ=1 in

Section 4.3.

4.3. Results on Our Dataset

We report the results on our own dataset for train-

ing Faster R-CNN with NAN. Table 1 showcases that the

main results of NAN with the backbones VGG16 [34] and

ResNet-101 [19] are 80.4% mAP and 88.3% mAP, re-

spectively. They obtain competitively higher performance

compared with the results of their corresponding standard

pipelines 68.8% mAP and 79.8% mAP. In addition, they

also outperform the baseline detector trained with our train-

ing schedule (the stage-wise training approach proposed

in Section 3.2), which have a result of 72.8% mAP and

81.7% mAP, respectively. Furthermore, we also compare

our method with another two widely used adversarial train-

ing strategies on our dataset. The OHEM [33] yields a result

of 63.0% mAP while A-Fast-RCNN [41] gives 61.1% mAP,

both of them are lower than our results.

4.4. Ablation Study with Noise Block

Since NAN generates the noise in an unsupervised way,

we design a Noise Block (NB) to yield noise in the shallow

layers (in this case it follows the first convolutional layer in

ResNet-101 and VGG16). We hypothesis the NB can offer

prior knowledge of noise generation to NAN because the

features from shallow layers have low semantics but high

resolution and geometric details, which is reasonable to es-

timate the speckle noise in the space domain.

Table 2 verify that the cooperation of NAN and NB im-

prove the performance of detector. When the detector is

equipped with both NAN and NB, the mAP is further im-

proved to 90.6%. Additionally, the result of plane wreck-

age was largely boosted, which explains that the NB im-

plicitly enhances the ability of NAN. To validate the effect

of NB, we record the variances predicted by NAN during

50k training iterations with and without NB. Figure 3 (a)

and (b) shows the number and distribution. It is obvious

that in Resnet-101, the combination of NAN and NB (w/

NB) can generate the variances in a concentrated range. In

VGG16 however, the variances generated in this way (w/

NB) follow a long-tail distribution. This indicates that with

the effect of NB, NAN can predict the speckle noise per-

turbation in a different domain, which varies according to

structure of backbones.

Utilizing NB alone still generates a competitive of 85.8%

mAP. We also compare this mechanism with Noise Aug-

mentation (NA), a common protocols to avoid overfitting,

which introduces speckle noise manually to the sonar im-

ages before training. The noise we add to image has zero

mean and the variance randomly varies from 0 to 1. This

method yields a mAP of 83.5%, falling short of NAN and

NB, which is mainly caused by the restricted noise model.

An intriguing fact is that when we combine the three meth-

ods (NAN+NB+NA), the mAP is reduced (85.7% in Ta-

ble 2), we conjecture it is the excessive addition of speckle

noise that plagues the detector.

4.5. Analysis of Noise Robustness

The original dataset implicitly includes noise which is

generated by the intricate underwater environment. How-

ever, the noise cannot be analyzed quantitatively. There-

fore, we manually introduce noises to the test set to analyze

the noise robustness of NAN and NB. We add speckle noise

with zero mean and variance σ2 varying from 0 to 1 to simu-

late the varying underwater reverberation, the speckle noise

model can be expressed as,

Is = Io + n ∗ Io, (14)

where Is denotes the image with speckle noise, Io repre-

sents the original image while n is speckle noise with mean

0 and variance σ2. The model is equivalent to Eq.(13) in the

case that γ=1.
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Figure 3. Result for further investigation. (a), (b) Histogram of variances generated by NAN with and without NB on ResNet-101 and

VGG16, respectively. (c), (d) Noise Robustness with various intensities of noise attack (µ=0, σ2 from 0 to 1). (c) is on ResNet-101. (d) is

on VGG16

Figure 3 (c) and (d) illustrate the noise robustness of

various mechanisms on both ResNet-101 and VGG16, re-

spectively. The original Faster R-CNN shows highly vul-

nerable to speckle noise. With the variance σ2 of noise at-

tack raising to 1, the performance exponentially drops to

29.2% and 5.9% on the two backbones respectively (blue

line). Equipped with NAN, the detector shows an improve-

ment to 48.8% and 15.8% (red dotted line), but still falling

short of a robust model. It is obvious that NAN substantially

boosts the performance on original test set (σ2 = 0) but falls

to tackle the problem in noise cases. The coordination of

NAN and NB overcomes the noise attack with all intensi-

ties (purple dotted line, specifically in the case of σ2 = 1
yielding 87.3% and 79.6% on the two backbones, respec-

tively), which demonstrates that with the assist of NB, the

NAN achieves high noise robustness. It is also showed that

to some extent noise attack can be mitigated with noise aug-

mentation (yellow dotted line). However, when combining

our NAN and NB with this mechanism, the mAP drops with

a certain degree (brown dotted line), which can be explained

as the reduction caused by excessive addition of noise.

Error analyses. We use the analysis method from [20]

to understand type of false positive suppressed by NAN and

NB. The detection results are classified into four groups:

1) Correct detection (Cor): correct classification with IoU

> 0.5. 2) Localization error (Loc): correct classification

with misaligned bounding box (0.1 < IoU < 0.5). 3) Sim-

ilar (Sim): confusion with wrong class with IoU > 0.1. 4)

Background (BG): confusion with background (IoU < 0.1).

Figure 4 showcases the top-ranked detections with noise

attack (σ2 = 0.5). It is obvious that the coordination of

NAN and NB extensively eliminates the false positive of

Loc and Sim, reducing them from 44% (FRCNN) to 8%

(NAN+NB). Equipped with NAN and NB, the detector

shows stronger localization (Loc) and classification (Sim)

ability. It is worth noting that there are no BG error in top-

ranked detections, which means the detector has less confu-

sion with background in the case of noise attack.

Figure 4. Error analyses on different models. Test set is attacked

by speckle noise (µ=0, σ2=0.5). Distribution of top-ranked detec-

tions include Cor (correct), Loc (misaligned localization) and Sim

(confusion with a wrong class). similar category)

4.6. Analysis of Generalization with Various Noises

To investigate the generalization of NAN and NB, we

manually enlarge variation between train and test sets.

We construct four duplicate datasets from original sonar

datasets, introducing each of them a specific kind of noise:

speckle (Spe), gaussian (Gau), poisson (Poi) or salt-and-

pepper (S&P). In datasets of Spe and Gau, the mean and

variance of both speckle and gaussian noise are 0 and ran-

domly varying from 0 to 1, respectively. In S&P, the pro-

portion of salt-and-pepper noise replacing the image pixels

is 0.1. The detectors are trained with each train sets and

tested on all the test sets, respectively.

Figure 5 shows the heat map of results on both base-

line (left) and detector equipped with NAN and NB (right),

both of them are trained and tested on different kinds of

noise. It is remarkable that (1) detector with NAN and NB

outperforms its counterpart base network in almost all the

cases, with only one exception that training with S&P and
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Figure 5. Heat map of detection results (%) on both baseline (left)

and detector equipped with NAN and NB (right). The column

labels represent the train sets with its related type of noise while

the row labels mark the test sets. The value in each cell is the

result generated by its corresponding train and test set, e.g. the

result in red box is yielded by training on salt-and-pepper noised

train set while testing on poisson noised test set. We also illustrate

the case on original dataset (Std) and average value (Ave) of its

related column or row.

test on Poi test set (red box); (2) 14 over 36 cases of base-

line show mAP lower than 70%, which illustrates its poor

generalization, since it over fits the finite training samples

while yields low mAP on test sets with other kinds of noise;

(3) comparing the first row with the rest of rows of base-

line heat map, it is obvious that noise augmentation indeed

improves the results of detection except for Poi; (4) train-

ing with Poi dataset dramatically degrades the performance

of detectors on each test set. It is mainly because that as a

signal-dependent noise, poisson noise is largely related to

sonar image itself, inherently corrupting train sets.

In most cases, the train and test sets are attacked by dif-

ferent types of noise, the results prove that the NAN and

NB allow for greater variation between train and test set,

the ability of generalization of NAN and NB is explicitly

measured.

4.7. Results on PASCAL VOC 2007

To verify the universality of NAN and NB, we ap-

ply them on the optical image benchmark PASCAL VOC

2007. We train the models on VOC 2007 and VOC 2012

trainval sets (’07+12’) and test on VOC 2007 test

sets. In addition, we introduce two types of noise to the test

set. Besides the speckle noise we leveraging in Section 4.5,

we utilize Gaussian noise which is ubiquitous in optical im-

ages to simulate the degraded images that are captured in

the abnormal illumination or transmission conditions. To

cope with the Gaussian noise, we also set a compensatory

experiment in which NAN generates perturbation noise fol-

lowing Gaussian distribution, using additive noise model.

As Table 3 shows, in both ResNet-101 and VGG16 ar-

chitectures, NAN and NB with Gaussian perturbation noise

outperforms another two methods in original and gaussian

Method ResNet VGG16

test set O Spe Gau O Spe Gau

FRCNN+ 76.6 58.7 56.8 73.5 47.3 47.2

Rayleigh 77.8 67.3 66.7 74.5 65.2 64.1

Gaussian 79.0 72.2 74.2 75.7 64.4 68.5

Table 3. PASCAL VOC 2007 test mAP(%). FRCNN+ refers to

FRCNN [32] with our two-stage training schedule. Rayleigh de-

notes training model with NAN and NB which generates noise fol-

lowing Rayleigh distribution (γ = 1, Eq.(13)). Gaussian refers to

training NAN and NB which generates noise following Gaussian

distribution with an additive noise model. ’O’, ’Spe’ and ’Gau’

represent original test set, speckle and Gaussian noised (µ=0,

σ2=0.1) test set, respectively.

noised test set. In ResNet-101, the detector equipped with

NAN achieves 79.0% mAP, 2.4% higher than baseline. The

model equipped with NAN and NB reflects its robustness on

both speckle and Gaussian noise attack. NAN and NB with

perturbation noise following Rayleigh distribution does not

achieve high performance on original test set as Gaussian

model but still competitive. A speculative explanation is

that without a coherent imaging system under normal con-

ditions, the imaging mechanism of optical images does not

involve speckle noise, which is different from sonar images.

5. Conclusion

We present an adversarial strategy to generate adversar-

ial examples with peculiar noise property of sonar image

by a sideway Noise Adversarial Network with its auxiliary

part Noise Block. Extensive experiments on our sonar im-

age dataset demonstrate that detector equipped with NAN

and NB gains a substantial improvement as well as noise ro-

bustness compared with its baseline and other strategies. It

is demonstrated that this mechanism allows for greater vari-

ation between train and test sonar datasets. Furthermore,

the universality is proved on the optical image dataset. In

the future, we plan to explore other inherent properties such

as illumination and shadow to improve the performance of

the detectors for sonar images.
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