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Abstract

Text contained in an image carries high-level semantics

that can be exploited to achieve richer image understand-

ing. In particular, the mere presence of text provides strong

guiding content that should be employed to tackle a diver-

sity of computer vision tasks such as image retrieval, fine-

grained classification, and visual question answering. In

this paper, we address the problem of fine-grained classi-

fication and image retrieval by leveraging textual informa-

tion along with visual cues to comprehend the existing in-

trinsic relation between the two modalities. The novelty of

the proposed model consists of the usage of a PHOC de-

scriptor to construct a bag of textual words along with a

Fisher Vector Encoding that captures the morphology of

text. This approach provides a stronger multimodal repre-

sentation for this task and as our experiments demonstrate,

it achieves state-of-the-art results on two different tasks,

fine-grained classification and image retrieval. The code

of this model will be publicly available at 1.

1. Introduction

Written communication is arguably one of the most im-

portant human inventions that allows the transmission of in-

formation in an explicit manner. Moreover, given the fact

that text is omnipresent in man made scenarios [41, 20], as

well as the implicit relation between visual information and

scene text instances, the design of holistic computer vision

models for scene interpretation is fundamental.

With the purpose of designing a holistic model, in this

work we leverage textual information applied to the prob-

lem of fine-grained classification and image retrieval. Fine-

grained classification tackles the problem of classifying dif-

ferent object instances that are visually similar and difficult

to discriminate. The complexity of this task lies in finding

discriminative features which often require domain specific

knowledge [29, 42].

1http://www.github.com/DreadPiratePsyopus/Fine Grained Clf
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Figure 1. T-SNE Visualization [28] of the 300 dimensional PCAed

PHOCs in a two dimensional space. Words with similar mor-

phology are clustered together by a Gaussian Mixture Model, thus

making such a descriptor suitable and powerful enough to discrim-

inate text for a fine-grained classification task.

An early work that demonstrated the importance of

text (domain specific knowledge) for fine-grained storefront

classification was put forward by Movshovitz et al. [31], in

which the trained classifier learned automatically to attend

to text found in an image as the sole way of solving the task.

Since then, there has been additional research that explicitly

combines textual and visual cues, being the work presented

by Karaoglu et al. [19, 18] and Bai et al.[2] the most related

ones to our paper. In this work, we propose the usage of

a state of the art text retrieval model presented by Gomez

et al. [11] to detect and obtain the Pyramidal Histogram

of Characters (PHOC) of scene text. We use the PHOC

descriptors extracted from images and explore different fu-

sion strategies to merge the visual and textual modalities.

Additionally, we construct a Fisher Vector (FV) Encoding
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from the obtained PHOCs to be used as a fixed-length text

feature in our pipeline and further improve the classifier re-

sults. Our model leverages the visual features combined

with the morphology of a word (refer to Figure 1), that be-

long to specific fine-grained classes, without the need to un-

derstand them semantically. Contrary to previous methods,

this approach is especially useful when dealing with text

recognition errors and named entities which are often dif-

ficult to encode in a purely semantic space. The combina-

tion of these two modalities produce an output probability

vector that addresses the classification task at hand. As an

additional application, we evaluate the proposed model on

fine-grained image retrieval in available datasets. Overall,

the main contributions of our work are:

• We propose a novel architecture that achieves state

of the art on fine-grained classification by considering

text and visual features of an image.

• We show that by using Fisher Vectors obtained from

PHOCs of scene text, we obtain a more robust rep-

resentation in which words with similar structure get

encoded on the same Gaussian component, thus cre-

ating a more powerful discriminative descriptor than

PHOCs alone.

• We provide exhaustive experiments in which we com-

pare the performance of different alternative modules

in our model and previous state of the art.

2. Related Work

2.1. Scene Text Detection and Recognition

Even though deep learning has made significant

progress [23], localizing and recognizing text in images still

remains an open problem in the computer vision commu-

nity due to the ample variety of text occurrences in natural

images [51]. Essentially a system capable of reading text re-

quires two steps, detection and recognition. Jaderberg et al.

[17] tackles this problem by generating text proposals that

were refined by a CNN. The bounding boxes obtained were

used as input to another CNN that was trained to classified

them according to a fixed dictionary. In another work, [14]

defined a Fully Convolutional Regression Network to de-

tect text by regressing bounding boxes and the same classi-

fication network as [17] was employed for text recognition.

More recent approaches use customized variations of ob-

ject detectors fine-tuned to detect text instances such as [22]

and [27] resulting in models proposed by [50] and [25, 24].

Recently, the community attention has placed an additional

effort in the development of end-to-end models. The main

existing notion is that features that help to improve detec-

tion are also useful at the moment of recognizing text in-

stances. He et al. [16] uses a CNN to extract proposals,

which are fed into an LSTM (Long-Short Term Memory) to

refine the bounding boxes that are later employed as input

to yet another LSTM to perform recognition. In parallel,

additional work has been conducted into the development

of multilingual scene text recognizers, such as the work of

[7] which consists on two CNNs. The first one is optimized

to detect text and a the second one employs a Connectionist

Temporal Classification (CTC) [12] module for recognition,

while training both in an end to end manner.

In this work, we leverage the Pyramidal Histogram Of

Characters (PHOC) descriptor [1, 38] (see Figure 3) com-

monly used to query a given text instance in handwritten

documents and natural scene images. The PHOC of a word

encodes the position of a specific character in a particular

spatial region of the detected text instance. Such a descrip-

tor has proven to perform as the state of the art in scene text

retrieval [11], and as our experiments show, encoding it with

the Fisher Vector [33] provides an improved text descriptor

for fine-grained classification.

2.2. Fine­Grained Classification

Recent works on fine-grained classification base their ap-

proach on localizing salient parts of an image [9, 44], and

use the saliency maps to classify the objects. Later ap-

proaches such as the one of Tang et al. [40], use a weakly

supervised method to find discriminative features and lever-

age them to perform the classification between similar in-

stances. Other methods use existing prior knowledge from

unstructured text to propose a semantic embedding that dif-

ferentiates similar classes [43]. A self-supervision method

is introduced in [45] that learns to propose significant image

regions to find inter-class discriminative features.

More related to our work, [18] tackles this task by ex-

tracting visual features with a pre-trained GoogleNet [39]

and a Bag of Words feature to represent the text instances

found in an image and further classify them. More recently,

Bai et al. [2] use a similar approach and extract visual fea-

tures using a GoogleNet and a combination of two models:

[25] to detect and [35] to recognize text. The text found is

represented as GloVe features [32], a word embedding that

is further used with attention on the visual features to find a

semantic relation between the two modalities to classify the

image.

2.3. Multimodal Fusion

The combination of different modalities provides a richer

content description rather than one modality alone, there-

fore the contained knowledge should be leveraged to fur-

ther exploit explicit information according to the task [37].

In this work we explore other fusion methods used in mul-

timodal learning, that shows a performance increase espe-

cially in tasks that require exploiting two modalities such as

Visual Question Answering (VQA) and Visual Relationship

Detection (VRD).

One of the initial works presented by [3], modeled a
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Figure 2. Proposed model pipeline. The PHOCs obtained from [11] are used to compute a Fisher Vector that yields a compact morphology

based descriptor suitable to discriminate features from visually similar objects.

Tucker decomposition of the bilinear interaction of two dis-

tinct modalities. Later, a Multimodal Low-rank Bilinear At-

tention Network (MLB) was proposed by [21], in which

the result of the fusion of two modalities was based on

a low-rank bilinear pooling operation using the Hadamard

product along with an attention mechanism. A factorized

bilinear pooling (MFB) is proposed by [47], where each

third mode section of the tensor is constrained by a rank.

Later methods, such as a Multimodal Factorized High-order

pooling (MFH) fusion was presented by [48], which uses a

high-order fusion formed by cascaded MFB modules. In

the work conducted by [3], a bilinear pooling is performed

where the tensor is represented as a Tucker decomposition.

The obtained main tensor has the same rank constrain as the

MFB technique. Lately, a Multimodal Bilinear Superdiag-

onal Block (Block) fusion strategy based on the work pre-

sented by [4], has achieved state of the art results in VQA

and VRD.

3. Proposed Model

The devised model consists mainly in four processing

blocks: visual features extraction, textual features extrac-

tion, attention unit and classification. The whole model

pipeline is shown in Figure 2.

The first block extracts the visual features from a given

image and produces a fixed size representation of it. The

second block consists of extracting the PHOC representa-

tion of each text instance found in an image and use a pre-

trained Gaussian Mixture Model (GMM) to obtain the cor-

respondent FV descriptor. The third block consists of an

attention unit that multiplies learned weights with the en-

coded FV depending on the visual features extracted previ-

ously. Finally, the last block consists of a concatenation of

the two different modalities followed by a fully connected

layer to obtain a probability output vector which is used for

classification. For the rest of the paper, let C be the set of all

possible categories in a given dataset; X = {xi}Ni be the

set of images; lx : X → C be the labelling function.

3.1. Visual Features

In our model, we use a Convolutional Neural Network

(CNN) [15] pre-trained on ImageNet [8] as a visual feature

extractor, denoted as φ(·). We use the output of the last

convolutional block of φ(·) before the last average pooling

layer as the visual features, denoted as Vf . Attention on

visual features has proven to yield improved performance

on several tasks. As it is presented by [10], we compute

a soft-attention mechanism due to its differentiable proper-

ties, thus allowing an end-to-end learning. The proposed

attention function learns an attention mask att which as-

signs weights to different regions of an image given a fea-

ture map Vf . The attention mask is learned by applying

1 × 1 convolution layers on the output features from the

CNN. Lastly, to obtain the final output of the attention mod-

ule along with the visual features, the operation is computed

by Vfa = Vf + (Vf × att).

3.2. Textual Features

Methods shown in previous works [18, 2] contain mainly

three drawbacks. First, the employed text recognizers are

bound to a fixed dictionary, which may or may not include

the exact words that are present in the image. Second, some

words that are contained in the fixed recognition dictionary

may not exist in the proposed semantic embedding (GloVe,

Word2Vec) such as license plates, brand names, acronyms,
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etc. Third, any mistake committed by the recognizer will

yield a vector embedding that lies far from the semantic

embedding of the correct word. Contrary, correct recog-

nition of semantically similar words that might indicate dif-

ferent fine-grained classes will lead to embeddings close to

each other, which are not discriminative enough to perform

correct classification. This is the case of similar semantic

words such as restaurant and steakhouse, cafe and bistro,

coke and pepsi among some other sample classes from the

datasets used.

In order to exploit the morphology of a word to obtain

discerning features, we employ the PHOC representation.

The PHOC representation employed in this work is com-

posed by the concatenation of vectors from the levels 2 to

5 plus the 50 most common bi-grams in English language.

This yields a 604-dimensional discrete binary vector that

represents the characters contained in a word (see Figure 3).

A dictionary given by [17] is employed to obtain a PHOC

per word, in this way, we populate a matrix of this compact

representation. In order to reduce the dimensionality and

to find linearly uncorrelated variables of this compact vec-

tor, a Principal Component Analysis (PCA) is performed.

This procedure yields a more compact but at the same time

informative vectorial representation of a given word.

Figure 3. Levels 1 to 3 of the PHOC of the word ”bakery”. The

final compact representation is a concatenation of the histograms

of each level. Blues represent ”1” while blacks represent ”0”. Best

viewed in color.

The obtained data points were used to construct a Gaus-

sian Mixture Model (GMM) [13] formed by K Gaus-

sian components. We denote the parameters of the K-

component GMM by λ = {wk, µk,Σk, k = 1, . . . ,K},

where wk, µk and Σk are respectively the mixture weight,

mean vector and covariance matrix of Gausssian k. We de-

fine:

uλ(x) =
K
∑

k=1

wkuk(x) (1)

where uk denotes Gaussian k:

uk(x) =
1

(2π)D/2 |Σk|1/2
exp

{

−1

2
(x− µk)

′
Σ−1

k (x− µk)

}

(2)

and we require:

∀k : wk ≥ 0,
K
∑

k=1

wk = 1 (3)

Once the GMM model is trained, it will be used to ex-

tract a single Fisher Vector representation per image which

encodes its contained textual information. The textual fea-

tures per image are obtained by using the model from [11].

Given an input image, the model outputs a list of B bound-

ing boxes, each one containing a confidence score C and a

PHOC prediction.

We get the top-m object proposals set Om :=
{o ∈ Ci : o ≥ c, ∀c ∈ Ci}. The resulting PHOCs ∈
[0, 1]d×N , where d is the dimensionality of the PHOC em-

bedding obtained and N the recognized words embedded

in the PHOC space. It is essential to note that the model

from [11] is able to generalize and construct PHOCs from

previously unseen samples, out of vocabulary words and

different languages that employ s similar character set (e.g.

Latin), making it suitable for the task at hand. Afterwards,

we project each embedded textual instance of the obtained

descriptors into a reduced dimensional space by employing

PCA. The resulting vectors are used to obtain the Fisher

Vector [33] from the previously trained GMM. The GMM

associates each PCAed vector oi to a component k in the

mixture model with a weight given by the posterior proba-

bility:

qik =
exp

[

− 1

2
(oi − µk)

T
Σ−1

k (oi − µk)
]

∑K
t=1

exp
[

− 1

2
(oi − µt)

T
Σ−1

k (oi − µt)
] (4)

For each mode k, consider the mean and the covariance de-

viation vectors

ujk =
1

N
√
wk

N
∑

i=1

qik
oji − µjk

σjk
,

vjk =
1

N
√
2wk

N
∑

i=1

qik

[

(

oji − µjk

σjk

)2

− 1

]
(5)

where j = 1, 2, . . . , D spans the vector dimensions. The

FV of a given image I is simply the concatenation of the

obtained vectors uk and vk for each of the K components

in the Gaussian mixture model.

Tf =
[

· · · uk · · · vk · · ·
]⊺

(6)

The FV and the GMM encode inherently similar informa-

tion. This takes place because they both include statistics

of order 0, 1 and 2 [34, 33]. However, the FV provides

a vectorial representation which is more compact, faster to

compute and suitable for processing. The dimension of the
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FV obtained, noted as Tf , is given by (2 × d ×K), where

d is the PHOC dimension after performing the PCA and K

is the number of Gaussian clusters. The intuition captured

by the FV is to compute the gradient of a PHOC sample

(bag of textual features) that shows the probability of be-

longing to each of the Gaussian components, which can be

understood as a probabilistic textual vocabulary based on its

morphological structure (see Figure 1).

3.3. Attention on features

In the proposed fine-grained classification task we can

intuitively state that there will be some recognized text that

is more relevant than others at the moment of discriminat-

ing similar classes. Therefore, it is important to capture the

inner correlation between the textual and visual features. To

adhere this idea into our pipeline, we propose a modified at-

tention mechanism inspired from [46]. The attention mech-

anism learns a tensor of weights W that is used between

the visual features and the obtained FV. The implemented

attention is defined by:

Wa = Softmax(tanh(V T
fa ·W · Tf )) (7)

Tfa = Wa · Tf (8)

The resulting tensor Wa, contains a normalized attention

vector that is multiplied with the textual features Tf to ob-

tain the final attended textual features Tfa.

The obtained attended textual features Tfa and the visual

features Vfa are concatenated, such that the final features

are formed by F = [Vfa, Tfa]. Finally, the resulting vec-

tor serves as input to a final classification layer that outputs

the probability of a given class. The proposed network is

trained to optimize the cross entropy loss function given by:

J(θ) = − 1

N

N
∑

n=1

C
∑

i=1

lni log(l̂
n
i ) (9)

4. Experiments and Results

The following section describes the datasets employed,

the implementation details along with the analysis of the

results obtained from the experiments conducted.

4.1. Datasets

4.1.1 Con-Text Dataset

Originally presented by [19], is a dataset taken from the

ImageNet [8] ”building” and ”place of business” sub-

categories. It consists of 28 categories with 24, 255 images

in total. The classes from this dataset are visually similar

(Pizzeria, Restaurant, Dinner, Cafe) and requires text to suc-

cessfully perform a fine-grained classification. The dataset

was not built for text recognition purposes, thus not all im-

ages contain text in them. A high variability of text size, lo-

cation and font styles make text recognition on this dataset

a challenging task.

4.1.2 Drink Bottle Dataset

Dataset presented by [2] comprises the sub-categories soft

drink and alcoholic drink found on ImageNet[8]. There are

18,488 images divided in 20 categories. The dataset con-

tains several not common, occluded, rotated, low quality

and blurred text instances which increases the difficulty of

performing successful text recognition.

4.2. Implementation Details

The visual features of the proposed model are taken by

attending the features of the output of the last block layer of

the Resnet152 before the last average pooling layer. These

features are passed through a fully connected layer to down-

sample them to a final dimension of 1× 1024. To construct

the textual features, a maximum number of Nmax = 15
PHOC proposals are obtained per image. If a lesser number

of PHOC proposals are obtained, a zero padding scheme is

employed to fix the size of the input features. The resulting

PHOCs are reduced in size through PCA, to obtain features

of a dimensionality of Nmax × 300.

The Fisher Vector is calculated from the PCA-ed PHOCs

by employing a pre-trained Gaussian Mixture Model as it

is described in Section 3.2. The trained GMM employs 64
Gaussian components thus yielding a FV of 1 × 38400 di-

mension. The obtained textual features are down-sampled

by passing them through a fully connected layer to finally

obtain a resulting size of 1×512 before the attention mech-

anism is computed. The attention between both modali-

ties produces an output vector of 1 × 512, that multiplies

the learned weights to the textual features. As the last

step, a concatenated vector of the visual and textual features

(dim = 1× 1536) is used to produce the final classification

probability vector.

The network is trained for 30 epochs with the combi-

nation of RAdam [26] and the Lookahead [49] optimizers.

The batch size employed in all our experiments is 64, with

a learning rate of 0.001, momentum of 0.9 that decays by

0.1 every 10 epochs.

4.3. Comparison with the State of the Art

When comparing our method to the current state of the

art, it is evident that the proposed pipeline consistently out-

performs previous approaches. The performance of our

method is shown in Table 1 (see the Supplementary Ma-

terial Section for the results of each of the classes found in

the Con-Text and Drink Bottle datasets respectively). As

it can be seen, our method surpasses [2] in the Drink Bot-
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tle dataset by a significant margin, however this margin is

smaller in the Con-Text dataset. Nonetheless, it is important

to note that the method presented by [2] employs two addi-

tional classifiers to solve this task, thus relying on an ensem-

ble model. Such kind of adopted approaches require longer

training times, as well as more computation resources since

several deep networks need to be trained. Therefore, when

comparing to the single classifier presented by [2], our

model offers a significant improvement. In the upcoming

sections, we provide explanations and exhaustive experi-

mentation that shows the main strengths and advantages of

our model.

Method Con-Text Bottles

Karaoglu[19] 39.0 −
Karaoglu[18] 77.3 −
Bai[2] 78.9 −
Bai*[2] 79.6 72.8
Ours 80.2 77.4

Table 1. Classification performance for two state-of-the art meth-

ods and our proposed model on the Con-Text and Bottles dataset.

The results presented by [2] depicted with * are based on an en-

semble model.

4.4. Importance of Textual Features

Several baselines of growing complexity were defined in

order to: assess the effectiveness of the proposed model,

discern the added performance of employing textual fea-

tures along visual ones and to verify the improvement ob-

tained from using a fusion mechanism.

Visual Only: This baseline assesses the performance of the

CNN encoder based on visual features solely. To this end,

the 2048 dimensional output features Vf , serve as the in-

put to a fully connected layer according to the number of

classes of the evaluated dataset.

Textual Only: We evaluate the performance of two state of

the art text recognizers: Textspotter [16] and E2E MLT [7]

along with the most confident PHOCs obtained from the

model presented by [11]. For illustration purposes, Fig-

ure 4 shows heat maps obtained by employing the model

from [11] according to the confidence scores obtained

when a text instance is detected. It is important to note

that Textspotter [16] is bound to a dictionary to output

the final recognized word, whereas the multilingual model

E2E MLT from [7] is not. The recognized text is embed-

ded with pretrained versions of GloVe [32], FastText [6] and

Word2Vec [30], finally outputting tensors of size Nmax ×
300, which in our experiments Nmax = 15. When work-

ing with PHOCs, the output vector has a size Nmax × 604.

As we can observe in Table 2, in the visual only baseline,

the ResNet152 CNN [15] performed better in this task, due

to the major expressiveness of the model and the residual

Figure 4. Heat maps obtained according to the confidence detec-

tion score of the predicted PHOCs.

block architecture that it is based on.

Model Con-Text Bottles

Visual
GoogLenet 61.21 64.93

Resnet-152 63.70 66.56

Textual

Texspotter+w2v 35.09 50.68

Texspotter+glove 34.52 50.26

Texspotter+fasttext 36.71 51.93

E2E MLT+w2v 44.36 43.98

E2E MLT+glove 44.25 42.64

E2E MLT+fasttext 45.07 44.31

PHOC 49.18 52.39

Fisher Vector (PHOC) 63.93 62.41

Table 2. Visual only and Textual only results. The textual only re-

sults were performed on the subset of images that contained spot-

ted text. The metric depicted is the mean Average Precision (mAP

in %).

In the text only baseline, by using standard text recogniz-

ers we can observe that the E2E MLT performs better in the

Con-Text dataset, whereas the Textspotter model surpasses

E2E MLT in the Drink Bottle dataset. Nonetheless, both of

them are outperformed by employing the PHOCs obtained

from [11] as the word embedding. This effect is due to the

inherent morphological nature of the PHOC embedding.

Overall, the best results in the textual only baseline are

obtained by the Fisher Vector obtained from the PHOCs.

Qualitatively shown in Figure 1, the Gaussian Mixture

gracefully captures the morphology of words obtained from

PHOCs. Therefore, words with similar syntax are clustered

together in the GMM, thus allowing the Fisher Vector to

be a powerful descriptor relevant for this task that yields

even more discriminative features than other embeddings.

It is important to note as well that in our experiments, Fast-
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Fusion T+W T+G T+F E+W E+G E+F PHOC FV(F) FV(P)

C
o

n
-T

ex
t

Concat 73.84 74.11 74.33 77.04 77.58 77.77 77.45 77.31 80.21
†

Block [4] 73.12 73.86 73.18 76.97 78.34 78.34 77.96 77.87 79.27
Mutan [3] 72.46 72.08 73.47 77.67 77.26 78.05 76.97 76.01 78.51
MLB [21] 73.17 72.18 74.09 77.45 76.28 78.81 76.96 76.46 78.49
MFB [47] 73.62 73.23 74.42 77.68 76.79 78.55 77.56 76.27 78.03
MFH [48] 72.95 72.43 74.48 77.3 76.64 78.23 77.42 76.39 77.58

D
ri

n
k

B
o

tt
le

Concat 75.05 75.12 75.25 74.62 74.91 75.4 75.93 75.15 77.38
†

Block [4] 75.18 75.31 75.39 74.17 74.87 74.94 75.91 75.11 76.23
Mutan [3] 74.48 73.91 74.72 73.62 75.12 76.05 75.95 74.48 75.97
MLB [21] 74.34 73.02 75.54 73.55 75.42 75.19 76.37 75.07 76.18
MFB [47] 74.25 74.25 75.21 74.23 74.88 75.84 76.21 74.78 76.01
MFH [48] 73.99 73.61 75.36 74.77 75.26 75.72 75.98 74.56 75.85

Table 3. Results obtained by employing different fusion strategies on both the Con-Text and Drink Bottle dataset. For presentation purposes

acronyms are used to represent each combination of text recognizers (Textspotter (T), E2E MLT (E), PHOC (P)) and word embeddings

(Word2Vec (W), GloVe (G), FastText (F), Fisher Vector (FV)). The † refers to the proposed model.

Text performs better than Word2Vec or GloVe because it

can produce embeddings of out of vocabulary words while

considering word n-grams which strengthens our conjecture

on the importance of morphology of text to solve this task.

4.5. Comparison of Models

Extensive experiments were conducted regarding the dif-

ferent combinations of text recognizers, word embeddings

and fusion techniques. Table 3 show the results obtained in

both the Con-Text and Drink Bottle dataset.

When introducing fusion techniques to the models, tra-

ditional text recognizers such as E2E MLT performs bet-

ter in Con-Text compared to Textspotter, thus achieving

a higher mAP. The opposite effect is found in the Drink

Bottle dataset, in which Textspotter behaves better than its

E2E MLT. It is interesting to note that the PHOCs obtained

perform consistently in both datasets, yielding comparable

results to the traditional recognizers employed. Regarding

the embedding mechanism utilized, morphological embed-

dings (FastText, PHOC) work better than purely semantic

embeddings due to the discriminative space learned.

We can observe that the usage of fusion techniques

usually improve the mAP performance obtained on each

method aside from the cases when the models employ

Fisher Vector features. Nonetheless, in our experiments we

have not found a specific fusion technique that can be gen-

eralized for every tested method. Each fusion technique in-

creases the performance for a specific model, being MFH

and Block slightly more consistent than others. It is nec-

essary to indicate that employing Fisher Vector features

obtained from PHOCs consistently achieves the best per-

formance in a general and consistent manner across both

datasets.

In order to asses the efficacy of using the Fisher Vector

along with another embedding that captures out of vocabu-

lary words while at the same time considering the character

morphology, we employ the Fisher Vector obtained from

FastText. To this end, FastText employs character n-grams

to construct a relevant vectorial representation of a word,

thus it also uses syntax of a detected word. The results

of the conducted experiments using Fisher Vector features

from FastText and PHOC are shown in the last two columns

of Tables 3. There are two results to highlight obtained

from this experiment. Firstly, working with PHOCs along

FVs always yield better performance compared to Fasttext.

The cause might be the information captured by Fasttext en-

capsulates morphology in the form of character n-grams, as

well as semantics. Whereas the PHOC is a compact repre-

sentation based solely on word morphology. Secondly, by

combining the explored fusion methods along with Fisher

Vectors did not provide a significant advantage. A straight-

forward concatenation operation between the FV and the vi-

sual features reinforces the notion that both modalities con-

tain discriminative and orthogonal features well suited for

this task. As an additional advantage, by employing con-

catenation the model convergences faster while at the same

time providing a better performance.

4.6. Qualitative Results

Fine-grained classification probabilities obtained from

our model output are depicted in Figure 5. The textual fea-

tures employed are able to generalize to unseen textual in-

stances or named entities such as the case of bottle brands

or business places. We can observe that our model has a

hard time reading handwritten text or vertical textual occur-

rences, thus wrongly predicting a class, such as the exam-

ple shown at the first row, seventh column. Nonetheless,

the model seems to be capturing text morphology, as can

be seen on the prediction of the class ’pawn shop’. Finally

on the last two samples on each row, there are not enough
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GT: Ouzo
Ouzo: 0.53
Vodka: 0.14
BirchB: 0.04

GT: RootB
RootB: 0.74
QuinW: 0.07
Vodka: 0.02

GT: Sarsap

Sarsap: 0.97

QW: 3.4e-5
Bitter: 3.0e-5

GT: Vodka
Vodka: 0.58
Ouzo:0.15
Pepsi:0.13

GT: Biiter
Bitter: 0.31
BirchB: 0.17
RootB: 0.0

GT: Guinn
Guinn: 0.40
Drambui: 0.15
Sauterne: 0.08

GT: Ouzo
Vodka: 0.48
Ouzo: 0.18
Sauterne: 0.14

GT: Ouzo
Sauterne: 0.90
Rootb: 3.0e-2
Chablis: 2.2e-2

GT: Pharma
Pharma: 0.42
Funeral: 0.13
Cafe: 0.08

GT: Theatre
Theatre: 0.83
Diner: 0.01
Pharma: 0.01

GT: PawnS
PawnS: 0.38
School: 0.27
MedicalC: 0.16

GT: Theatre
Theatre: 0.99
BookS: 4.8e-3
Disc.H: 9.5e-4

GT: DryCl

DryCl: 0.20

Resta: 0.11
TeaH: 0.09

GT: Cafe
Cafe: 0.46
Resta: 0.16
Barber: 0.07

GT: RepairS

Barber: 0.62
RepairS: 0.09

School: 8.3e-3

GT: Pharma
Tobacco: 0.37
Pharma: 0.33
Bistro: 0.06

Figure 5. Classification results. The top-3 probabilities of a given image assigned by the output our model is shown along the Ground

Truth. Notice that without reading, the classification task is impossible to perform even for humans. Blue and red are used to display

correct and incorrect predictions respectively.

guiding textual features and the model relies only on simi-

lar visual features. Nonetheless, classifying these samples

correctly are a hard task even for humans.

4.7. Fine­grained Image Retrieval

In the same manner as the work presented in [18] and [2],

we conduct a retrieval experiment by utilizing the computed

vector of the last output layer of the proposed model as re-

trieval features.

Method Con-Text Drink Bottle

Bai*[2] 62.87 60.80
Ours 64.52 62.91

Table 4. Retrieval results on the evaluated datasets. The results on

Con-Text are based on our implementation of the method by [2]

since there is no publicly available code. The retrieval scores are

depicted in terms of the mAP(%).

We take the approach of query by example, that is, given

a sample image that belongs to a specific class, the system

must return a ranked list of similar classes as the query. The

metric employed to conduct this experiment is the cosine

similarity. The proposed method is more robust at the mo-

ment of employing a combination of visual and textual fea-

tures which are discriminative enough to conduct a differ-

ent task successfully as it is the case in fine-grained image

retrieval. The retrieval quantitative performance for both

datasets is shown in Table 4, for qualitative results please

refer to the Supplementary Material.

5. Conclusions and Future Work

In this work, we have presented a deep neural network

framework suitable for a fine-grained classification task.

Through extensive experiments conducted, we have pre-

sented that leveraging textual information is a key approach

to extract information from images. Exploiting these tex-

tual cues can pave the road towards more holistic computer

vision models of scene understanding. We have shown that

current text recognizers that are limited by a dictionary are

not the best alternative for this task, because it requires a

recognizer able to generalize out of vocabulary words from

unseen samples. Additionally, we have analyzed the fact

that using semantic embeddings in a fine-grained classifica-

tion task do not produce the best results due to the related

semantic space shared across similar classes. By integrat-

ing state-of-the-art techniques and constructing a powerful

morphological descriptor from text contained in images, we

show that a better suited feature for this task can be learned.

Such a feature proves to be useful for a fine-grained classifi-

cation task as well as for query-by-example image retrieval.

Leveraging this robust textual feature yields state-of-the-art

results in both tasks across the assessed datasets. Classi-

fication and retrieval is possible due to the discriminative

features learnt by the model. As future work, we plan to de-

velop a morphological descriptor that captures the same dis-

criminative features using a smaller feature dimension. A

continuous valued embedding can replace the binary PHOC

while preserving the generalization ability of unseen sam-

ples. We want to explore the usefulness of this embedding

in other computer vision tasks such as visual question an-

swering [5, 36] and text-based image retrieval.
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