
 

 

 

Abstract 

 
In this paper we present a novel deep learning 

framework to perform online moving object recognition 

(MOR) in streaming videos. The existing methods for 

moving object detection (MOD) only computes class-

agnostic pixel-wise binary segmentation of video frames. 

On the other hand, the object detection techniques do not 

differentiate between static and moving objects. To the 

best of our knowledge, this is a first attempt for 

simultaneous localization and classification of moving 

objects in a video, i.e. MOR in a single-stage deep 

learning framework. We achieve this by labelling axis-

aligned bounding boxes for moving objects which requires 

less computational resources than producing pixel-level 

estimates. In the proposed MotionRec, both temporal and 

spatial features are learned using past history and current 

frames respectively. First, the background is estimated 

with a temporal depth reductionist (TDR) block. Then the 

estimated background, current frame and temporal 

median of recent observations are assimilated to encode 

spatiotemporal motion saliency. Moreover, feature 

pyramids are generated from these motion saliency maps 

to perform regression and classification at multiple levels 

of feature abstractions. MotionRec works online at 

inference as it requires only few past frames for MOR. 

Moreover, it doesn’t require predefined target 

initialization from user. We also annotated axis-aligned 

bounding boxes (42,614 objects (14,814 cars and 27,800 

person) in 24,923 video frames of CDnet 2014 dataset) 

due to lack of available benchmark datasets for MOR. The 

performance is observed qualitatively and quantitatively 

in terms of mAP over a defined unseen test set. 

Experiments show that the proposed MotionRec 

significantly improves over strong baselines with 

RetinaNet architectures for MOR. 

1. Introduction 

Moving object recognition (MOR) corresponds to the 

localization and classification of moving objects in videos. 

Discriminating moving objects from static objects and 

background in videos is an essential task for many 

computer vision applications. MOR has widespread 

applications in intelligent visual surveillance, intrusion 

detection, anomaly detection and monitoring, industrial 

sites monitoring, detection-based tracking, autonomous 

vehicles, etc. However, numerous real-world scenarios 

such as dynamic background changes, illumination 

variations, shadows, challenging environmental conditions 

such as rainfall, haze, etc. make recognition of relevant 

moving objects a challenging task. 

Two closely related tasks to MOR are moving object 

detection (MOD) or change detection [1-24] and object 

detection [25-54]. In MOD, the relevant motion 

information is identified through a class-agnostic 

segmentation of video frames into foreground and 

background regions. However, these methods do not 

categorize the foreground regions into their respective 

object classes. In object detection, the object instances are 

both localized and categorized into their respective classes 

(from a given set of classes i.e. cars, people, trucks, dogs, 

etc.). However, they work only on static images and do not 

take into account the temporal behavior over time to 

differentiate between moving and nonmoving objects. 

For several applications, it is important to detect and 

classify only the moving objects. This is a different task in 

comparison to both object detection and MOD. Another 

important requirement for real-world applications is to 

detect and classify the moving objects online, i.e., while 

video is streaming. More specifically, the motion detector 

must not make use of future frames to analyze the current 

position and category of the moving objects. It must also 

be free from the requirement of target initialization from 

user as done for visual object tracking. Figure 1 

demonstrates the difference between object detection, 

MOD and MOR. 

In this paper, our goal is to identify both locations and 

corresponding categories of moving objects with a single-

stage convolutional network. We also aim at retaining the 

property of online inference by using only the recent 
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Figure 1. Difference between the three tasks: object detection, 

moving object detection (MOD) and MOR is depicted. The 

generic object detector detects all (moving and non-moving) 

object instances. Whereas, in MOD, only the pixel-wise changes 

are identified in class-agnostic manner. The MOR both detects 

and classifies the moving objects in the video. The same is 

shown in this figure. 

 

history frames in live streaming videos. To achieve these 

goals, we design an online end-to-end one stage 

convolutional network MotionRec for MOR. In MOR, we 

first estimate the background representation from past 

history frames with a temporal depth reductionist (TDR) 

block. TDR estimates the background through a sequence 

of mean multi-spatial receptive feature (MMSR) modules. 

Each MMSR module selectively determines the probable 

salient background representation. Moreover, we produce 

contrasting features through assimilation of estimated 

background, temporal median and contemporary features 

from current frame. Multi-scale features are generated for 

these encoded maps. Moreover, in order to reinforce more 

accurate semantic features of the salient objects, multi-

scale features are also extracted parallelly from the current 

frame. The temporal and spatial encodings from the two 

abovementioned parallelly extracted features are fused at 

matching scales to further generate the multi-level feature 

pyramids. These feature pyramids are used in the 

regression and classification blocks to perform MOR.   

Our novel framework offers several advantages: (i) the 

proposed MotionRec solely relies on the recent video 

frame observations and operates online without any 

external updates, (ii) it produces labeled bounding boxes at 

approximately 5 frames per second and does not require 

bounding box initialization from user, (iii) since, labelling 

axis-aligned bounding boxes for moving objects require 

less computational resources in comparison to producing 

pixel-level estimates, our approach is well suited for 

training application specific moving object recognition 

models on customized datasets.    

We also developed a new set of annotations with 

labelled axis-aligned bounding boxes for MOR. To the 

best of the authors’ knowledge, no such benchmark dataset 

(with annotations) is available in the literature. We 

annotated 42,614 objects (14,814 cars and 27,800 person) 

in 24,923 video frames from videos collected from CDnet 

2014 [55] for experimental analysis. We present 

qualitative and quantitative results of MotionRec over a 

defined unseen test set. Moreover, in order to analyze the 

importance of different blocks in MotionRec, we conduct 

multiple experiments for ablation analysis. From 

experimental results analysis, it is observed that the 

proposed MotionRec shows significant performance 

improvement over strong baselines based on RetinaNet 

detectors repurposed for MOR. The detailed literature on 

the existing methodologies for MOD and object detection 

are discussed in the following section. 

2. Related Work 

An extensive body of literature is available on MOD 

and object detection. In this section, we briefly discuss the 

most representative techniques for these two applications.  

Moving Object Detection (MOD). The objective of a 

MOD method is to segment a video frame into foreground 

and background regions corresponding to object motion. 

Traditional approaches for MOD have used background 

subtraction methods to model the background behavior 

and identify the foreground region using various 

thresholding techniques. In past two decades, the 

parametric statistical models [1-3] have been widely 

adopted in background subtraction. However, most of the 

modern works [4-8] in background subtraction are inspired 

by the nonparametric background modelling approaches 

[9, 10]. The authors in [10] used a combination of three 

strategies for background maintenance. Moreover, an 

adaptive mechanism to update the pixel-wise decision 

thresholds and update rate was introduced in [5]. St-

Charles et al. [6, 7] proposed to use spatiotemporal feature 

descriptors and adaptive feedback mechanism for 

background subtraction. Several other works [4, 11-15] 

have also been proposed to further improve the 

performance. 

Various CNN based techniques have also been 

presented for MOD. Many attempts in this domain 

leverage off-the-shelf pre-trained CNNs and integrate them 

with hand-crafted background modelling techniques for 

temporal feature encoding [16-19]. To learn the local 

changes, certain methods [16, 20-22] have divided the 

frames and background model into patches and trained the 

model with concatenated input. Chen at al. [23] designed 

an attention ConvLSTM to model pixel-wise changes over 
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Figure 2. Schematic illustration of the proposed MotionRec framework. 

 

time. Moreover, a conditional Generative Adversarial 

Network (cGAN) was proposed to learn the motion 

features for MOD in [24]. 

Object Detection. The modern state-of-the-art detectors 

can be categorized into two-stage and one-stage methods. 

In the two-stage methods, as pioneered by Uijlings et al. 

[25], first stage generates a sparse set of possible locations 

for the objects and perform sampling based on the image 

structure and the second stage classifies the candidate 

proposals into foreground classes / background. R-CNN 

by Girshick et al. [26] significantly improved the accuracy 

by introducing the use of CNNs in the second stage 

classification. Further improvements over R-CNN were 

presented both in terms of speed [27, 28] and accuracy 

[29, 30]. Ren et al. [31] proposed Faster R-CNN by 

introducing region proposal networks (RPN) for integrated 

proposal generation and trained the detector with a single 

CNN. Several extensions and variants of this framework 

[32-39] have been proposed since for improved 

performance. He et al. proposed Mask R-CNN [40] to 

generate instance segmentation masks of the detected 

object along with the spatial coordinates.  

Sermanet et al. [41] designed one of the first one-stage 

detector OverFeat based on deep networks. Subsequently, 

more popular YOLO [42, 43] and SSD [44, 45] have 

ushered in considerable interest in one-stage detectors. 

These detectors have shown remarkable speed although 

trail the two-stage methods for accuracy. The seminal 

work RetinaNet [46] improved the accuracy of one-stage 

detectors while maintaining the speed by designing a focal 

loss function. Huang et al. [47] demonstrated comparative 

analysis of different object detectors for speed/accuracy 

trade-offs. The concept of multi-scale feature 

representation [38] have been successfully used in the 

recent detectors [48-51] to achieve comparable or even 

better accuracy in comparison to the two-stage detectors. 

A more detailed comparative analysis of object detection 

techniques can be found in [52, 53].   

In [56], the authors define MOR as classifying video 

frames into moving or nonmoving classes based on object 

movements. However, in this paper we take a broader 

definition of MOR to further compute both spatial 

coordinates and class labels of moving object in each 

video frame. To the best of our knowledge, this is a first 

attempt to develop an end-to-end convolutional network 

for online MOR. 

3. MotionRec 

The proposed MotionRec consists of temporal depth 

reductionist (TDR) block, motion saliency estimation 

(MoSENet) network, regression and classification blocks. 

The overall architecture of MotionRec is shown in Figure 

2. We discuss the functionality of these constituent blocks 

in the following subsections. 

3.1. Temporal Depth Reductionist Block 

In MotonRec, we first estimate the background from 

past history frames. Thereafter, we identify the motion 

information by comparing estimated background with the 

current frame in MoSENet block. For background 

estimation, we designed TDR block which is completely 

trainable as a part of the end-to-end MotonRec framework 

as shown in Figure 2. We only use grayscale images which 

are sufficient to represent temporal motion encodings. In 

TDR, the background is learned through a sequence of 

mean multi-spatial receptive feature (MMSR) modules. 

Each MMSR module captures the average response 

from receptive fields of size 1x1, 3x3 and 5x5. The 

inspiration behind using multiple filter sizes comes from 

theoretical propositions and corresponding experimental 

success of algorithms presented in [5-7, 10-12, 57-59]. In 

[5, 10, 12], pixel-based background model estimation 
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Figure 3. Temporal depth reductionist block for background estimation from recent temporal history. All convolutions (conv) are 

applied with stride (1, 1).  

 

strategies were proposed. In [11, 57-59], local patterns 

extracted from 3x3 region provided the discriminative 

texture features to capture background statistics. 

Furthermore, methods in [6, 7] relied upon both the 

features extracted from 5x5 region and pixel-level 

intensities for robust background characterization. Thus, to 

mimic similar features through learnable parameters, we 

proposed MMSR to incorporate responses from three 

different levels of receptive fields. Moreover, by taking 

average of thee three responses, we ensure adaptability in 

the network to handle different change scenarios. These 

MMSR blocks with decreasing feature depths selectively 

determines the probable salient background representation. 

Finally, through these reductionist stages, we estimate a 

single depth background map. The detailed TDR block 

architecture is depicted in Figure 3.  

Let’s define a convolutional kernel as 
, ,x h wκ  where the 

parameters h, w, x represents height, width and kernel 

depth respectively. The past temporal history stack is 

denoted as PT having height, width and number of frames 

as H, W and T respectively. An MMSR block denoted Ψ   

can be defined through Eq. (1) 

 

 
Figure 4. The regression and classification subnets at each 

pyramid level. P3 to P7 are the feature levels used for the final 

prediction. H×W is the height and width of feature maps. A: 

anchors, K: object classes. 
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where ⊗  denotes the convolution operation, stride = (1, 1) 

and ( )ℜ ⋅  is the rectified linear unit (ReLu) activation 

function. 

We compute the final TDR feature response using these 

MMSR blocks as given in Eq. (2) and Eq. (3).  

1 8 16 32
( ( ( ( ))))

T
TDR Pζ= Ψ Ψ Ψ                             

(2) 

1 1,3,3( ) ( )z zζ κ= ℜ ⊗                          (3) 

Thus, we reduce the feature map depth by using 32, 16, 8 

and 1 kernel depths respectively. The final response is 

single depth estimated background map. 

3.2. Motion Saliency Estimation Network 

In MoSENet block, we assimilate estimated background 

with a temporal median (MT) and current frame (I). The 

pixel-wise temporal median of recent observations fortifies 

the background confidence by supplementing TDR 

response with statistical estimates. This enhances 

robustness of background model for different real-world 

scenarios such a dynamic background changes, bad 

weather, shadows, etc. These assimilated features are 

computed using Eq. (4)  

[ , , ]
T

TAsFeat DR M I=                    (4) 

Since AsFeat contains contrasting features i.e. 

background maps and current frame features. It provides 

crucial encoding to construct coarse motion saliency maps. 

We then extract base features from AsFeat for higher level 

feature abstractions. The base features are extracted from 

three layers (C3, C4, C5) of ResNet residual stage as in 

[46]. Moreover, in order to delineate semantically  
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Figure 5. Visualization of the TDR background estimation block. 

The last column represents the background feature map 

estimated by TDR block from the past history frames for each 

row. 

 

accurate shape representation for object categorization, we 

propose to incorporate certain reinforcements by parallelly 

extracting ResNet features for the current frame as well. 

The feature maps at same scales are combined for both 

temporal and spatial saliency aware feature representation. 

The MoSENet feature response is computed using Eq. (5).  

[ ( ), ( )]resnet AsFeat resnetMo ENet IS =                   (5) 

where ( )resnet ⋅  returns the base features from ResNet 

residual stages. 

3.3. Regression and Classification 

The features from MoSENet are used to construct multi-

level feature pyramids. We follow FPN [38] to detect 

different sizes of objects at different levels of feature 

maps. More specifically, we generate five levels of feature 

maps: P3, P4, P5, P6, P7. P3, P4 and P5 are computed 

using the backbones feature maps C3, C4 and C5 followed 

by a 1×1 convolutional layer with the lateral connections 

as given in [38]. Similarly, P6 and P7 are computed by 

applying convolution with the stride=2 on P5 and P6 

respectively. At each pyramid level, two subnets are 

connected to perform bounding box regression and object 

classification as depicted in Figure 4. At each level of 

pyramidal feature map, we set 9 anchors. The detection 

and classification layers follow similar configurations as in 

[49].  

3.4. Visualization 

We show the visualizations of TDR block and the 

pyramid layers for analyzing the proposed MOR network 

behavior. The TDR response for 3 different sample videos 

is visually represented in Figure 5. Here, we can see that 

the background is robustly estimated from recent temporal 

history. Moreover, the visualizations for 4 pyramid levels 

are depicted in Figure 6. It is clear from Figure 6, that the 

MOR features are quite accurately being localized through 

these shallow and deep layers. 

 
Figure 6. Visualization of pyramid levels P3, P4, P5 and P6. The 

relevant motion saliencies of moving objects are highlighted 

using red boxes. We do not show visualization of P7 due to very 

small size. 

3.5. Network Configurations 

MotionRec takes two tensors of shape 608x608xT (past 

temporal history) and 608x608x3 (current frame) as input 

and returns the spatial coordinates with class labels for 

moving object instances. While training MotionRec, we 

use the ResNet50 backbone pretrained over the ImageNet 

dataset. For regression and classification, smooth L1 and 

focal loss functions are used respectively. The training loss 

is the sum of above mentioned two losses. The loss 

gradients are backpropagated through TDR blocks as well. 

Training and Inference. MotionRec forms a single-

stage fully connected network which ensures online 

operability and fast speed. The entire framework is 

implemented in Keras with Tensorflow backend. Training 

is performed with batch size=1 over Nvidia Titan Xp GPU 

system. We use adam optimizer with initial learning rate 

set to 1x10-5. Unless otherwise specified, all models are 

trained for approximately 500k iterations. We only use 

horizontal image flipping for data augmentation.  

Similar to training, inference involves simply giving 

current frame and recent T temporal history frames as 

input to the network. Only few past frames (T=10/20/30) 

are required, enabling online moving object recognition. 

Top 1000 prediction scores per pyramid level are 

considered after thresholding detector confidence at 0.05. 

The final detections are collected by combining top 

predictions from all levels and non-maximum suppression 

with a threshold of 0.5.  
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  Videos #Frames # Car # Person # Objects 

blizzard 1,000 2,496 0 2,496 

skating 1,964 306 4,392 4,698 

snowfall 1,585 1,587 0 1,587 

wetsnow 2,126 1,556 1,594 3,150 

highway 1,473 4,818 0 4,818 

pedestrian 572 0 657 657 

PETS2006 1,180 0 2,872 2,872 

fountain01 313 418 0 418 

fountain02 175 240 0 240 

fall 1,466 990 1,786 2,776 

tramstop 2,535 1,031 4,356 5,387 

backdoor 667 0 809 809 

busstation 895 0 1,662 1,662 

copymachine 2,182 0 3,150 3,150 

cubicle 3,053 0 3,798 3,798 

peopleinshade 531 0 615 615 

Train Data 21,717 13,442 25,385 38,827 

sofa 1,809 0 1,975 1,975 

parking 706 624 440 1,064 

bungalows 691 748 0 748 

Test Data 3,206 1,372 2,415 3,787 

Table 1. Summary description of the dataset used in our 

experiments for training and evaluation.  

 

Method\mAP50 Depth Sofa Par. Bun. Overall 

10 50.5 49.0 68.9 56.1 

T_RetinaNet 20 72.1 47.2 77.8 65.7 

(resnet50) 30 72.0 47.2 88.7 69.3 

T_RetinaNet 

(mobilenet_v2) 

10 0.16 0.11 9.12 3.13 

20 10.98 0.42 10.10 7.16 

30 35.09 0.30 42.57 26.00 

10 56.6 67.2 69.0 64.3 

MotionRecV1 20 82.2 39.4 79.7 67.1 

30 80.5 69.5 89.0 79.7 

10 75.2 43.6 69.2 62.7 

MotionRecV2 20 79.0 49.8 90.3 73.0 

30 70.3 61.2 84.6 72.0 

Table 2. MOR performance comparison of the proposed 

MotionRec models (V1 and V2) with the baseline results of 

temporal RetinaNet (T_RetinaNet) models. T_RetinaNet models 

are trained by forwarding sequence of frames (10/20/30) in the 

input layer. Best results are highlighted in bold. Depth: temporal 

history depth. All results are computed in terms of mean AP with 

50% IoU. Depth: temporal history depth, Par.: Parking, Bun.: 

Bungalows.  

4. Experiments 

In this section we first discuss about the generated data 

annotations and evaluation metrics for MOR.  We then 

proceed with quantitative and qualitative analysis of the 

results with baseline model comparisons to demonstrate 

the strengths of our MotionRec method. Moreover, in 

order to analyze the contribution of different modules in 

MotionRec, we perform multiple ablation experiments. 

4.1. Dataset, Evaluation Metrics and Baseline 

Models 

Dataset. Due to lack of available benchmark datasets 

with labelled bounding boxes for MOR, we created a new 

set of ground truths by annotating 42,614 objects (14,814 

cars and 27,800 person) in 24,923 video frames from 

CDnet 2014 [55]. We selected 16 video sequences having 

21,717 frames and 38,827 objects (13,442 cars and 25,385 

person) for training. For testing, 3 video sequences with 

3,206 frame and 3,787 objects (1,372 cars and 2,415 

person) were chosen. We created axis-aligned bounding 

box annotations for moving object instances in all the 

frames. Since, there has been no previous attempt to 

perform such task, we defined our own train and test 

divisions for qualitative and quantitative evaluation. The 

complete details about the created dataset are given in 

Table 1. 

Evaluation metrics. Since the results are computed as 

spatial coordinates and class labels of moving object 

instances in every frame. Therefore, to measure MOR 

performance, we use the standard average precision (AP) 

[25-53] metrics. The average precision metric AP50 

counts a predicted object instance as true positive if it has 

at least 50% intersection-over-union (IoU) with the 

corresponding ground truth object instance. Performance 

is measured across two classes: car and person.  

Baseline models. Since this is a first attempt for MOR 

in videos, we designed two baselines for comparative 

analysis. We adapted the RetinaNet object detector to take 

stack of multiple frames (temporal history) as input and 

produce the detection estimates for the current frame. 

Thus, the network is repurposed for MOR in videos. We 

further created two different models based on resnet50 and 

mobilenet_v2 backbone respectively. We denote these 

models as T_RetinaNet (resnet50) and T_RetinaNet 

(mobilenet_v2) respectively. Since RetinaNet based 

methods have achieved very high performance for the task 

of generic object detection, these models serve as very 

strong baselines for comparative analysis of our work.  

4.2. Quantitative Results 

In addition to the proposed MotionRec (also denoted as 

MotionRecV1), we designed MotionRecV2 by removing 

the parallel feature extraction (from current frame) layer 

from MotionRec. Thus, we could also evaluate the effect 

of directly using AsFeat without the reinforcements of base 

features extracted from the current frame. We present the 

quantitative results of the proposed MotionRecV1, 

MotionRecV2 and the baseline models in Table 2.  

From Table 2, it is evident that ehe proposed methods 

outperform the T_RetinaNet models by a good margin in 
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Method Depth FPS # Parameters Model Size 

10 5.2 65.43 M 

263.7 MB MotionRecV1 20 3.6 65.44 M 

30 2.0 65.45 M 

10 5.6 36.34 M 

146.4 MB MotionRecV2 20 3.4 36.35 M 

30 2.0 36.36 M 

Table 3. Inference speed, number of parameters and inference 

model size comparison between MotionRecV1 and 

MotionRecV2 at three different temporal history depth. 

 

each of the test video sequences. The baseline 

T_RetinaNet with mobilenet_v2 backbone performed very 

poorly. Whereas, the resnet50 based model yielded 

reasonable results. More specifically, the best performing 

MotionRec achieves 10.1%, 20.5% and 1.6% better 

mAP50 over best performing T_RetinaNet for sofa, 

parking and bungalow videos respectively. Overall, the 

proposed MotionRecV1 outperforms baseline 

T_RetinaNet (resnet50) by 8.2%, 1.4% and 10.4% in 

terms of mAP50 for depths 10, 20 and 30 respectively. 

Similarly, MotionRecV2 improves upon the baseline 

T_RetinaNet (resnet50) by 6.6%, 7.3% and 2.7% mAP50 

for depths 10, 20 and 30 respectively. The mAP at 

different IOUs for MotionRecV1 is further analyzed 

through Figure 7. The IoU vs mAP graph for MOR across 

different temporal depths for each test video is depicted in 

Figure 7 (a), Figure 7 (b) and Figure 7 (c) respectively. 

The mAP is computed at IoU thresholds 0.2, 0.3, 0.4, 0.5, 

0.6, 0.7 and 0.8. We also show the overall average 

performance through graph in Figure 7 (d).  It is clear that 

if we could lower the IoU threshold, we can recognize 

higher number of moving objects. However, it might also 

increase the number of false detections. The decision for 

the same can be taken according to the demands of real-

world applications.  

We also tabulate the inference speed, compute and 

memory requirements of the proposed models in Table 3. 

MotionRecV2 reduces the model size and number of 

trainable parameters as shown in Table 3. It consists of 

almost half the number of parameters to be trained as 

compared to MotionRecV1. However, both these models 

have similar inference speed for corresponding temporal 

depths. This is due to computational independency 

between the two parallel feature extraction layers in 

MotionRecV1. Both extract base features from two 

independent ResNet50 models. Therefore, removing one 

parallel layer in MotionRecV2 reduces number of trainable 

parameters, model size but doesn’t substantially affect the 

inference speed in GPU environment. Since, 

MotionRecV1 achieves better mAP as compared to 

MotionRecV2. Overall, MotionRecV1 outperforms  

 
Figure 7. Moving object detection mAPθ across different IoU 

thresholds θ over (a) sofa, (b) bungalows, (c) parking videos and 

(d) average across all video sequences. M is the temporal depth 

of input layer 

 
d=10\mAP sofa parking bungalow overall 

MotionRec_RM 32.87 0.02 32.47 21.78 

MotionRec_RI 19.17 1.87 18.98 13.34 

Table 4. Ablation experiments with temporal depth=10 for 

different variants of MotionRecV1. MotionRec_RM: Removal of 

temporal median (MT) in AsFeat, MotionRec_RI: Removal of 

current frame (I) in AsFeat. 

 

MotionRecV2 when all the performance measures are 

taken into consideration. 

4.3. Ablation Studies 

We conduct multiple ablation experiments to analyze 

the contribution of different modules in MotionRecV1. In 

the previous section, we have already discussed a variant 

of the proposed method (MotionRecV2) by dropping the 

parallel features in the network. Similarly, the effect of 

temporal depths can be inferred from Table 2 and Table 3. 

We can see that as we increase the temporal depth, the 

performance also increases in terms of mAP but the 

network efficiency decreases in terms of compute and 

memory parameters. 

We further quantify the influence of the following 

components in AsFeat block: temporal median (MT) and 

current frame (I). The AsFeat block is a significant part of 

MoSENet which generates the contrasting features to learn 

the salient motion information in the subsequent layers. As 

given in Table 4, Removal of MT led to approximately 

42% decrease in overall mAP. Similarly, removing current 

frame I decreased the mAP by approximately 50%. These 

ablation experiments further provide evidence in support 
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Figure 8. Qualitative results of our method for unseen video sequences sofa, winterdriveway and parking from CDnet 2014 dataset. 

 

of our original model designs. All the experiments were 

conducted for temporal depth=10 and the same can be 

generalized to other depths as well. 

4.4. Qualitative Results 

We show the qualitative results of our approach on both 

indoor and outdoor scenarios in Figure 8. The MotionRec 

produces accurate MOR bounding boxes even in diverse 

object movements scenarios. For example, in parking 

video, from rows of parked cars, people are walking and 

cars are passing by. Two different classes (car and person) 

of objects cross-over at various points in time. They also 

overlap each other at multiple instances of time. All these 

scenarios are handled quite well. In sofa video, people are 

moving around and stopping in between at various point of 

time. Sometimes, two persons are crossing over and one of 

them sits down for few seconds. All these diverse 

movements are quite accurately detected. Similarly, in 

winterDriveway, both static and moving objects (car and 

person) are present. The MotionRec is able to distinguish 

between static and moving objects in all these scenarios 

and the same can be seen in Figure 8. Our model quite 

accurately recognizes partially occluded moving objects or 

when two objects cross each other as shown in row-3 

(column-2) of Figure 8.  

5. Conclusion 

A novel deep learning framework MotionRec for online 

moving object recognition (MOR) is presented in this 

paper. We also generated a new set of MOR labels by 

annotating 42,614 objects in 24,923 video frames from 

CDnet 2014. The axis-aligned bounding boxes were used 

for moving objects which requires less computational 

resources than producing pixel-level estimates. To the best 

of the authors’ knowledge, this is a first attempt to design 

single-stage framework for online MOR. The proposed 

method significantly outperforms two strong baselines of 

temporal RetinaNet. Our work shows that with a robust 

CNN design and limited amount of training data, we are 

able to obtain surprisingly accurate results. Further 

improvements in architectural design with additional 

labelled data have the potential to improve performance 

both in speed and accuracy. 
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