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Figure 1: MonoLayout : Given only a single image of a road scene, we propose a neural network architecture that reasons
about the amodal scene layout in bird’s eye view in real-time (> 30fps). Our approach, dubbed MonoLayout can hallucinate

regions of the static scene (road, sidewalks)—and traffic participants—that do not even project to the visible regime of the
image plane. Shown above are example images from the KITTI [8] (left) and Argoverse [3] (right) datasets. MonoLayout

outperforms prior art (by more than a 20% margin) on hallucinating occluded regions.

Abstract

In this paper, we address the novel, highly challeng-

ing problem of estimating the layout of a complex ur-

ban driving scenario. Given a single color image cap-

tured from a driving platform, we aim to predict the

bird’s eye view layout of the road and other traffic

participants. The estimated layout should reason be-

yond what is visible in the image, and compensate for

the loss of 3D information due to projection. We dub

this problem amodal scene layout estimation, which in-

volves hallucinating scene layout for even parts of the

world that are occluded in the image. To this end, we

present MonoLayout, a deep neural network for real-

time amodal scene layout estimation from a single im-

age. We represent scene layout as a multi-channel se-

mantic occupancy grid, and leverage adversarial feature

learning to “hallucinate" plausible completions for oc-

cluded image parts. We extend several state-of-the-art

approaches for road-layout estimation and vehicle occu-

pancy estimation in bird’s eye view to the amodal setup

and thoroughly evaluate against them. By leveraging

temporal sensor fusion to generate training labels, we

significantly outperform current art over a number of

datasets.
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1. Introduction

The advent of autonomous driving platforms has led
to several interesting, new avenues in perception and
scene understanding. While most of the industrially-
led solutions leverage powerful sensors (eg. lidar, pre-
cision GPS, etc.), an interesting research question is to
push the capabilities of monocular vision sensors. To
this end, we consider the novel and highly challenging
task of estimating scene layout in bird’s eye view, given
only a single color image.

Humans have a remarkable cognitive capability of
perceiving amodal attributes of objects in an image.
For example, upon looking at an image of a vehi-
cle, humans can nominally infer the occluded parts,
and also the potential geometry of the surroundings
of the vehicle. While modern neural networks outper-
form humans in image recognition and object detec-
tion [6,9,12,13,22,24,31], they still lack this innate cog-
nitive capability of reasoning beyond image evidence.
With this motivation, we propose MonoLayout , a neu-
ral architecture that takes as input a color image of
a road scene, and outputs the amodal scene layout in
bird’s eye view. MonoLayout maps road regions, side-
walks, as well as regions occupied by other traffic par-
ticipants such as cars, to bird’s eye view, in a single
pass, leveraging adversarial feature learning.

To the best of our knowledge, MonoLayout is the
first approach to amodally reason about the static and
dynamic objects in a scene. We show that, by using a
shared context to reason about scene entities, Mono-
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Figure 2: Architecture: MonoLayout takes in a color image of an urban driving scenario, and predicts an amodal scene
layout in bird’s eye view. The architecture comprises a context encoder, amodal layout decoders, and two discriminators.

Layout achieves better performance on each task when
compared to approaches that train only for a particular
task. On the task of amodal scene layout estimation,
MonoLayout outperforms all evaluated baselines by a
significant margin on several subsets of the KITTI [8]
and the Argoverse [3] datasets. Further, MonoLayout

achieves state-of-the-art object detection performance
in bird’s eye view, without using any form of thresh-
olding / postprocessing. In summary, our contributions
are the following:

1. We propose MonoLayout , a practically motivated deep
architecture to estimate the amodal scene layout from
just a single image (c.f . Fig. 1).

2. We demonstrate that adversarial learning can be used
to further enhance the quality of the estimated layouts,
specifically when hallucinating large missing chunks of
a scene (c.f . Fig. 1, Sec. 3).

3. We evaluate against several state-of-the-art ap-
proaches, and outperform all of them by a signifi-
cant margin on a number of established benchmarks
(KITTI-Raw, KITTI-Object, KITTI-Odometry [8],
Argoverse [3], c.f . Sec. 4, Table 1).

4. Further, we show that MonoLayout can also be ef-
ficiently trained on datasets that do not contain li-
dar scans by leveraging recent successes in monocular
depth estimation. [10] (c.f . Table 2).

Please refer to the supplementary material for more
results, where we demonstrate that the extracted
amodal layouts can suit several higher level tasks, such
as (but not limited to) multi-object tracking, trajectory
forecasting, etc.

2. Related Work

To the best of our knowledge, no published approach
has tackled the task of simultaneous road layout (static
scene) and traffic participant (dynamic scene) estima-
tion from a single image. However, several recent ap-
proaches have addressed the problem of estimating the
layout of a road scene, and several other independent
approaches have tackled 3D object detection. We sum-
marize the most closely related approaches in this sec-
tion.

Road layout estimation

Schulter et al. [26] proposed one of the first approaches
to estimate an occlusion-reasoned bird’s eye view road
layout from a single color image. They use monocular
depth estimation [10] as well as semantic segmenta-
tion to bootstrap a CNN that predicts occluded road
layout. They use priors from OpenStreetMap [21] to
adversarially regularize the estimates. More recently,
Wang et al . [29] builds on top of [26] to infer parame-
terized road layouts. Our approach does not require to
be bootstrapped using either semantic segmentation or
monocular depth estimation, and can be trained end-
to-end from color images.

Perhaps the closest approach to ours is MonoOc-
cupancy [19], which builds a variational autoencoder
(VAE) to predict road layout from a given image.
They also present results for extracting regions close
to roads (eg. sidewalk, terrain, non-free space). How-
ever, they reason only about the pixels present in the
image, and not beyond occluding obstacles. Also, the
bottleneck enforced by that leads to non-sharp, blob-
like layouts. On the other hand, MonoLayout esti-
mates amodal scene layouts, reasoning beyond occlu-
sion boundaries. Our approach produces crisp road
edges as well as vehicle boundaries, by leveraging ad-
versarial feature learning and sensor fusion to reduce
noise in the labeled ground-truth training data.

Object detection in bird’s eye view

There exist several approaches to 3D object detection
that exclusively use lidar [2,27,30], or a combination of
camera and lidar sensors [5,15,17]. However, there are
only a handful of approaches that purely use monocular
vision for object detection [4, 16, 20]. Most of these
are two stage approaches, comprising a region-proposal
stage, and a classification stage.

Another category of approaches map a monocular
image to a bird’s eye view representation [23], thereby
reducing the task of 3D object detection to that of 2D
image segmentation. Recently, BirdGAN [28] lever-
aged adversarial learning for mapping images to bird’s
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eye view, where lidar object detectors such as [2] were
repurposed for object detection.

Such techniques usually require a pre-processing
stage (usually a neural network that maps an image
to a bird’s eye view) after which further processing is
applied. On the other hand, we demonstrate that we
can achieve significantly higher accuracy by directly
mapping from the image space to objects in bird’s eye
view, bypassing the need for a pre-processing stage al-
together.

More notably, all the above approaches require
a post-processing step that usually involves non-
maximum suppression / thresholding to output ob-
ject detections. MonoLayout neither requires pre-
processing nor post-processing and it directly estimates
scene layouts that can be evaluated (or plugged into
other task pipelines).

3. MonoLayout: Monocular Layout Esti-

mation

3.1. Problem Formulation

In this paper, we address the problem of amodal

scene layout estimation from a single color image. For-
mally, given a color image I captured from an au-
tonomous driving platform, we aim to predict a bird’s
eye view layout of the static and dynamic elements of
the scene. Concretely, we wish to estimate the follow-
ing three quantities. 1

1. The set of all static scene points S (typically the road
and the sidewalk) on the ground plane (within a rect-
angular range of length L and width W , in front of the
camera), regardless of whether or not they are imaged

by the camera.

2. The set of all dynamic scene points D on the ground
plane (within the same rectangular range as above)
occupied by vehicles, regardless of whether or not they

are imaged by the camera.

3. For each point discerned in the above step as being
occupied by a vehicle, an instance-specific labeling of
which vehicle the point belongs to.

3.2. MonoLayout

The problem of amodal scene layout estimation is
challenging from a neural networks standpoint in sev-
eral interesting ways. First, it necessitates that we
learn good visual representations from images that help
in estimating 3D properties of a scene. Second, it re-
quires these representations to reason beyond classic

1Flat-earth assumption: For the scope of this paper, we as-
sume that the autonomous vehicle is operating within a bounded
geographic area of the size of a typical city, and that all roads in
consideration are somewhat planar, i.e., no steep/graded roads
on mountains.

3D reconstruction; these representations must enable
us to hallucinate 3D geometries of image regions that
are occupied by occluders. Furthermore, the learned
representations must implicitly disentangle the static
parts of the scene (occupied by road points) from the
dynamic objects (eg. parked/moving cars). With these
requirements in mind, we design MonoLayout with the
following components.

Maximum a posteriori estimation

We formulate the amodal road layout estimation prob-
lem as that of recovering the Maximum a posteriori
(MAP) estimate of the distribution of scene statics
and dynamics. Given the image I, we wish to re-
cover the posterior P (S,D|I), over the domain Ω ,

{(x,H, z)|‖(x−x0)‖1 ≤ L; ‖(z−z0)‖1 ≤W ; (z−z0) >
0}2. Note that the static (road) and dynamic (vehicle)
marginals are not independent. They are not indepen-
dent - they exhibit high correlation (vehicles ply on
roads). Hence, we introduce an additional condition-
ing context variable C that can be purely derived only
using the image information I, such that, S and D are
conditionally independent given C. We term this con-
ditioning variable as the "shared context" as it neces-
sarily encompasses the information needed to estimate
the static and dynamic layout marginals. This allows
the posterior to be factorized in the following form.

P (S,D|I) ∝ P (S,D, C|I)

= P (S|C, I)
︸ ︷︷ ︸

static decoder

P (D|C, I)
︸ ︷︷ ︸

dynamic decoder

P (C|I)
︸ ︷︷ ︸

context encoder

(1)

In accordance with the above factorization of the
posterior, the architecture of MonoLayout comprises
three subnetworks (c.f . Fig. 2).

1. A context encoder which extracts multi-scale feature
representations from the input monocular image. This
provides a shared context that captures static as well
as dynamic scene components for subsequent process-
ing.

2. An amodal static scene decoder which decodes the
shared context to produce an amodal layout of the
static scene. This model consists of a series of decon-
volution and upsampling layers that map the shared
context to a static scene bird’s eye view.

3. A dynamic scene decoder which is architecturally sim-
ilar to the road decoder and predicts the vehicle occu-
pancies in bird’s eye view.

2This domain is a rectangular region in bird’s eye view. H is
the height of the camera above the ground.
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4. Two discriminators [14, 25] which regularize the pre-
dicted static/dynamic layouts by regularizing their dis-
tributions to be similar to the true distribution of
plausible road geometries (which can be easily ex-
tracted from huge unpaired databases such as Open-
StreetMap [21]) and ground-truth vehicle occupancies.

Feature Extractor

From the input image, we first extract meaningful im-
age features at multiple scales, using a ResNet-18 en-
coder (pre-trained on ImageNet [7]). We finetune this
feature extractor in order for it to learn low-level fea-
tures that help reason about static and dynamic as-
pects of the scene.

Static and dynamic layout decoders

The static and dynamic layout decoders share an iden-
tical architecture. They decode the shared context
from the feature extractor by a series of upsampling
layers to output a D ×D grid each3.

Adversarial Feature Learning

To better ground the likelihoods P (S|C, I), P (D|C, I)
(c.f . Eq. 1), we introduce adversarial regularizers (dis-
criminators) parameterized by θS and θD respectively.
The layouts estimated by the static and dynamic de-
coders are input to these patch-based discriminators
[14]. The discriminators regularize the distribution of
the output layouts (fake data distribution, in GAN [11]
parlance) to match a prior data distribution of conceiv-

able scene layouts (true data distribution). This prior
data distribution is a collection of road snippets from
OpenStreetMap [21], and rasterized images of vehicles
in bird’s eye view. Instead of training with a paired
OSM for each image, we choose to collect a set of di-
verse OSM maps representing the true data distribu-
tion of road layouts in bird’s eye view and train our
discriminators in an unpaired fashion. This mitigates
the need to have perfectly aligned OSM views to the
current image, making MonoLayout favourable com-
pared to approaches like [26] that perform an explicit
alignment of the OSM before beginning processing.

Loss function

The parameters φ, ν, ψ of the context encoder, the
amodal static scene decoder, and the dynamic scene

3We tried training a single decoder for both the tasks, but
found convergence to be hard. We attribute this to the ex-
treme change in output spaces: while roads are large, contin-
uous chunks of space, cars are tiny, sparse chunks spread over
the entire gamut of pixels. Instead, we chose to train two de-
coders over a shared context, which bypasses this discrepancy in
output spaces, and results in sharp layout estimates.

decoder respectively are obtained by minimizing the
following objective using minibatch stochastic gradient
descent.

min
φ,ν,ψ,θS ,θD

Lsup(S,D;φ, ν, ψ) + Ladv(S,D;φ, θ, ψ) + Ldiscr(DS , DD;φ, ν)

Lsup =
N∑

i=1

‖Sφ,ν(I
i)− Sigt‖

2 + ‖Dφ,ψ(I
i)−Di

gt‖
2

Ladv(S,D;φ, θ, ψ) = Eθ∼pfake

[
(D(θS)− 1)2

]
+ Eθ∼pfake

[
(D(θD)− 1)2

]

Ldiscr(D; θ) =
∑

θ∈{θD,θS}

Eθ∼ptrue

[
(D(θ)− 1)2

]
+ Eθ∼pfake

[
(D(θ)− 1)2

]

(2)

Here, Lsup is a supervised (L2) error term that pe-
nalizes the deviation of the predicted static and dy-
namic layouts (Sφ,ν(I)), Dφ,ν(I))) with their corre-
sponding ground-truth values (Sigt, Di

gt). The adver-
sarial loss Ladv encourages the distribution of layout es-
timates from the static/dynamic scene decoders (pfake)
to be close to their true counterparts (ptrue). The dis-
criminator loss Ldiscr is the discriminator update ob-
jective [11].

3.3. Generating training data: sensor fusion

Since we aim to recover the amodal scene layout,
we are faced with the problem of extracting training
labels for even those parts of the scene that are oc-
cluded from view. While recent autonomous driving
benchmarks provide synchronized lidar scans as well
as semantic information for each point in the scan, we
propose a sensor fusion approach to generate more ro-
bust training labels, as well as to handle scenarios in
which direct 3D information (eg. lidar) may not be
available.

As such, we use either monocular depth estima-
tion networks (Monodepth2 [10]) or raw lidar data
and initialize a pointcloud in the camera coordinate
frame. Using odometry information over a window of
W frames, we aggregate/register the sensor observa-
tions over time, to generate a more dense, noise-free
pointcloud. Note that, when using monocular depth
estimation, we discard depths of points that are more
than 5 meters away from the car, as they are noisy. To
compensate for this narrow field of view, we aggregate
depth values over a much larger window size (usually
40− 50) frames.

The dense pointcloud is then projected to an occu-
pancy grid in bird’s eye view. If ground-truth semantic
segmentation labels are available, each occupancy grid
cell is assigned the label based on a simple majority
over the labels of the corresponding points. For the
case where ground-truth semantic labels are unavail-
able, we use a state-of-the-art semantic segmentation
network [24] to segment each frame and aggregate these
predictions into the occupancy grid.

For vehicle occupancy estimation though, we rely on
ground-truth labels in bird’s eye view, and train only
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Dataset Method Static Layout Estimation Vehicle Layout
Road Sidewalk Road + Sidewalk
mIoU mIoU occl mIoU mIoU mAP

KITTI Raw
MonoOccupancy [19] 56.16 18.18 28.24 - -
Schulter et al . [26] 68.89 30.35 61.06 - -

MonoLayout-static (Ours) 73.86 32.86 67.42 - -

KITTI Odometry
MonoOccupancy [19] 64.72 12.08 34.87 - -

MonoLayout-static (Ours) 80.08 42.66 72.46 - -

KITTI Object

MonoOccupancy-ext - - - 20.45 22.59
Mono3D [4] - - - 17.11 29.62
OFT [23] - - - 25.24 34.69

MonoLayout-dynamic (Ours) - - - 26.08 40.79

KITTI Tracking MonoLayout (Ours) 53.94 - - 24.16 36.83

Argoverse
MonoOccupancy-ext 32.70 - - 16.22 38.66

MonoLayout (Ours) 58.33 - - 32.05 48.31

Table 1: Quantitative results: We evaluate the performance of MonoLayout on several datasets, on amodal scene layout estimation.
As there is no existing baseline that simultaneously estimates static (road/sidewalk) as well as dynamic (vehicle) layout, we evaluate
under multiple settings. On the KITTI Raw and KITTI Odometry [8] datasets, we evaluate MonoLayout-static. On the KITTI
Object [8] dataset, we evaluate MonoLayout-dynamic. On the KITTI Tracking [8] and Argoverse [3] datasets, we evaluate MonoLayout,
the full architecture that estimates both static and dynamic layouts. We outperform existing approaches by a significant margin, on
all metrics.

on datasets that contain such labels4.

4. Experiments

To evaluate MonoLayout , we conduct experiments
over a variety of challenging scenarios and against mul-
tiple baselines, for the task of amodal scene layout es-
timation.

4.1. Datasets

We present our results on two different datasets -
KITTI [8] and Argoverse [3]. The latter contains a
high-resolution semantic occupancy grid in bird’s eye
view, which facilitates the evaluation of amodal scene
layout estimation. The KITTI dataset, however, has
no such provision. For a semblance of ground-truth,
we register depth and semantic segmentation of lidar
scans in bird’s eye view.

To the best of our knowledge, there is no published
prior work that reasons jointly about road and ve-
hicle occupancies. However, there exist approaches
for road layout estimation [19, 26], and a separate set
of approaches for vehicle detection [4, 23]. Further-
more, each of these approaches evaluate over different
datasets (and in cases, different train/validation splits).
To ensure fair comparision with all such approaches, we
organize our results into the following categories.

1. Baseline Comparison: For a fair comparison with
state-of-the-art road layout estimation techniques, we
evaluate performance on the KITTI RAW split used
in [26] (10156 training images, 5074 validation images).
For a fair comparision with state-of-the-art 3D vehicle

4For a detailed description of the architecture and the training
process, we refer the reader to the supplementary material

detection approaches we evaluate performance on the
KITTI 3D object detection split of Chen et al. [4] (3712
training images, 3769 validation images).

2. Amodal Layout Estimation: To evaluate layout es-
timation on both static and dynamic scene attributes
(road, vehicles), we use the KITTI Tracking [8] and
Argoverse [3] datasets. We annotate sequences from
the KITTI Tracking dataset for evaluation (5773 train-
ing images, 2235 validation images). Argoverse pro-
vides HD maps as well as vehicle detections in bird’s
eye view (6723 training images, 2418 validation im-
ages).

3. Temporal sensor fusion for supervision: We then
present results using our data generation approach
(c.f . Sec. 3.3) on the KITTI Odometry dataset. This
also uses the dense semantic segmentation labels from
the Semantic KITTI dataset [1].

4.2. Approaches evaluated

We evaluate the performance of the following ap-
proaches.

• Schulter et al.: The static scene layout estimation ap-
proach proposed in [26].

• MonoOccupancy : The static scene layout estimation
approach proposed in [19].

• Mono3D : The monocular 3D object detection ap-
proach from [4].

• OFT : A recent, state-of-the-art monocular bird’s eye
view detector [23].

• MonoOccupancy-ext : We extend MonoOccupancy [19]
to predict vehicle occupancies.

• MonoLayout-static: A version of MonoLayout that
only predicts static scene layouts.
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RGB Lu et al. [19] MonoLayout (Ours) RGB Lu et al. [19] MonoLayout (Ours)

Figure 3: Static layout estimation: Observe how MonoLayout performs amodal completion of the static scene (road shown in
pink, sidewalk shown in gray. MonoOccupancy [19] fails to reason beyond occluding objects (top row), and does not hallucinate large
missing patches (bottom row), while MonoLayout(Ours) is accurately able to do so. Furthermore, even in cases where there is no
occlusion (row 2), MonoLayout(Ours) generates road layouts of much sharper quality. Row 3 show extremely challenging scenarios
where most of the view is blocked by vehicles, and the scenes exhibit high-dynamic range (HDR) and shadows.

• MonoLayout-dynamic: A version of MonoLayout that
only predicts vehicle occupancies.

• MonoLayout : The full architecture, that predicts both
static and dynamic scene layouts.

4.3. Static layout estimation (Road)
We evaluate MonoLayout-static against Schulter et al .

[26] and MonoOccupancy [19] on the task of static scene
(road/sidewalk) layout estimation. Note that Schulter et al .
assume that the input image is first passed through monoc-
ular depth estimation and semantic segmentation networks,
while we operate directly on raw pixel intensities. Table 1
summarizes the performance of existing road layout estima-
tion approaches (Schulter et al . [26], MonoOccupancy [19])
on the KITTI Raw and KITTI Odometry benchmarks. For
KITTI Raw, we follow the exact split used in Schulter et

al . and retrain MonoOccupancy and MonoLayout-static on
this train split. Since the manual annotations for semantic
classes for KITTI Raw aren’t publicly available, we man-
ually annotated sequences with semantic labels (and will
make them publicly available).

From Table 1 (c.f . “KITTI Raw"), we see that Mono-

Layout-static outperforms both MonoOccupancy [19] and
Schulter et al . [26] by a significant margin. We attribute
this to the strong hallucination capabilities of MonoLayout-
static due to adversarial feature learning (c.f . Fig. 3). Al-
though Schulter et al . [26] use a discriminator to regularize
layout predictions, they seem to suffer from cascading errors
due to sequential processing blocks (eg. depth, semantics
extraction). MonoOccupancy [19] does not output sharp es-
timates of road boundaries by virtue of being a variational
autoencoder (VAE), as mean-squared error objectives and
Gaussian prior assumptions often result in blurry genera-
tion of samples [18]. The hallucination capability is much
more evident in the occluded region evaluation, where we

see that MonoLayout-static improves by more than 10% on
prior art.

4.4. Dynamic (vehicle) layout estimation

To evaluate vehicle layout estimation in bird’s eye view,
we first present a comparative analysis on the KITTI Ob-
ject [8] dataset, for a fair evaluation with respect to prior
art. Specifically, we compare against Orthographic Feature

Transform (OFT [23]), the current best monocular object
detector in bird’s eye view. As a baseline approach, we
also evaluate against Mono3D [4]. Furthermore, we extend
MonoOccupancy [19] to the task of vehicle layout estima-
tion, to demonstrate that variational autoencoder-style ar-
chitectures are ill-suited to this purpose. This comparison
is presented in Table 1 (“KITTI Object”).

We see again that MonoLayout-dynamic outperforms
prior art on the task of vehicle layout estimation. Note that
Mono3D [4] is a two-stage method and requires strictly ad-
ditional information (semantic and instance segmentation),
and OFT [23] performs explicit orthographic transfors and
is parameter-heavy (23.5M parameters) which slows it down
considerably (5 fps). We make no such assumptions and
operate on raw image intensities, yet obtain better perfor-
mance, and about a 6x speedup (32 fps). Also, MonoOccu-
pany [19] does not perform well on the vehicle occupancy
estimation task, as the variational autoencoder-style archi-
tecture usually merges most of the vehicles into large blob-

like structures (c.f . Fig. 4).

4.5. Amodal scene layout estimation

In the previous sections, we presented results individ-
ually for the tasks of static (road) and dynamic (vehicle)
layout estimation, to facilitate comparision with prior art
on equal footing. We now present results for amodal scene
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RGB Lu et al. [19] Mono3D [4] OFT [23] MonoLayout GroundTruth

Figure 4: Dynamic layout estimation: We show vehicle occupancy estimation results on the KITTI [8] 3D Object detection
benchmark. From left to right, the column corresponds to the input image, MonoOccupancy [19], Mono3D [4], OFT [23], MonoLayout

(Ours), and ground-truth respectively. While the other approaches miss out on detecting cars (top row), or split a vehicle detection
into two (second row), or stray detections off road (third row), MonoLayout (Ours) produces crisp object boundaries while respecting
vehicle and road geometries.

.

layout estimation (i.e., both static and dynamic scene com-
ponents) on the Argoverse [3] dataset. We chose Argov-
erse [3] as it readily provides ground truth HD bird’s eye
view maps for both road and vehicle occupancies. We follow
the train-validation splits provided by [3], and summarize
our results in Table 1 (“Argoverse”).

We show substantial improvements at nearly 20% on
mIoU vis-a-vis the next closest baseline [19]. This is a
demonstration of the fact that, even when perfect ground-
truth is available, approaches such as MonoOccupancy [19]
fail to reach the levels of performance as that of MonoLay-

out . We attribute this to the shared context that encapsu-
lates a rich feature collection to facilitate both static and
dynamic layout estimation. Note that, for the Argoverse [3]
dataset we do not train our methods on the ground-truth
HD maps, because such fine maps aren’t typically available
for all autonomous driving solutions. Instead, we train our
methods using a semblance of ground-truth (generated by
the process described in Sec 3.3), and use the HD maps only
for evaluation. This validates our claim that our model, de-
spite being trained using noisy ground estimates by lever-
aging sensor fusion, is still able to hallucinate and complete
the occluded parts of scenes correctly as shown in Fig 6.

4.6. Ablation Studies

Using monocular depth as opposed to lidar

While most of the earlier results focused on the scenario
where explicit lidar annotations were available, we turn
to the more interesting case where the dataset only com-
prises monocular images. As described in Sec 3.3, we use
monocular depth estimation (MonoDepth2 [10]) and aggre-
gate/register depthmaps over time, to provide training sig-
nal. In Table 2, we analyze the impact of the availability

Figure 5: Impact of sensor fusion: Col 1 : Input images.
Col 2 : Using per-frame monocular depth, Col 3 : Using per-
frame lidar depth, Col 4 : Sensor-fused monocular depth,
Col 5 : Sensor-fused lidar depth. (Refer to Table 2 and
Sec. 4.6 for more details)

of lidar data on the performance of amodal scene layout
estimation.

We train MonoOccupancy [19] and MonoLayout-static
on the KITTI Raw dataset, using monocular depth
estimation-based ground-truth, as well as lidar-based
ground-truth. While lidar based variants perform better
(as is to be expected), we see that self-supervised monocu-
lar depth estimation results in reasonable performance too.
Surprisingly, for the per-frame case (i.e., no sensor fusion),
monocular depth based supervision seems to fare better.
Under similar conditions of supervision, we find that Mono-

Layout-static outperforms MonoOccupancy [19].
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RGB MonoLayout GroundTruth

Figure 6: Amodal scene layout estimation on the Argov-
erse [3] dataset. The dataset comprises multiple challenging sce-
narios, with low illumination, large number of vehicles. Mono-

Layout is accurately able to produce sharp estimates of vehicles
and road layouts. (Sidewalks are not predicted here, as they
aren’t annotated in Argoverse).

Impact of sensor fusion

The sensor fusion technique described in Sec 3.3 greatly
enhances the accuracy of static layout estimation. Aggre-
gating sensor observations over time equips us with more
comprehensive, and noise-free maps. Table 2 presents re-
sults for an analysis of the performance benefits obtained
due to temporal sensor fusion.

Supervision MonoOccupancy-ext MonoLayout-static (Ours)

Per-frame monocular depth 56.16 58.87

Sensor-fused monocular depth 64.81 66.71

Per-frame lidar 44.29 48.29

Sensor-fused lidar 71.67 73.86

Table 2: Monocular depth: If lidar data is unavailable, we
leverage self-supervised monocular depth estimation to gener-
ate training data for MonoLayout-static and achieve reasonable
static layout estimation (rows 1-2). Although performance is
inferior to the case when lidar is available (rows 3-4), this is
not unexpected. Sensor fusion: Regardless of the modality of
depth information, sensor-fusing depth estimates over a window
of 40 frames dramatically improves performance (row 2, row 4).

Impact of adversarial learning

With the discriminators, we not only improve qualitatively
(sharper/realistic samples) (c.f . Fig 7), but also gain sig-
nificant performance boosts. This is even more pronounced
on Argoverse [3], as shown in Table 3. In case of vehicle
occupancy estimation, while using a discriminator does not
translate to quantitative performance gains, it often results
in qualitatively sharper, aesthetic estimates as seen in Fig 7.

Timing analysis
We also show the computation test time of our method as
compared to other baslines in Table 4. Unlike Schulter et al .
[26], our network does not require discriminator to be used
during inference time. It achieves real time inference rate of
approx. 32 Hz for an input size 3×512×512 and an output
size 2 × 128 × 128 on an NVIDIA GeForce GTX 1080Ti
GPU. Note that in MonoLayout the static and dynamic

RGB MonoLayout-no-disc MonoLayout

Figure 7: Effect of adversarial learning: As can be clearly
seen here, the discriminators help enhance both the static (road)
layout estimation (top and middle rows), as well as produce
sharper vehicle boundaries (bottom row). While this translates
to performance gains in static layout estimation (c.f . Table 3),
the gains in dynamic layout estimation are more cosmetic in na-
ture.

Dataset MonoLayout-no-disc MonoLayout

Road Vehicle (mIoU) Vehicle (mAP) Road Vehicle (mIoU) Vehicle (mAP)

KITTI Raw 70.95 - - 73.86 - -

KITTI Object - 26.25 37.66 - 25.47 41.52

Argoverse 51.66 32.84 44.07 58.33 32.06 48.31

Table 3: Effect of discriminator: Adding a discriminator
clearly translates to an accuracy boost in static (road) layout
estimation. For vehicle occupancy estimation, while a quantita-
tive boost is not perceived, the generated layouts are sharper,
and aesthetic as opposed to when not using the discriminator
(c.f . Fig. 7)

decoders are executed in parallel, maintining comparable
runtime. MonoLayout is an order of magnitude faster than
previous methods, making it more attractive for on-road
implementations.

Method Parameters Computation Time

Mono3D [4] >> 20 M 0.24 fps

OFT [23] 23.5 M < 5 fps

MonoOccupancy [19] 27.5 M 15 fps

Schulter et al. [26] >> 20 M < 3 fps

MonoLayout (Ours) 19.6M 32 fps

Table 4: A comparative study of infrence time of various meth-
ods. MonoLayout is about as faster and significantly more accu-
rate compared to prior art. (c.f . Table 1).

5. Discussion and conclusions

This paper proposed MonoLayout , a versatile deep net-
work architecture capable of estimating the amodal layout
of a complex urban driving scene in real-time. In the sup-
plementary material, we show several additional results,
including extended ablations, and applications to multi-
object tracking and trajectory forecasting. A promising
avenue for future research is the generalization of MonoLay-

out to unseen scenarios, as well as incorporating temporal
information to improve performance.

1696



References

[1] J. Behley, M. Garbade, A. Milioto, J. Quenzel,
S. Behnke, C. Stachniss, and J. Gall. Semantickitti:
A dataset for semantic scene understanding of lidar
sequences. In ICCV, 2019.

[2] J. Beltrán, C. Guindel, F. M. Moreno, D. Cruzado,
F. Garcia, and A. De La Escalera. Birdnet: a 3d object
detection framework from lidar information. In ITSC,
2018.

[3] M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh,
S. Bak, A. Hartnett, D. Wang, P. Carr, S. Lucey,
D. Ramanan, et al. Argoverse: 3d tracking and fore-
casting with rich maps. In CVPR, 2019.

[4] X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler, and
R. Urtasun. Monocular 3d object detection for au-
tonomous driving. In CVPR, 2016.

[5] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia. Multi-view
3d object detection network for autonomous driving.
In CVPR, 2017.

[6] D. Cireşan, U. Meier, and J. Schmidhuber. Multi-
column deep neural networks for image classification.
arXiv preprint, 2012.

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009.

[8] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for
autonomous driving? the kitti vision benchmark suite.
In CVPR, 2012.

[9] R. Girshick. Fast r-cnn. In Proceedings of the IEEE in-

ternational conference on computer vision, pages 1440–
1448, 2015.

[10] C. Godard, O. Mac Aodha, M. Firman, and G. Bros-
tow. Digging into self-supervised monocular depth es-
timation. arXiv preprint, 2018.

[11] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Ben-
gio. Generative adversarial nets. In Advances in Neural

Information Processing Systems 27. 2014.

[12] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask
r-cnn. In Proceedings of the IEEE international con-

ference on computer vision, pages 2961–2969, 2017.

[13] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. In ICCV, 2015.

[14] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-
to-image translation with conditional adversarial net-
works. In CVPR, 2017.

[15] J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. L.
Waslander. Joint 3d proposal generation and object
detection from view aggregation. In IROS, 2018.

[16] B. Li, W. Ouyang, L. Sheng, X. Zeng, and X. Wang.
Gs3d: An efficient 3d object detection framework for
autonomous driving. In CVPR, 2019.

[17] M. Liang, B. Yang, S. Wang, and R. Urtasun. Deep
continuous fusion for multi-sensor 3d object detection.
In ECCV, 2018.

[18] S. Lin, R. Clark, R. Birke, N. Trigoni, and S. Roberts.
Wise-ale: Wide sample estimator for aggregate latent
embedding. 2019.

[19] C. Lu, M. J. G. van de Molengraft, and G. Dubbel-
man. Monocular semantic occupancy grid mapping
with convolutional variational encoder–decoder net-
works. IEEE Robotics and Automation Letters, 2019.

[20] A. Mousavian, D. Anguelov, J. Flynn, and J. Kosecka.
3d bounding box estimation using deep learning and
geometry. In CVPR, 2017.

[21] OpenStreetMap contributors. Planet dump
retrieved from https://planet.osm.org .
https://www.openstreetmap.org , 2017.

[22] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-
cnn: Towards real-time object detection with region
proposal networks. In Advances in neural information

processing systems, pages 91–99, 2015.

[23] T. Roddick, A. Kendall, and R. Cipolla. Orthographic
feature transform for monocular 3d object detection.
arXiv preprint, 2018.

[24] S. Rota Bulò, L. Porzi, and P. Kontschieder. In-place
activated batchnorm for memory-optimized training of
dnns. In CVPR, 2018.

[25] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung,
A. Radford, and X. Chen. Improved techniques for
training gans. In Advances in neural information pro-

cessing systems, 2016.

[26] S. Schulter, M. Zhai, N. Jacobs, and M. Chandraker.
Learning to look around objects for top-view represen-
tations of outdoor scenes. In ECCV, 2018.

[27] S. Shi, X. Wang, and H. Li. Pointrcnn: 3d object
proposal generation and detection from point cloud.
In CVPR, 2019.

[28] S. Srivastava, F. Jurie, and G. Sharma. Learning 2d
to 3d lifting for object detection in 3d for autonomous
vehicles. arXiv preprint, 2019.

[29] Z. Wang, B. Liu, S. Schulter, and M. Chandraker. A
parametric top-view representation of complex road
scenes. In CVPR, 2019.

[30] B. Yang, W. Luo, and R. Urtasun. Pixor: Real-time
3d object detection from point clouds. In CVPR, 2018.

[31] Q. Yu, Y. Yang, F. Liu, Y.-Z. Song, T. Xiang, and
T. M. Hospedales. Sketch-a-net: A deep neural net-
work that beats humans. International journal of com-

puter vision, 2017.

1697


