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Abstract

Few-shot learning algorithms aim to learn model param-

eters capable of adapting to unseen classes with the help

of only a few labeled examples. A recent regularization

technique - Manifold Mixup focuses on learning a general-

purpose representation, robust to small changes in the data

distribution. Since the goal of few-shot learning is closely

linked to robust representation learning, we study Mani-

fold Mixup in this problem setting. Self-supervised learn-

ing is another technique that learns semantically meaning-

ful features, using only the inherent structure of the data.

This work investigates the role of learning relevant feature

manifold for few-shot tasks using self-supervision and reg-

ularization techniques. We observe that regularizing the

feature manifold, enriched via self-supervised techniques,

with Manifold Mixup significantly improves few-shot learn-

ing performance. We show that our proposed method S2M2

beats the current state-of-the-art accuracy on standard few-

shot learning datasets like CIFAR-FS, CUB, mini-ImageNet

and tiered-ImageNet by 3 − 8%. Through extensive ex-

perimentation, we show that the features learned using

our approach generalize to complex few-shot evaluation

tasks, cross-domain scenarios and are robust against slight

changes to data distribution.

1. Introduction

Deep convolutional networks (CNN’s) have become a

regular ingredient for numerous contemporary computer vi-

sion tasks. They have been applied to tasks such as ob-

ject recognition, semantic segmentation, object detection

[23, 66, 21, 24, 35] to achieve state-of-the-art performance.

However, the at par performance of deep neural networks
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requires huge amount of supervisory examples for training.

Generally, labeled data is scarcely available and data col-

lection is expensive for several problem statements. Hence,

a major research effort is being dedicated to fields such as

transfer learning, domain adaptation, semi-supervised and

unsupervised learning [15, 29, 46] to alleviate this require-

ment of enormous amount of examples for training.

A related problem which operates in the low data regime

is few-shot classification. In few-shot classification, the

model is trained on a set of classes (base classes) with abun-

dant examples in a fashion that promotes the model to clas-

sify unseen classes (novel classes) using few labeled in-

stances. The motivation for this stems from the hypothesis

that an appropriate prior should enable the learning algo-

rithm to solve consequent tasks more easily. Biologically

speaking, humans have a high capacity to generalize and

extend the prior knowledge to solve new tasks using only

small amount of supervision. One of the promising ap-

proach to few-shot learning utilizes meta-learning frame-

work to optimize for such an initialization of model param-

eters such that adaptation to the optimal weights of clas-

sifier for novel classes can be reached with few gradient

updates [50, 14, 54, 40]. Some of the work also includes

leveraging the information of similarity between images

[63, 58, 60, 3, 16] and augmenting the training data by hal-

lucinating additional examples [20, 65, 56]. Another class

of algorithms [49, 17] learns to directly predict the weights

of the classifier for novel classes.

Few-shot learning methods are evaluated using N -way

K-shot classification framework where N classes are sam-

pled from a set of novel classes (not seen during training)

with K examples for each class. Usually, the few-shot clas-

sification algorithm has two separate learning phases. In

the first phase, the training is performed on base classes to

develop robust and general-purpose representation aimed to

be useful for classifying novel classes. The second phase

of training exploits the learning from previous phase in the
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form of a prior to perform classification over novel classes.

The transfer learning approach serves as the baseline which

involves training a classifier for base classes and then subse-

quently learning a linear classifier on the penultimate layer

of the previous network to classify the novel classes [7].

Learning feature representations that generalize to novel

classes is an essential aspect of few-shot learning prob-

lem. This involves learning a feature manifold that is rel-

evant for novel classes. Regularization techniques enables

the models to generalize to unseen test data that is dis-

joint from training data. It is frequently used as a supple-

mentary technique alongside standard learning algorithms

[30, 27, 5, 62, 28]. In particular for classification prob-

lems, Manifold Mixup [62] regularization leverages inter-

polations in deep hidden layer to improve hidden represen-

tations and decision boundaries at multiple layers.

In Manifold Mixup [62], the authors show improvement

in classification task over standard image deformations

and augmentations. Also, some work in self-supervision

[18, 68, 11] explores to predict the type of augmentation

applied and enforces feature representation to become in-

variant to image augmentations to learn robust visual fea-

tures. Inspired by this link, we propose to unify the training

of few-shot classification with self-supervision techniques

and Manifold Mixup [62]. The proposed technique employs

self-supervision loss over the given labeled data unlike in

semi-supervised setting that uses additional unlabeled data

and hence our approach doesn’t require any extra data for

training.

Many of the recent advances in few-shot learning exploit

the meta-learning framework, which simulates the training

phase as that of the evaluation phase in the few-shot setting.

However, in a recent study [7], it was shown that learning a

cosine classifier on features extracted from deeper networks

also performs quite well on few-shot tasks. Motivated

by this observation, we focus on utilizing self-supervision

techniques augmented with Manifold Mixup in the domain

of few-shot tasks using cosine classifiers.

Our main contributions in this paper are the following:

• We find that the regularization technique of Manifold

Mixup [62] being robust to small changes in data dis-

tribution enhances the performance of few-shot tasks.

• We show that adding self-supervision loss to the train-

ing procedure, enables robust semantic feature learn-

ing that leads to a significant improvement in few-shot

classification. We use rotation [18] and exemplar [11]

as the self-supervision tasks.

• We observe that applying Manifold Mixup regular-

ization over the feature manifold enriched via the

self-supervision tasks further improves the perfor-

mance of few-shot tasks. The proposed methodology

(S2M2) outperforms the state-of-the-art methods by

3-8% over the CIFAR-FS, CUB, mini-ImageNet and

tiered-ImageNet datasets.

• We conduct extensive ablation studies to verify the ef-

ficacy of the proposed method. We find that the im-

provements made by our methodology become more

pronounced with increasing N in the N -way K-shot

evaluation and also in the cross-domain evaluation.

2. Related Work

Our work is associated with various recent development

made in learning robust general-purpose visual representa-

tions, specifically few-shot learning, self-supervised learn-

ing and generalization boosting techniques.

Few-shot learning: Few-shot learning involves building

a model using available training data of base classes that

can classify unseen novel classes using only few examples.

Few-shot learning approaches can be broadly divided into

three categories - gradient based methods, distance metric

based methods and hallucination based methods.

Some gradient based methods [50, 1] aim to use gradient

descent to quickly adapt the model parameters suitable for

classifying the novel task. The initialization based methods

[14, 54, 40] specifically advocate to learn a suitable initial-

ization of the model parameters, such that adapting from

those parameters can be achieved in a few gradient steps.

Distance metric based methods leverage the information

about similarity between images to classify novel classes

with few examples. The distance metric can either be co-

sine similarity [63], euclidean distance [58], CNN based

distance module[60], ridge regression[3] or graph neural

network[16]. Hallucination based methods [20, 65, 56] aug-

ment the limited training data for a new task by generating

or hallucinating new data points.

Recently, [7] introduced a modification for the simple

transfer learning approach, where they learn a cosine classi-

fier [49, 17] instead of a linear classifier on top of feature ex-

traction layers. The authors show that this simple approach

is competitive with several proposed few-shot learning ap-

proaches if a deep backbone network is used to extract the

feature representation of input data.

Self-supervised learning: This is a general learning

framework which aims to extract supervisory signals by

defining surrogate tasks using only the structural informa-

tion present in the data. In the context of images, a pretext

task is designed such that optimizing it leads to more se-

mantic image features that can be useful for other vision

tasks. Self-supervision techniques have been successfully

applied to diverse set of domains, ranging from robotics to

computer vision [31, 12, 57, 55, 45]. In the context of visual
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Figure 1. Flowchart for our proposed approach (S2M2) for few-shot learning. The auxiliary loss is derived from Manifold Mixup regularization and

self-supervision tasks of rotation and exemplar.

data, the surrogate loss functions can be derived by leverag-

ing the invariants in the structure of the image. In this paper,

we focus on self-supervised learning techniques to enhance

the representation and learn a relevant feature manifold for

few-shot classification setting. We now briefly describe the

recent developments in self-supervision techniques.

C. Doersch et al. [9] took inspiration from spatial context

of a image to derive supervisory signal by defining the sur-

rogate task of relative position prediction of image patches.

Motivated by the task of context prediction, the pretext task

was extended to predict the permutation of the shuffled im-

age patches [41, 39, 43]. [18] leveraged the rotation in-

variance of images to create the surrogate task of predicting

the rotation angle of the image. Also, the authors of [13]

proposed to decouple representation learning of the rotation

as pretext task from class discrimination to obtain better re-

sults. Along the lines of context-based prediction, [48] uses

generation of the contents of image region based on context

pixel (i.e. in-painting) and in [69, 70] the authors propose

to use gray-scale image colorization as a pretext task.

Apart from enforcing structural constraints, [6] uses

cluster assignments as supervisory signals for unlabeled

data and works by alternating between clustering of the im-

age descriptors and updating the network by predicting the

cluster assignments. [47] defines pretext task that uses low-

level motion-based grouping cues to learn visual represen-

tation. Also, [42] proposes to obtain supervision signal by

enforcing the additivity of visual primitives in the patches

of images and [44] proposed to learn feature representations

by predicting the future in latent space by employing auto-

regressive models.

Some of the pretext tasks also work by enforcing con-

straints on the representation of the feature. A prominent

example is the exemplar loss from [11] that promotes repre-

sentation of image to be invariant to image augmentations.

Additionally, some research effort have also been put in to

define the pretext task as a combination of multiple pretext

task [10, 32]. For instance, in [32] representation learning

is augmented with pretext tasks of jigsaw puzzle [41], col-

orization [69, 70] and in-painting [48].

Generalization: Employing regularization techniques for

training deep neural networks to improve their generaliza-

tion performances have become standard practice in the

deep learning community. Few of the commonly used reg-

ularization techniques are - dropout [59], cutout [8], Mixup

[28], Manifold Mixup [62]. Mixup [28] is a specific case

of Manifold Mixup [62] where the interpolation of only in-

put data is applied. The authors in [62] claim that Manifold

Mixup leads to smoother decision boundaries and flattens

the class representations thereby leading to feature repre-

sentation that improve the performance over a held-out val-

idation dataset. We apply a few of these generalization tech-

niques during the training of the backbone network over the

base tasks and find that the features learned via such regu-

larization lead to better generalization over novel tasks too.

Authors of [36] provide a summary of popular regulariza-

tion techniques used in deep learning.

3. Methodology

The few-shot learning setting is formalized by the avail-

ability of a dataset with data-label pairs D = {(xi, yi) :
i = 1, · · · ,m} where x ∈ R

d and yi ∈ C, C being the

set of all classes. We have sufficient number of labeled data

in a subset of C classes (called base classes), while very

few labeled data for the other classes in C (called novel

classes). Few-shot learning algorithms generally train in

two phases: the first phase consists of training a network

over base class data Db = {(xi, yi), i = 1, · · · ,mb} where

{yi ∈ Cb ⊂ C} to obtain a feature extractor, and the second

phase consists of adapting the network for novel class data

Dn = {(xi, yi), i = 1, · · · ,mn} where {yi ∈ Cn ⊂ C}
and Cb ∪ Cn = C. We assume that there are Nb base

classes (cardinality of Cb) and Nn novel classes (cardinality

of Cn). The general goal of few-shot learning algorithms is

to learn rich feature representations from the abundant la-

beled data of base classes Nb, such that the features can be

easily adapted for the novel classes using only few labeled

instances.

In this work, in the first learning stage, we train a Nb-way

neural network classifier:

g = cWb
◦ fθ (1)
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on Db, where cWb
is a cosine classifier [49, 17] and fθ is

the convolutional feature extractor, with θ parametrizing the

neural network model. The model is trained with classifica-

tion loss and an additional auxiliary loss which we explain

soon. The second phase involves fine-tuning of the back-

bone model, fθ, by freezing the feature extractor layers and

training a new Nn-way cosine classifier cWn
on data from

k randomly sampled novel classes in Dn with only classifi-

cation loss. Figure 1 provides an overview of our approach

S2M2 for few-shot learning .

Importantly, in our proposed methodology, we leverage

self-supervision and regularization techniques [62, 18, 11]

to learn general-purpose representation suitable for few-

shot tasks. We hypothesize that using robust features which

describes the feature manifold well is important to obtain

better performance over the novel classes in the few-shot

setting. In the subsequent subsections, we describe our

training procedure to use self-supervision methods (such as

rotation [18] and exemplar [11]) to obtain a suitable fea-

ture manifold, following which using Manifold Mixup reg-

ularization [62] provides a robust feature extractor back-

bone. We empirically show that this proposed methodology

achieves the new state-of-the-art result on standard few-shot

learning benchmark datasets.

3.1. Manifold Mixup for Few­shot Learning

Higher-layer representations in neural network classi-

fiers have often been visualized as lying on a meaningful

manifold, that provide the relevant geometry of data to solve

a given task [2]. Therefore, linear interpolation of feature

vectors in that space should be relevant from the perspec-

tive of classification. With this intuition, Manifold Mixup

[62], a recent work, leverages linear interpolations in neural

network layers to help the trained model generalize better.

In particular, given input data x and x′ with corresponding

feature representations at layer l given by f l
θ(x) and f l

θ(x
′)

respectively. Assuming we use Manifold Mixup on the base

classes in our work, the loss for training Lmm is then for-

mulated as:

Lmm = E(x,y)∈Db

[

L
(

Mixλ(f
l
θ(x), f

l
θ(x

′)),Mixλ(y, y
′)
)

]

(2)

where

Mixλ(a, b) = λ · a+ (1− λ) · b (3)

The mixing coefficient λ is sampled from a β(α, α) distri-

bution and loss L is standard cross-entropy loss. We hy-

pothesize that using Manifold Mixup on the base classes

provides robust feature presentations that lead to state-of-

the-art results in few-shot learning benchmarks.

Training using loss Lmm encourages the model to pre-

dict less confidently on linear interpolations of hidden rep-

resentations. This encourages the feature manifold to have

broad regions of low-confidence predictions between dif-

ferent classes and thereby smoother decision boundaries, as

shown in [62]. Also, models trained using this regularizer

lead to flattened hidden representations for each class with

less number of directions of high variance i.e. the represen-

tations of data from each class lie in a lower dimension sub-

space. The above-mentioned characteristics of the method

make it a suitable regularization technique for generalizing

to tasks with potential distribution shifts.

3.2. Charting the Right Manifold

We observed that Manifold Mixup does result in higher

accuracy on few-shot tasks, as shown in Section 4.2.3.

However, it still lags behind existing state-of-the-art perfor-

mance, which begs the question: Are we charting the right

manifold? In few-shot learning, novel classes introduced

during test time can have a different data distribution when

compared to base classes. In order to counter this distribu-

tional shift, we hypothesize that it is important to capture

the right manifold when using Manifold Mixup for the base

classes. To this end, we leverage self-supervision methods.

Self-supervision techniques have been employed recently

in many domains for learning rich, generic and meaning-

ful feature representations. We show that the simple idea of

adding auxiliary loss terms from self-supervised techniques

while training the base classes provides feature representa-

tions that significantly outperform state-of-the-art for clas-

sifying on the novel classes. We now describe the self-

supervised methods used in this work.

3.2.1 Self-Supervision: Towards the Right Manifold

In this work, we use two pretext tasks that have recently

been widely used for self-supervision to support our claim.

We describe each of these below.

Rotation [18]: In this self-supervised task, the input im-

age is rotated by different angles, and the auxiliary aim of

the model is to predict the amount of rotation applied to

image. In the image classification setting, an auxiliary loss

(based on the predicted rotation angle) is added to the stan-

dard classification loss to learn general-purpose representa-

tions suitable for image understanding tasks. In this work,

we use a 4-way linear classifier, cWr
, on the penultimate

feature representation fθ(x
r) where xr is the image x ro-

tated by r degrees and r ∈ CR = {0◦, 90◦, 180◦, 270◦}, to

predict one of 4 classes in CR. In other words, similar to

Eqn 1, our pretext task model is given by gr = cWr
◦ fθ.

The self-supervision loss is given by:

Lrot =
1

|CR|
∗
∑

x∈Db

∑

r∈CR

L(cWr
(fθ(x

r)), r) (4)

Lclass = E(x,y)∈Db,r∈CR

[

L(xr, y)
]

(5)
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where |CR| denotes the cardinality of CR. As the self-

supervision loss is defined over the given labeled data of Db,

no additional data is required to implement this method. L
is the standard cross-entropy loss, as before.

Exemplar [11]: Exemplar training aims at making the

feature representation invariant to a wide range of image

transformations such as translation, scaling, rotation, con-

trast and color shifts. In a given mini-batch M , we cre-

ate 4 copies of each image through random augmentations.

These 4 copies are the positive examples for each image and

every other image in the mini-batch is a negative example.

We then use hard batch triplet loss [26] with soft margin on

fθ(x) on the mini-batch to bring the feature representation

of positive examples close together. Specifically, the loss is

given as:

Le =
1

4 ∗ |M |

∑

x∈M

4
∑

k=1

log

(

1 + exp
(

− max
p∈{1,··· ,4}

D
(

xik, xip
)

+ min
p∈{1..4},i 6=j

D(xi
k, xj

p)
)

)

(6)

Here, D is the Euclidean distance in the feature representa-

tion space fθ(x) and xik is the kth exemplar of x with class

label i (the appropriate augmentation). The first term inside

the exp term is the maximum among distances between an

image and its positive examples which we want to reduce.

The second term is the minimum distance between the im-

age and its negative examples which we want to maximize.

3.2.2 S2M2: Self-Supervised Manifold Mixup

The few-shot learning setting relies on learning robust and

generalizable features that can separate base and novel

classes. An important means to this end is the ability to

compartmentalize the representations of base classes with

generous decision boundaries, which allow the model to

generalize to novel classes. Manifold Mixup provides an ef-

fective methodology to flatten representations of data from

a given class into a compact region, thereby supporting this

objective. However, while [62] claims that Manifold Mixup

can handle minor distribution shifts, the semantic difference

between base and novel classes in the few-shot setting may

be more than what it can handle. We hence propose the

use of self-supervision as an auxiliary loss while training

the base classes, which allows the learned backbone model,

fθ, to provide feature representations with sufficient deci-

sion boundaries between classes, that allow the model to

extend to the novel classes. This is evidenced in our re-

sults presented in Section 4.2.3. Our overall methodology is

summarized in the steps below, and the pseudo-code of the

proposed approach for training the backbone is presented in

Algorithm 1.

Algorithm 1 S2M2 feature backbone training

begin
Input: {x, y} ∈ Db;α; {x′, y′} ∈ Dval

Output: Backbone model fθ
⊲ Feature extractor backbone fθ training

Initialize fθ
for epochs ∈ {1, 2, ..., 400} do

Training data of size B - (X(i), Y (i)).
L(θ,X(i), Y (i)) = Lclass + Lss

θ → θ − η ∗ ∇L(θ,X(i), Y (i))
end

val acc prev = 0.0
val acc list = [ ]
⊲ Fine-tuning fθ with Manifold Mixup

while val acc > val acc prev do
Training data of size B - (X(i), Y (i)).
L(θ,X(i), Y (i)) = Lmm + 0.5(Lclass + Lss)
θ → θ − η ∗ ∇L(θ,X(i), Y (i))
val acc = Accuracyx,y∈Dval

(Wn(fθ(x)), y)
Append val acc to val acc list

Update val acc prev with val acc

end

return fine-tuned backbone fθ .

end

Step 1: Self-supervised training: Train the backbone

model using self-supervision as an auxiliary loss along with

classification loss i.e. L+ Lss where Lss ∈ {Le, Lrot}.

Step 2: Fine-tuning with Manifold Mixup: Fine-tune

the above model with Manifold Mixup loss Lmm for a few

more epochs.

After obtaining the backbone, a cosine classifier is

learned over it to adapt to few-shot tasks. S2M2R and

S2M2E are two variants of our proposed approach which

uses Lrot and Le as auxiliary loss in Step 1 respectively.

4. Experiments and Results

In this section, we present our results of few-shot classi-

fication task on different datasets and model architectures.

We first describe the datasets, evaluation criteria and imple-

mentation details1.

Datasets: We perform experiments on four standard

datasets for few-shot image classification benchmark, mini-

ImageNet [63], tiered-ImageNet [52], CUB [64] and

CIFAR-FS [4]. mini-ImageNet consists of 100 classes

from the ImageNet [53] which are split randomly into 64
base, 16 validation and 20 novel classes. Each class has

600 samples of size 84 × 84. tiered-ImageNet consists of

608 classes randomly picked from ImageNet [53] which are

split randomly into 351 base, 97 validation and 160 novel

classes. In total, there are 779, 165 images of size 84× 84.

CUB contains 200 classes with total 11, 788 images of size

84× 84. The base, validation and novel split is 100, 50 and

1https://github.com/nupurkmr9/S2M2 fewshot
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Method mini-ImageNet tiered-ImageNet CUB CIFAR-FS

1-Shot 5-Shot 1-Shot 5-Shot 1-Shot 5-Shot 1-Shot 5-Shot

MAML [14] 54.69 ± 0.89 66.62 ± 0.83 51.67 ± 1.81 70.30 ± 0.08 71.29 ± 0.95 80.33 ± 0.70 58.9 ± 1.9 71.5 ± 1.0

ProtoNet [58] 54.16 ± 0.82 73.68±0.65 53.31 ± 0.89 72.69 ± 0.74 71.88±0.91 87.42 ± 0.48 55.5 ± 0.7 72.0 ± 0.6

RelationNet [61] 52.19 ± 0.83 70.20 ± 0.66 54.48 ± 0.93 71.32 ± 0.78 68.65 ± 0.91 81.12 ± 0.63 55.0 ± 1.0 69.3 ± 0.8

LEO [54] 61.76 ± 0.08 77.59 ± 0.12 66.33 ± 0.05 81.44 ± 0.09 68.22 ± 0.22∗ 78.27 ± 0.16∗ - -

DCO [37] 62.64 ± 0.61 78.63 ± 0.46 65.99 ± 0.72 81.56 ± 0.53 - - 72.0 ± 0.7 84.2 ± 0.5

Baseline++ 57.53 ± 0.10 72.99 ± 0.43 60.98 ± 0.21 75.93 ± 0.17 70.4 ± 0.81 82.92 ± 0.78 67.50 ± 0.64 80.08 ± 0.32

Manifold Mixup 57.16 ± 0.17 75.89 ± 0.13 68.19 ± 0.23 84.61 ± 0.16 73.47 ± 0.89 85.42 ± 0.53 69.20 ± 0.2 83.42 ± 0.15

Rotation 63.9 ± 0.18 81.03 ± 0.11 73.04 ± 0.22 87.89 ± 0.14 77.61 ± 0.86 89.32 ± 0.46 70.66 ± 0.2 84.15 ± 0.14

S2M2R 64.93 ± 0.18 83.18 ± 0.11 73.71 ± 0.22 88.59 ± 0.14 80.68 ± 0.81 90.85 ± 0.44 74.81 ± 0.19 87.47 ± 0.13

Table 1. Comparison with prior/current state of the art methods on mini-ImageNet, tiered-ImageNet, CUB and CIFAR-FS dataset. The

accuracy with ∗ denotes our implementation of LEO using their publicly released code

Dataset Method ResNet-18 ResNet-34 WRN-28-10

1-Shot 5-Shot 1-Shot 5-Shot 1-Shot 5-Shot

mini-ImageNet

Baseline++ 53.56 ± 0.32 74.02 ± 0.13 54.41 ± 0.21 74.14 ± 0.19 57.53 ± 0.10 72.99 ± 0.43

Mixup (α = 1) 56.12 ± 0.17 73.42 ± 0.13 56.19 ± 0.17 73.05 ± 0.12 59.65 ± 0.34 77.52 ± 0.52

Manifold Mixup 55.77 ± 0.23 71.15 ± 0.12 55.40 ± 0.37 70.0 ± 0.11 57.16 ± 0.17 75.89 ± 0.13

Rotation 58.96 ± 0.24 76.63 ± 0.12 61.13 ± 0.2 77.05 ± 0.35 63.9 ± 0.18 81.03 ± 0.11

Exemplar 56.39 ± 0.17 76.33 ± 0.14 56.87 ± 0.17 76.90 ± 0.17 62.2 ± 0.45 78.8 ± 0.15

S2M2E 56.80 ± 0.2 76.54 ± 0.14 56.92 ± 0.18 76.97 ± 0.18 62.33 ± 0.25 79.35 ± 0.16

S2M2R 64.06 ± 0.18 80.58 ± 0.12 63.74 ± 0.18 79.45 ± 0.12 64.93 ± 0.18 83.18 ± 0.11

CUB

Baseline++ 67.68 ± 0.23 82.26 ± 0.15 68.09 ± 0.23 83.16 ± 0.3 70.4 ± 0.81 82.92 ± 0.78

Mixup (α = 1) 68.61 ± 0.64 81.29 ± 0.54 67.02 ± 0.85 84.05 ± 0.5 68.15 ± 0.11 85.30 ± 0.43

Manifold Mixup 70.57 ± 0.71 84.15 ± 0.54 72.51 ± 0.94 85.23 ± 0.51 73.47 ± 0.89 85.42 ± 0.53

Rotation 72.4 ± 0.34 84.83 ± 0.32 72.74 ± 0.46 84.76 ± 0.62 77.61 ± 0.86 89.32 ± 0.46

Exemplar 68.12 ± 0.87 81.87 ± 0.59 69.93 ± 0.37 84.25 ± 0.56 71.58 ± 0.32 84.63 ± 0.57

S2M2E 71.81 ± 0.43 86.22 ± 0.53 72.67 ± 0.27 84.86 ± 0.13 74.89 ± 0.36 87.48 ± 0.49

S2M2R 71.43 ± 0.28 85.55 ± 0.52 72.92 ± 0.83 86.55 ± 0.51 80.68 ± 0.81 90.85 ± 0.44

CIFAR-FS

Baseline++ 59.67 ± 0.90 71.40 ± 0.69 60.39 ± 0.28 72.85 ± 0.65 67.5 ± 0.64 80.08 ± 0.32

Mixup (α = 1) 56.60 ± 0.11 71.49 ± 0.35 57.60 ± 0.24 71.97 ± 0.14 69.29 ± 0.22 82.44 ± 0.27

Manifold Mixup 60.58 ± 0.31 74.46 ± 0.13 58.88 ± 0.21 73.46 ± 0.14 69.20 ± 0.2 83.42 ± 0.15

Rotation 59.53 ± 0.28 72.94 ± 0.19 59.32 ± 0.13 73.26 ± 0.15 70.66 ± 0.2 84.15 ± 0.14

Exemplar 59.69 ± 0.19 73.30 ± 0.17 61.59 ± 0.31 74.17 ± 0.37 70.05 ± 0.17 84.01 ± 0.22

S2M2E 61.95 ± 0.11 75.09 ± 0.16 62.48 ± 0.21 73.88 ± 0.30 72.63 ± 0.16 86.12 ± 0.26

S2M2R 63.66± 0.17 76.07± 0.19 62.77± 0.23 75.75± 0.13 74.81 ± 0.19 87.47 ± 0.13

Table 2. Results on mini-ImageNet, CUB and CIFAR-FS dataset over different network architecture.

50 classes. CIFAR-FS is created by randomly splitting 100
classes of CIFAR-100 [34] into 64 base, 16 validation and

20 novel classes. The images are of size 32× 32.

Evaluation Criteria: We evaluate experiments on 5-way

1-shot and 5-way 5-shot [63] classification setting i.e using

1 and 5 labeled instances of each of the 5 classes as training

data and Q instances each from the same classes as test-

ing data. For tiered-ImageNet, mini-ImageNet and CIFAR-

FS we report the average classification accuracy over 10000
tasks where Q = 599 for 1-Shot and Q = 595 for 5-Shot

tasks respectively. For CUB we report average classification

accuracy with Q = 15 over 600 tasks. We compare our ap-

proach S2M2R against the current state-of-the-art methods,

LEO [54] and DCO [37] in Section 4.2.3.

4.1. Implementation Details

We perform experiments on three different model archi-

tecture: ResNet-18, ResNet-34 [22] and WRN-28-10 [67]

which is a Wide Residual Network of 28 layers and width

factor 10. For tiered-ImageNet we only perform experi-

ments with WRN-28-10 architecture. Average pooling is

applied at the last block of each architecture for getting

feature vectors. ResNet-18 and ResNet-34 models have

512 dimensional output feature vector and WRN-28-10 has

640 dimensional feature vector. For training ResNet-18

and ResNet-34 architectures, we use Adam [33] optimizer

for mini-ImageNet and CUB whereas SGD optimizer for

CIFAR-FS. For WRN-28-10 training, we use Adam opti-

mizer for all datasets.

4.2. Performance Evaluation over Few­shot Tasks

In this subsection, we report the result of few shot learn-

ing over our proposed methodology and its variants.

4.2.1 Using Manifold Mixup Regularization

All experiments using Manifold Mixup [62] randomly sam-

ple a hidden layer (including input layer) at each step to
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Figure 2. UMAP (2-dim) [38] plot for feature vectors of examples from novel classes of mini-ImageNet using Baseline++, Rotation, S2M2R (left to right).

apply mixup as described in equation 3 for the mini-batch

with mixup coefficient (λ) sampled from a β(α, α) distribu-

tion with α = 2. We compare the performance of Manifold

Mixup [62] with Baseline++ [7] and Mixup [28]. The re-

sults are shown in table 2. We can see that the boost in few-

shot accuracy from the two aforementioned mixup strate-

gies is significant when model architecture is deep (WRN-

28-10). For shallower backbones (ResNet-18 and ResNet-

34), the results are not conclusive.

4.2.2 Using Self-supervision as Auxiliary Loss

We evaluate the contribution of rotation prediction [18] and

exemplar training [11] as an auxiliary task during back-

bone training for few-shot tasks. Backbone model is trained

with both classification loss and auxiliary loss as explained

in section 3.2.1. For exemplar training, we use random

cropping, random horizontal/vertical flip and image jitter

randomization [68] to produce 4 different positive variants

of each image in the mini-batch. Since exemplar training

is computationally expensive, we fine-tune the baseline++

model for 50 epochs using both exemplar and classification

loss.

The comparison of above techniques with Baseline++ is

shown in table 2. As we see, by selecting rotation and ex-

emplar as an auxiliary loss there is a significant improve-

ment from Baseline++ ( 7 − 8%) in most cases. Also, the

improvement is more prominent for deeper backbones like

WRN-28-10.

4.2.3 Our Approach: S2M2

We first train the backbone model using self-supervision

(exemplar or rotation) as auxiliary loss and then fine-tune

it with Manifold Mixup as explained in section 3.2.2. The

results are shown in table 2. We compare our approach with

current state-of-the-art [54, 37] and other existing few-shot

methods [58, 61] in Table 1. As we can observe from table,

our approach S2M2R beats the most recent state-of-the-art

results , LEO [54] and DCO [37], by a significant margin on

all four datasets. We find that using only rotation prediction

as an auxiliary task during backbone training also outper-

forms the existing state-of-the-art methods on all datasets

except CIFAR-FS.

Method
5-way 10-way 15-way 20-way

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Baseline++ 57.53 72.99 40.43 56.89 31.96 48.2 26.92 42.8

LEO [54] 61.76 77.59 45.26 64.36 36.74 56.26 31.42 50.48

DCO [37] 62.64 78.63 44.83 64.49 36.88 57.04 31.5 51.25

Manifold-

Mixup
57.16 75.89 42.46 62.48 34.32 54.9 29.24 48.74

Rotation 63.9 81.03 47.77 67.2 38.4 59.59 33.21 54.16

S2M2R 64.93 83.18 50.4 70.93 41.65 63.32 36.5 58.36

Table 3. Mean few-shot accuracy on mini-ImageNet as N increases in

N -way K-shot classification.

5. Discussion and Ablation Studies

To understand the significance of learned feature rep-

resentation for few-shot tasks, we perform various experi-

ments and analyze the findings in this section. We choose

mini-ImageNet as the primary dataset with WRN-28-10

backbone for the following experiments.

Effect of varying N in N -way classification: For exten-

sive evaluation, we test our proposed methodology in com-

plex few-shot settings. We vary N in N -way K-shot eval-

uation criteria from 5 to 10, 15 and 20. The correspond-

ing results are reported in table 3. We observe that our ap-

proach S2M2R outperforms other techniques by a signifi-

cant margin. The improvement becomes more pronounced

for N > 5. Figure 2 shows the 2-dimensional UMAP [38]

plot of feature vectors of novel classes obtained from dif-

ferent methods. It shows that our approach has more segre-

gated clusters with less variance. This supports our hypoth-

esis that using both self supervision and Manifold Mixup

regularization helps in learning feature representations with

well separated margin between novel classes.

Cross-domain few-shot learning: We believe that in

practical scenarios, there may be a significant domain-shift

between the base classes and novel classes. Therefore,

to further highlight the significance of selecting the right

manifold for feature space, we evaluate the few-shot clas-

sification performance over cross-domain dataset : mini-

ImageNet =⇒ CUB (coarse-grained to fine-grained dis-

tribution) using Baseline++, Manifold Mixup [62], Rotation

[68] and S2M2R. We train the feature backbone with the

base classes of mini-ImageNet and evaluate its performance
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Method mini-ImageNet =⇒ CUB

1-Shot 5-Shot

DCO [37] 44.79 ± 0.75 64.98 ± 0.68

Baseline++ 40.44 ± 0.75 56.64 ± 0.72

Manifold Mixup 46.21 ± 0.77 66.03 ± 0.71

Rotation 48.42 ± 0.84 68.40 ± 0.75

S2M2R 48.24 ± 0.84 70.44 ± 0.75

Table 4. Comparison in cross-domain dataset scenario.

Method Base + Validation

1-Shot 5-Shot

LEO [54] 61.76 ± 0.08 77.59 ± 0.12

DCO [37] 64.09 ± 0.62 80.00 ± 0.45

Baseline++ 61.10 ± 0.19 75.23 ± 0.12

Manifold Mixup 61.10 ± 0.27 77.69 ± 0.21

Rotation 65.98 ± 0.36 81.67 ± 0.08

S2M2R 67.13 ± 0.13 83.6 ± 0.34

Table 5. Effect of using the union of base and validation class for

training the backbone fθ .

over the novel classes of CUB (to highlight the domain-

shift). We report the corresponding results in table 4.

Generalization performance of supervised learning over

base classes: The results in table 2 and 3 empirically sup-

port the hypothesis that our approach learns a feature man-

ifold that generalizes to novel classes and also results in

improved performance on few-shot tasks. This generaliza-

tion of the learned feature representation should also hold

for base classes. To investigate this, we evaluate the per-

formance of backbone model over the validation set of the

ImageNet dataset and the recently proposed ImageNetV2

dataset[51]. ImageNetV2 was proposed to test the general-

izability of the ImageNet trained models and consists of im-

ages having slightly different data distribution from the Im-

ageNet. We further test the performance of backbone model

over some common visual perturbations and adversarial at-

tack. We randomly choose 3 of the 15 different perturbation

techniques - pixelation, brightness, contrast , with 5 varying

intensity values , as mentioned in the paper [25]. For adver-

sarial attack, we use the FGSM [19] with ǫ = 1.0/255.0.

All the evaluation is over the 64 classes of mini-ImageNet

used for training the backbone model. The results are shown

in table 6. It can be seen that S2M2R has the best general-

ization performance for the base classes also.

Effect of using the union of base and validation classes:

We test the performance of few-shot tasks after merging the

validation classes into base classes. In table 5, we see a con-

siderable improvement over the other approaches using the

same extended data, supporting the generalizability claim

Methods I I2 P C B Adv

Baseline++ 80.75 81.47 70.54 47.11 74.36 19.75

Rotation 82.21 83.91 71.9 50.84 76.26 20.5

Manifold

Mixup
83.75 87.19 75.22 57.57 78.54 44.97

S2M2R 85.28 88.41 75.66 60.0 79.77 28.0

Table 6. Validation set top-1 accuracy of different approaches

over base classes and it’s perturbed variants (I:ImageNet;

I2:ImageNetv2; P:Pixelation noise; C: Contrast noise; B: Bright-

ness; Adv: Aversarial noise)

Figure 3. Effect of increasing the number of self-supervised (de-

grees of rotation) labels.

of the proposed method.

Different levels of self-supervision: We conduct a sepa-

rate experiment to evaluate the performance of the model

by varying the difficulty of self-supervision task; specif-

ically the number of angles to predict in rotation task.

We change the number of rotated versions of each im-

age to 1 (0◦), 2 (0◦, 180◦), 4 (0◦,90◦,180◦,270◦) and 8

(0◦,45◦,90◦,135◦,180◦,225◦,270◦,315◦) and record the per-

formance over the novel tasks for each of the corresponding

4 variants. Figure 3 shows that the performance improves

with increasing the number of rotation variants till 4, after

which the performance starts to decline.

6. Conclusion

We observe that learning feature representation with rel-
evant regularization and self-supervision techniques lead
to consistent improvement of few-shot learning tasks on a
diverse set of image classification datasets. Notably, we
demonstrate that feature representation learning using both
self-supervision and classification loss and then applying
Manifold Mixup over it, outperforms prior state-of-the-art
approaches in few-shot learning. We do extensive experi-
ments to analyze the effect of architecture and efficacy of
learned feature representations in few-shot setting. This
work opens up a pathway to further explore the techniques
in self-supervision and generalization techniques to im-
prove computer vision tasks specifically in low-data regime.
Finally, our findings highlight the merits of learning a robust
representation that helps in improving the performance on
few-shot tasks.
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