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Abstract

Small, carefully crafted perturbations called adversar-

ial perturbations can easily fool neural networks. However,

these perturbations are largely additive and not naturally

found. We turn our attention to the field of Autonomous

navigation wherein adverse weather conditions such as fog

have a drastic effect on the predictions of these systems.

These weather conditions are capable of acting like nat-

ural adversaries that can help in testing models. To this

end, we introduce a general notion of adversarial pertur-

bations, which can be created using generative models and

provide a methodology inspired by Cycle-Consistent Gener-

ative Adversarial Networks to generate adversarial weather

conditions for a given image. Our formulation and results

show that these images provide a suitable testbed for steer-

ing models used in Autonomous navigation models. Our

work also presents a more natural and general definition of

Adversarial perturbations based on Perceptual Similarity. 1

1. Introduction

Autonomous navigation has occupied a central position

in the efforts of computer vision researchers in recent years.

Autonomous vehicles can not only aid navigation in urban

areas but also provide critical support in disaster-affected

areas, places with unknown topography (such as Mars), and

many more. The vast potential of the applications thereof

and the feasibility of the solutions in contemporary times

has led to the growth of several organizations across indus-

try, academia, and government institutions that are investing

significant efforts on self-driving vehicles. Computer vision

has been studied and shown to play an important role in the

development of autonomous navigation technologies over

the years [17][14][19]. Vision tasks such as image-level

classification, object detection, semantic segmentation, as

well as steering angle prediction, play critical roles in the

development of autonomous vehicles. The increasing em-

phasis of this problem domain has also led to the creation

1Accepted to WACV 2020

of different vision datasets that are necessary to develop so-

lutions across different geographies [10][23][37].

Figure 1: Steering Angle(radians) deviation seen in the

same scene due to Fog, for the AutoPilot model[8]. Lower

image was generated by our method given the left image

It is common knowledge now that deep neural networks

have achieved state-of-the-art performance in many com-

puter vision tasks [16, 25]. With great leaps in performance,

deep learning models have been deployed in many physi-

cal systems, and efforts have been afoot to develop robust

deep neural network models for autonomous vehicles too

[5][8][33]. However, the recent mishaps involving self-

driving vehicles has necessitated the requirement for test-

ing such deep learning models with data in various condi-

tions. Existing efforts largely rely on copious amounts of

collected data from the real world, data augmentation using

simple affine transformations [35] or the use of data from

synthetic/virtual environments [30] for various conditions.

There is an impending need for methods that can provide

data with a wider variety of conditions that can validate the

robustness of the learned models for vision tasks in such

settings, in order to save lives and property in the future.

One such important dimension is the variability of a given
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environment under various weather conditions. Real-world

studies such as [1] have shown that bad weather can alone

manage to crash navigation systems. It is hence important

to train deep learning models with as many weather con-

ditions of a given environment as possible to obtain robust

systems in deployment. Our efforts in this work are towards

addressing this need.

From a different perspective, many recent efforts have

also been made to study the robustness of deep neural net-

work models, by showing how vulnerable they can be to-

wards adversarial perturbations [2], which involve adding a

small amount of noise to the input data in order to fool the

model. Attempts have been made to show that systems per-

forming essential day-to-day tasks such as face and speech

recognition [34][7], as well as physical systems [20] can

be attacked using such adversarial perturbations. Similar

efforts have also been attempt to attack autonomous navi-

gation models such as in [13][9]. These efforts use adver-

sarial patches [6] physically placed in the field of view of

the model to fool it. However, as shown in a very recent

work [18], natural adversarial examples are sufficient to fool

them, and do not need any explicit image manipulation or

hacking with an intention to fool such systems. Weather-

based changes in the environment fall into such a category,

which we focus on in this work. For example, as shown in

Figure 1, when fog is added to the scene, the steering angle

predicted by deep learning models deviates by a significant

amount from the original, making these models vulnerable

to such ‘weather-adversarial’ data.

In this work, we bring together two perspectives: the data

augmentation one and the adversarial one, to explicitly gen-

erate weather-adversarial images that can fool deep neural

networks for autonomous vehicles (steering angle predic-

tion, in particular). To the best of our knowledge, this is

the first effort in this direction. Such an effort is important

to provide essential data from different conditions that are

likely to affect (or attack) such models. Our work can be

utilized to test steering angle prediction models and their ro-

bustness against adverse weather conditions. (We focus on

fog in this work, due to the availability of relevant data, but

our framework is generalizable and can be easily extended

to other weather conditions.) Our work also demonstrates

that current steering angle models used in self-driving cars

are inadequate to handle weather variations in real-world

settings. The key contributions of this work are as follows:

• We bring together data augmentation and adversarial

perspectives to introduce a methodology that can gen-

erate foggy images that are intended to ‘fool’ models

for steering angle prediction in autonomous vehicles.

Our methodology integrates an adversarial loss term

in an unpaired image-to-image translation framework

[42][4] towards the aforementioned objective. To the

best of our knowledge, this is the first such effort, in

particular, for autonomous navigation applications.

• Existing adversarial attack models are largely focused

on classification tasks; we provide an extension of such

attacks to regression tasks such as steering angle pre-

diction models.

• We validate the proposed methods using qualitative

and quantitative analysis on a well-known autonomous

navigation dataset to showcase its promise. We also

show that a model that is adversarially trained using

the images generated by our method provides signifi-

cant robustness to the model.

The remainder of this paper is organized as follows. In

Section 2, we review previous related efforts in the areas

of autonomous navigation and adversarial attacks. We de-

scribe our methodology in Section 3, with a perspective of

how this provides a more general notion of natural adver-

saries. Our implementation details, experiments and results

are shown in Sections 4 and 5 respectively, followed by con-

clusions and future directions in Section 7.

2. Related Work

Considering the focus of this work, we present an

overview of related earlier efforts from perspectives of both

testing the robustness of vision models in autonomous nav-

igation, as well as adversarial attacks in general. In each of

these discussions, we present the limitations of the existing

efforts and the scope of improvement when the proposed

method is used.

2.1. Adversarial Attacks

The conventional notion of an adversarial attack is gen-

erally formalized as: given a classification model f , and

input image x, we define a perturbation δ as a quantity that

is added to x such that:

argmax f(x + δ) 6= argmax f(x) and ||δ|| ≤ ǫ (1)

The δ defined above has usually been specific to the input

and found through methods like FGSM [15], JSMA [27],

and the more recent PGD [24]. The δ may also be common

to the entire dataset and may be found iteratively like in

the case of UAP [26] or may be generated by a GAN [28].

For the interested reader, a detailed survey of these meth-

ods is provided by Akhtar et al. in [2]. All these methods

attempt to add a perturbation to the image, which can fool

the trained model. Our proposed work is different in two

ways from these efforts: (i) we extend the concept of adver-

saries to go beyond additive perturbations to natural pertur-

bations such as induced by weather changes in disturbing

the model (similar to [18], can be considered implicitly ad-

versarial); (ii) most existing efforts focus on adversarial at-

tacks in classification settings, and there has not been much
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effort to define an adversary in a regression-based setting.

We propose an adversarial loss for regression models (steer-

ing angle prediction, in particular) in this work.

Attacking Autonomous Navigation Models: There have

been a few explicit efforts in the recent past to develop

adversarial attacks for vision models in self-driving cars.

Works such as that of Eykholt et al. [13] utilize adversarial

patches [6] which are physically added to objects like traf-

fic lights to fool the model. Similarly, Zhang et al. [41] re-

sort to physically camouflaging cars to fool object detector

models used in autonomous navigation systems, to test the

robustness of the model. We observe that these efforts rely

on physical changes in the environment to attack the black

box models, for which human effort in case of large scale

testing may be prohibitive. On the other hand, it has been

shown that weather-induced environment changes naturally

result in implicit adversarial circumstances for the model

involved [29], and robustness to such weather-adversarial

samples is also critical for models in autonomous naviga-

tion. We hence focus on generating natural-looking images

of existing scenes affected by weather conditions (in partic-

ular, fog, in this work).

2.2. Testing Autonomous Navigation Models with
Weather Changes

Since the advent of Generative Adversarial Networks

(GANs), there have been limited efforts that have explicitly

attempted to analyze the effect of different weather con-

ditions on steering angle prediction models in self-driving

cars. DeepTest [35] used synthetic images generated using

Photoshop to study the impact of rain and fog on the pre-

dicted steering angle. The manpower required for a large-

scale deployment is prohibitive for such an approach. Deep-

Road [40] tried to automate the same using generative mod-

els instead. DeepRoad learns the translation to different

weather conditions; however, the sole goal for this work

is to perform image-to-image translation with no explicit

goal to ‘fool’ the model or obtain any minimum deviation of

steering angle from the ground truth. In this work, we bring

together adversarial and unpaired image-image translation

perspectives to produce a minimum deviation in steering

angle prediction in the produced images. We also show in

Section 5 that our method to generate fog adversaries causes

an average perturbation of nearly 1 radian(∼ 60 degrees),

which can serve as a rigorous platform to test vision models

in autonomous navigation.

2.3. Fog Generation

Adverse weather conditions such as fog are common in

day-to-day life. There have been very few efforts based on

image processing and filters to generate fog in images. We

note that most related work in this direction based on im-

age processing focus on defogging [22, 39], whereas our

work is focused on the generation of fog. Li, et al [21]

and Sakaridis et al[32] attempt to generate fog using image

processing methods with a strong prior. A prior is usually

carefully constructed based on handcrafted features, such as

texture and brightness, from the image. Unfortunately, us-

ing such priors automatically restricts the approach to con-

straints on expected intensity, texture, and other features

present in the image. Besides, in settings of autonomous

navigation, handcrafted priors do not scale to the significant

variations in scenes and environments, as well as significant

variations in a single scene due to effects induced by factors

such as light-and-shadow and fast motion. In this work,

we attempt to provide an automated method to generate fog

images that are intended to distort steering angle prediction

models, to improve robustness of such models. We show

later in this paper that performing adversarial training using

the images generated by our method provides significant ro-

bustness to the model.

3. Methodology

When a carefully crafted perturbation is added to the im-

age such that it causes the network to misclassify, we call it

an adversarial perturbation (as in Sec 2.1). For a classifier

network f and an input image x; the perturbation, φ applied

on it may be defined as:

argmax f(φ(x)) 6= argmax f(x) (2)

To ensure visual similarity, the adversarial image should be

within ǫ (very small) distance of the original input. This

constraint is generally include to the above problem as:

s.t ||φ(x)− x|| ≤ ǫ (3)

In the case of an additive perturbation, we define φ as:

φ(x) = x + δ

We observe that this results in the same set of equations as

earlier in Eqn 1.

We now use this definition to extend the typical form

of adversarial perturbations, by allowing φ to be more than

simple additive perturbations. We can define φ as a mul-

tiplicative noise or a filter, or a neural network itself can

model it. We expect any transformation created by φ to be

valid in such a setting as long it guarantees task-perceptual

similarity, discussed below.

Task-Perceptual Similarity. In the case of images, the

adversarial attacks performed are such that both the adver-

sarial image φ(x) and original image x are perceived to be

similar. This usually includes visual similarity like in the

case of many popular attacks like FGSM [15] and JSMA
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[27]. Recent works have shown that simple image transfor-

mations like rotation, scaling, and the translation are suf-

ficient to fool the network [12][3]. These efforts do not

emphasize complete visual similarity, yet we humans find

them to be perceptually similar, i.e., they are interpreted in

the same way by the human visual system. Following this,

we can extend the definition of adversaries beyond visual

similarity to something more intuitive: task-perceptual sim-

ilarity.

To ensure the same, in Eqn 2, we expect the transforma-

tions created by φ to be such that the result predicted by

humans for the given task is the same for both the origi-

nal input and the adversary. The transformation need not

necessarily guarantee visual similarity, but the task at hand

needs to be perceived in the same way by the human. Exam-

ples of such transformations for images include contrast and

brightness changes, blurring, rotation, scaling, sharpening,

whitening, the addition of noise, etc. In all of these cases

or a combination of these, humans are capable of perceiv-

ing the image similarly; this is, however, not the case with

neural network models. One should note that visual sim-

ilarity generally guarantees task-perceptual Similarity, but

the converse need not hold. In Eqn 2, in order to guarantee

visual similarity, one may simply add a constraint like that

of Eqn 3.

3.1. Adversarial Attack on Regression Models

From the previous definition of adversarial perturba-

tions, we may redefine it for a regression network, N as:

||N(φ(x))−N(x)|| ≥ θ (4)

This implies we want the perturbation applied to the image

x to cause a minimum deviation of θ. As stated earlier in

Section 2.1, φ can be purely additive or another function

captured by a neural network. We may add additional con-

straints on φ for visual similarity or sparsity. We can then

simplify Eqn 4 to:

||N(φ(x))−N(x)|| − θ ≥ 0

=⇒ θ − ||N(φ(x))−N(x)|| ≤ 0 (5)

Hence, we define regression loss, Lregress required for cre-

ating an adversarial sample for input x as:

min
φ

Lregress = min
φ

(θ − ||N(φ(x))−N(x)||) (6)

By minimizing Lregress, we can find the perturbation, φ

which ensures that a minimum deviation is caused for every

input sample, x.

3.2. Proposed Idea

Steering angle prediction models are fundamentally de-

signed to be regression models, and take the input scene

to predict the angle of the steering wheel in the range of

[−π, π]. We have previously seen in Fig 1 that adverse

weather conditions like fog affect the steering angle pre-

dicted by a model. Fog may be represented as a mixture

of blurring and whitening on an image. We also observe

that a foggy image is perceived in a similar manner as the

normal one by a human, especially when it comes to tasks

like steering angle prediction. To elaborate further, in Fig.1,

we as humans expect the same steering angle for both the

sets of images but the network does not. We leverage this

fact to design a testbed for steering angle models using ad-

verse weather conditions. Hence, combining the previous

two sections, we can utilize weather conditions like fog to

attack steering angle prediction models adversarially.

To achieve this goal, we define N as our steering angle

predictor in Eqn 6 and φ as our adversarial weather gener-

ator for a given sample x. We train a generator, φ to learn

the transformation (Sec 3.3) from normal weather to foggy.

The weights of φ will be obtained by minimizing Eqn 6.

We now have φ, a generator being modeled by a neural

network and a continuous-valued discriminator N . The θ in

the equation naturally becomes the minimum steering angle

deviation we desire.

3.3. Loss Formulation

We train a CycleGAN [42] to learn the translation be-

tween the normal (sunny) weather (Domain A) and the ad-

verse weather condition images (Domain B). φAB is the

Generator responsible for the translation from Domain A

to B and φBA for the reverse. Similarly, DA is the Discrim-

inator responsible for Domain A and DB for Domain B.

CycleGAN utilizes adversarial losses across its generated

images. It also uses a cycle-consistency loss which ensures

that when an image x belonging to Domain A, is translated

from Domain A to B and back to Domain A, remains the

same. i.e.,

x ≈ φBA(φAB(x))

This also applies in a similar fashion for images from Do-

main B. Hence, CycleGAN loss in total consists of: 2

LCycleGAN = Lcycle(φAB , φBA)+

Ladversarial(φAB , φBA, DA, DB)

We augment the CycleGAN losses with the regression loss

(Eqn 6) and train this combined loss.

Hence the net loss that the CycleGAN is trained on:

Ltotal = (1− α)LCycleGAN + αLregress (7)

where, Lregress = θ − ||N(φAB(x))−N(x)|| (8)

In the above equation α is a multiplier lying between (0, 1).
We summarize the working of the network in Figure 2 and

also in Algorithm 1.

2For complete details of the CycleGAN loss, please refer Zhu et al[42].
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Figure 2: Summary of the framework followed to train the CycleGAN network to fool the steering angle predictor N .

The image-to image translation part of the system learns the translation between Normal, Sunny weather(Domain A) and

Foggy weather(Domain B). The adversarial generator part helps φAB generate foggy images which can cause a minimum

deviation(θ) in the predictions of N .

One may note that we can use any other domain transla-

tion model instead of CycleGAN to achieve the same goal.

To demonstrate the efficiency of our concept, we run our

experiments on another recently popular model: Distance-

GAN [4]. This model utilizes CycleGAN losses along with

a distance loss to ensure that the distance between a pair of

samples is maintained across both the domains.

Algorithm 1 CycleGAN training pseudo code

Input X ← Training samples from Domain A

Input Y ← Training samples from Domain B

Input N ← Steering Angle Model to be Fooled

Input T ← Number of epochs to train

Input θ ←Minimum deviation desired

Output {φAB , φBA, DA, DB}

1: procedure GENERATE()

2: for t in {1...T} do

3: Draw m training samples {x1, ..xm} from X

4: Draw m training samples {y1, ..ym} from Y

5: for i in {1, ...m} do

6: x← xi ; y ← yi
7: Compute: ŷ ← φAB(x) ⊲ Forward Cycle

8: Compute: x̂← φBA(y) ⊲ Backward Cycle

9: Compute the losses:

10: Lregress(φAB , x) ⊲ Eq. 8

11: Lcycle(φAB , φBA, x, y, x̂, ŷ)
12: Update Generators
13:

14: Compute Discriminator losses:

15: Ladversarial(φAB , φBA, DA, DB , x, y, x̂, ŷ)
16: Update Discriminators

17: end for

18: end for

19: end procedure

4. Implementation

Network Architecture: For the domain translation be-

tween normal to foggy weather, we use the CycleGAN

model. The generators in the model use the same architec-

ture involving Resnet-9 blocks as described in [42]. We also

utilize similar architecture for the DistanceGAN model[4].3

For the steering angle models, we use AutoPilot[8] which is

an improvement on NVIDIA PilotNet model[5]. The model

is adapted with an additional convolution layer for 128×128
images. We also perform similar experiments on the archi-

tecture developed by Comma AI [33].

Datasets used: There are many weather conditions which

are capable of causing a large deviation in steering angle

predictions. However, due to unavailability of datasets with

heavy snow or rainy weather conditions, we restrict our-

selves to foggy conditions [31]. We, however, note that our

framework is generic and can be extended to other weather

conditions.

We train the CycleGAN model[42] to learn the domain

translation from normal, sunny weather to foggy weather

conditions. The sunny weather condition images are ob-

tained from the widely used SullyChen’s dataset [8]. We

chose this dataset over the Udacity dataset [36] due to its

better quality. The Udacity dataset has many images with

blank bright spots or hazy regions, making it difficult for

the Generator to learn the translation to its equivalent foggy

condition. Most other steering angle based datasets are ei-

ther virtual [11] or of poor quality with minimal variations

[33], and hence not suitable for this work.

Our foggy weather images (to train the CycleGAN) are

taken from the Foggy Zurich dataset [31], which consists

3Project Webpage: https://code-assasin.github.io/little fog/
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of 3.7k high-quality images collected during the occurrence

of fog in and around Zurich. The steering angle prediction

model is trained on the Sullychen dataset [8], and the MSE

is shown in Table 1.

Preprocessing: In order to train the CycleGAN, the nor-

mal weather images from Sully Chen’s dataset [8] are sam-

pled since many of the frames consist of similar scenes.

After sampling (Systematic sampling with an offset of 12

frames), we obtain nearly 3.7k images for training the Cy-

cleGAN. The foggy images from [31] consist of a wiper and

a dashboard in their scenes, something absent in the normal

images dataset. Hence we crop the bottom few pixels of the

foggy images to train the CycleGAN. Both the dataset im-

ages are resized to 128 × 128 pixels and then used to train

the CycleGAN. For the steering angle models, however, we

use the entire Sully Chen dataset [8], split into a train and

test set. The images are resized to 128×128 and normalized

between [−1,+1].

Training details: We train the CycleGAN model along

with the regression loss to learn the translation between nor-

mal and foggy weather conditions (Eqn 6). The parameters

used in case of the CycleGAN losses are mostly the same as

those mentioned in [42] except for the identity loss having

a multiplier (λidentity) of 3 . The model is then trained with

both losses. The value of α is chosen to be 0.2 and θ is 0.5
radians (∼ 30 degrees).

DistanceGAN model: We also train the DistanceGAN

[4] model with similar preprocessing, as mentioned above.

We used the hyperparameters as used in the code provided

by [4], with the exception of the identity loss. We choose

the value of α to be 0.07 and θ as 0.5 radians.

Model Train Error Test Error

AutoPilot[8] 0.0185 0.0448

Comma AI[33] 0.0198 0.0551

Table 1: Test + Train error for diff steering angle models

5. Results

We showcase the results of our trained model in Fig.3

along with the steering angle, predicted for each image.

We observe that the second image has nearly a 180 degree

change in the predicted angle, indicating how dangerous

these adverse weather conditions can be, further encourag-

ing the need for testbeds provided by methods like ours.

5.1. Subjective Image Quality Assessment

We assess the realism of the foggy images generated by

the CycleGAN after being trained with the Regression Loss.

We asked 10 participants to assess the quality of the gener-

ated foggy images. These participants had never seen the

normal, sunny version of the image before and were asked

to judge the realism of the foggy image provided to them.

We use the foggy images from the Foggy Zurich dataset as

the control for these experiments. We ran this experiment

for different variations of the CycleGAN model used. We

observed that on an average (for both steering prediction

models), nearly 48% (44% for DistanceGAN) of the par-

ticipants found the fog generated by utilizing Regression

loss to be real enough compared to Foggy images from the

Zurich dataset [31]. Additionally, we asked participants to

choose the between the foggy images produced by Cycle-

GAN (or DistanceGAN) and those produced when regres-

sion loss was added. We asked them to compare theses im-

ages based on their quality. We found that nearly 43% (48%
for DistanceGAN model) of the people found that Cycle-

GAN with regression loss produces better images. Consid-

ering this is nearly half the participants, we find that our

method produces images of comparable quality as the orig-

inal foggy images.

5.2. Objective Image Quality Assessment

We use standard Image quality assessment metrics like

MSE, PSNR, SSIM[38] to compare the quality of the nor-

mal sunny image, w.r.t its foggy counterpart for different

flavors of the models used. We report the results for the

same in Table 3. In addition, we compare the image quality

of foggy images produced using produced by CycleGAN

alone and those produced when Regression loss was added

(see Table 4).

We see from Tables 3 and 4 that the regression loss in-

deed causes a visible change in the image. Visibly also the

quality of the images without regression loss seems to be

better than those produced with it. To study the efficacy of

regression loss, we compute the difference in steering an-

gle predicted for foggy images produced by the CycleGAN

model with and without regression loss, i.e., we compute:

||N(φfoggy(x))−N(φ̂foggy(x))||

φfoggy is the CycleGAN Generator responsible for the

translation from normal to foggy domain and φ̂foggy is the

same generator trained with the Regression Loss. From Ta-

ble 2, we can clearly see that the deviation produced with

and without our loss is clearly very significant for both the

CycleGAN and DistanceGAN model.

Method Deviation Caused

Cycle vs Cycle+Regress (AutoPilot) 1.09± 0.9

Cycle vs Cycle+Regress (Comma AI) 0.76± 0.7

Distance vs Distance+Regress(AutoPilot) 1.31± 0.5

Distance vs Distance+Regress(Comma AI) 0.58± 0.54

Table 2: Deviation caused with regress loss in comparison

to the original models (Calculated using Eq.8)

6. Ablation Studies

We notice in Eq.8 that there is a subtle balance between

the CycleGAN and regression loss. While LCycleGAN is
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Figure 3: Fooling Models: Ground truth Steering Angle (in radians) for each of the original test samples. The angles right

below indicate the ordered pair of predicted steering angle by AutoPilot and Comma AI respectively. From the second row

onward, we indicate the image translation model used and respective steering model it was trained on. The angle below each

of those images indicates the prediction by the steering model for the generated foggy image.

Figure 4: Variation in image quality of CycleGAN for different α values

Method MSE PSNR SSIM

Cycle 3172± 1172.4 13.4± 1.8 0.51± 0.08

+Regress(AutoPilot) 3024± 1076 13.7± 1.9 0.52± 0.07

+Regress(Comma AI) 3111.2± 1086 13.5± 1.9 0.52± 0.08

Distance 2073.2± 663.4 15.18± 1.4 0.59± 0.05

+Regress(AutoPilot) 3292± 1085.8 13.2± 1.56 0.54± 0.07

+Regress(Comma AI) 2327± 811 14.7± 1.6 0.61± 0.058

Table 3: Objective IQA normal w.r.t respective foggy coun-

terpart using different methods

responsible for the quality of the foggy images generated,

Lregress is responsible for causing the minimum deviation

in the steering angle model. We can see that either loss over-

powering the other is undesirable. Hence, a subtle balance

must be created between them to achieve the end goal. To

gain a deeper understanding of this, we explore variations

in the hyperparameters α and θ. For all of the experiments,

we use a CycleGAN[42] model along with the AutoPilot[8]

model as the steering angle predictor.

Method MSE PSNR SSIM

Cycle vs (AutoPilot) 802.9± 446.6 19.6± 2.04 0.64± 0.06

Cycle vs (Comma AI) 868.4± 491 19.3± 2.17 0.64± 0.07

Distance vs (AutoPilot) 2025.2± 1253 15.8± 2.56 0.52± 0.07

Distance vs (Comma AI) 1362.± 786 17.43± 2.36 0.57± 0.068

Table 4: Results using different I.Q.A methods. For each

row we compare, the model and its counterpart trained with

regression loss on the respective steering model.

Variation in α. We vary the hyper-parameter α (defined

in Eq.8) to study its effect on the images generated by the

CycleGAN. We choose a constant value of θ = 0.5 radians

for these experiments.

• α = 0.2 : With a decent value of α, as seen in Section

5, it produces fairly good results. The image quality of

the CycleGAN remains pretty clear while causing the

minimum required deviation.
• α = 0.5 : With a moderate value of α, although we

expect to average results, the image quality of the Cy-
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cleGAN is completely wrecked.
• α = 0.8 : With very high value of α, Lregress is given

more importance. This causes the output foggy images

to have lower-quality than those obtained in Section 5.

While for α = 0.2 it only takes 150 epochs to reach the

desired goal, for higher values of α it seems to take more

epochs to converge. For α = 0.5 it took nearly 200 addi-

tional epochs to settle while the losses kept oscillating for

0.8. We can also see the variation in their quality in Fig 4.

Variation in θ. We vary the minimum deviation θ in the

Eq. 8 to see its effect on the generated images. For all

experiments with changes in θ, we fix our α value to 0.2.

• θ = 0 radians : In this case, we would ideally expect

the Lregress to be dominated by LCycleGAN but we

observe that in a matter of few epochs the Lregress val-

ues start becoming highly negative hence the net loss

function start shifting its attention towards minimizing

the regression loss without paying heed to the Cycle-

GAN losses. This causes a lot of deterioration in the

image quality of the foggy images.
• θ = 0.5 radians : As seen in Section 5, this value of

θ relayed good results both in terms of image quality

and deviation produced.
• θ = 1 radians: With a higher value of θ the number of

epochs taken for convergence was much higher with

nearly similar quality as those obtained with θ = 0.5.

Hence, we prefer to reduce our costs by utilizing θ =
0.5. In addition, θ = 0.5 itself is causing an average

deviation of 1 radian (Table 2) hence reaping the ben-

efits without additional costs.

Similar trends, for θ and α, are seen using the Distance-

GAN [4] model.

Regression loss on Backward Generator φBA: From

Eq. 8 we can observe that the Regression loss is applied

only to the forward cycle of the CycleGAN. Our goal is

only to create adverse weather conditioned images and not

vice-versa. Hence the Regression loss is only applied on

φAB . To test if adding a regression loss on backward cycle

might help, we add the following term to Eq. 8:

LBregress = θ − ||N(φBA(y))−N(y)||

Where y belongs to Domain B(foggy weather). This loss

is then multiplied with α, same as in Eq. 8. We train the

CycleGAN model in conjunction with these losses. As seen

in Fig. 5, the results of this model seems to be distorted,

and of poor quality. We also observed that the loss seemed

to oscillate. We believe that this occurs because backward

regression loss forces the normal images generated to cause

distortion. There is a good chance (as in Sec 6) that the re-

gression loss dominates over the CycleGAN loss and hence,

might even generate blank images which are perfectly capa-

ble of causing the desired deviation in the steering angle. To

prevent this from happening, we ensure that the generated

image is perfectly capable of being returned to the original

(Eq. 3.3). We hence do not include the adversarial loss term

in φBA.

Figure 5: Original images (left) and foggy counterparts

(right) generated using regression loss in both directions

Defending against Fog: We train the AutoPilot and

Comma AI models with the foggy counterparts of the train-

ing dataset [8], generated using the proposed method. We

then test the model on the foggy counterpart of the test set.

From Table 5, there is a clear improvement in the devia-

tion caused once the model is adversarially trained using

the foggy images generated by our method.

Method Trained on Deviation Caused

AutoPilot Normal 1.81± 1.03

AutoPilot Foggy 0.17± 0.4

Comma AI Normal 1.88± 0.84

Comma AI Foggy 0.2± 0.7

Table 5: Deviation caused with regress loss in comparison

to the original models

7. Conclusions

As part of our work, we introduced a more generic def-

inition of adversarial perturbations. Our definition makes

use of the more understandable Perceptual Similarity rather

than Visual Similarity. We have also introduced a man-

ner in which adversarial perturbations may be used to fool

regression-based networks such that they cause a minimum

deviation. We then showed how this could be applied to

steering angle models to generate sufficient Fog to produce

a minimum deviation in the scene. In the future, with the

help of better datasets, we would like to construct more

stringent testbeds to evaluate the credibility of autonomous

navigation.
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