
DCIL: Deep Contextual Internal Learning for Image Restoration and Image

Retargeting

Indra Deep Mastan and Shanmuganathan Raman

Indian Institute of Technology Gandhinagar

Gandhinagar, Gujarat, India

{indra.mastan, shanmuga}@iitgn.ac.in

Abstract

Recently, there is a vast interest in developing unsuper-

vised methods that are independent of the feature learn-

ing from the training data, e.g., deep image prior [26],

zero-shot learning [23], and internal learning [21, 22].

These methods are based on the common goal of maxi-

mizing the quality of image features learned from a sin-

gle image despite inherent technical diversity. In this work,

we bridge the gap between the various unsupervised ap-

proaches above and propose a general framework for image

restoration and image retargeting. We use contextual fea-

ture learning and internal learning to improvise the struc-

ture similarity between the source and the target images. We

perform image resizing application in the following setups:

classical image resizing using super-resolution, a challeng-

ing image resizing where the low-resolution image contains

noise, and content-aware image resizing using image retar-

geting. We also compare our framework with relevant state-

of-the-art methods.

1. Introduction

Deep learning based supervised models could implic-

itly capture the image prior by feature learning on a col-

lection of images [16, 30, 6, 29, 27, 32, 2, 20]. How-

ever, deep feature learning using training data could suffer

from transformation bias or model collapse [33, 9]. Re-

cently, there is a vast interest in using a convolutional neu-

ral network (CNN) to minimize the use of training sam-

ples [26, 19, 11, 23, 17, 21, 22]. More specifically, the

following unsupervised models are remarkably successful

[23, 26, 22]. Unsupervised models could allow image

restoration when the degradation process is complex and/or

unknown and obtaining realistic data for supervised training

is difficult [26].

Unsupervised image feature learning attracts various ap-

plications such as image super-resolution, inpainting, and

image retargeting. Shocher et al. proposed zero-shot super-

resolution (ZSSR) which does not use any training dataset

[23]. Another research thread for training-data independent

methods is Deep Image Prior (DIP) proposed by Ulyanov

et al. [26]. DIP bridges the gap between handcrafted image

prior based classical methods and CNN based deep prior.

It shows that the structure of the encoder-decoder network

itself works as the image prior. Later, Raman and Mastan

gave a generalization of [26] and showed various aspects of

the relationship between network construction and image

restoration [17]. For example, skip connections improve

super-resolution but adversely affect image inpainting [17].

ZSSR and DIP compute pixel-to-pixel loss (e.g., mean

squared error MSE). The pixel-to-pixel loss is limited to the

applications which have a spatial correspondence between

the pixels of the source and the target images (aligned im-

age data). Mechrez et al. have proposed contextual loss

for non-aligned image data applications, e.g., style transfer

[19, 18]. However, their approach is not completely inde-

pendent of training samples. We call image feature learn-

ing by minimizing the contextual loss as contextual feature

learning (CFL).

Shocher et al. proposed Internal-GAN (InGAN) for im-

age retargeting without using any training samples. Re-

targeting requires feature transfer when there is no spatial

correspondence between pixels of the source image and the

target image (non-aligned image data) [22]. InGAN con-

siders image retargeting as a distribution matching problem

to take advantage of GAN. Shocher et al. observed that the

reconstructions suffer from the object partition ambiguity.

There is a technical diversity in the unsupervised meth-

ods described above. However, they are all subjected to

maximizing the quality of image feature learning from a

single image. There are two interesting challenges here. (1)

What aspect of the network would help for the task of im-

age generation in the limited contextual understanding due

to the lack of feature learning from the training data? (2)

What should be the structure of the loss function when the

source image and the target image are non-aligned and do
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not have spatial correspondence?

To better understand the challenges above, let us con-

sider the task of resizing an image. Super-Resolution (SR)

scales the entire image, whereas image retargeting resizes

the input while preserving the size and the aspect ratio of

the local elements [22]. Another image resizing application

would be to scale a low-resolution image, which contains

noise, termed as Denoising-Super-Resolution (DSR). Im-

age resizing in DSR setting is more general and challenging

than image super-resolution as it also removes noise from a

low-resolution image.

The training data independent image resizing in various

scenarios described above would require a careful design of

network and loss function. DIP and ZSSR perform image

restoration using pixel-to-pixel loss. Therefore, they are not

applicable to image retargeting (non-aligned image data).

InGAN performs image retargeting, but is not studied for

DSR setting [22].

We propose deep contextual internal learning (DCIL) for

image retargeting and image restoration. Our models in-

clude structure of the network as the implicit image prior

and an image degradation based loss term. The desired im-

age is reconstructed by finding the optimal solution of the

model. The key idea is to maximize deep feature learning

from a single image by a modular network structure with a

generalized loss function which works for aligned and non-

aligned image data. We use diverse techniques such as deep

prior learning, adversarial learning, and CFL. Deep prior

learning fits the generator network by maximizing the like-

lihood of weights given the corrupted image and restoration

model. Adversarial learning and CFL perform distribution

matching to generate realistic image patches.

There is an interesting contrast to our objectives. On

the one hand, we need an image restoration strategy which

enhances the image features present in the input corrupted

image. On the other end, image retargeting specific recon-

struction, which uses similar image features from input im-

age for synthesizing objects in the output image (distribu-

tion matching). Image distribution matching between the

corrupted image and the output image could adversely in-

fluence output image. Therefore, we provide modularity

in the network structure with a task-specific loss function

(Sec. 3). The network provides a high impedance to the

noise and allows reconstruction of the signal [26]. The loss

function influence the quality of learned features by mini-

mizing the dis-similarity in the features of the source image

and the output image.

Network construction in DCIL is based on various net-

work components. These components are as follows: net-

work depth, skip connections, a cascade of network input,

and network composition. We do not use cascading of net-

work input as it does not provide a significant enhancement

of prior learning [17]. We take advantage of residual blocks

as it improves the generator output [14, 34].

We formalize network construction and explain the ab-

stract description of the network to simplify the network

design in the presence of diverse components (Sec. 3.1).

After network construction, DCIL iteratively minimizes

the loss between the source image and the target image.

DCIL loss compares image features between the source

image and the target image in three ways: pixel-to-pixel,

patch-to-patch, and contextual features comparison. The

motive behind this loss is to capture better image statistics

by comparing the diverse set of image features. (1) Pixel-

to-pixel comparison is similar to the MSE based reconstruc-

tion loss [26, 22]. (2) Patch-to-patch comparison is made

using the adversarial loss [23, 22]. (3) Contextual features

comparison between the source and the target image is done

using the contextual loss [19].

Adversarial loss generate realistic samples by preserving

the distribution of image patches [22]. Contextual loss en-

hances the structural similarity of the objects in the output

image [18]. The reconstruction loss ensures the preserva-

tion of global image features in the target image.

Image resizing using DSR and SR are both naturally oc-

curring. We corrupt the input image to a high degree to

observe the quality of image features captured in DIP [26]

and CFL [19]. We show that DCIL generates reconstruction

that is comparable to that of the other relevant unsupervised

frameworks (Sec. 4.1). Mechrez et al. have shown that CFL

exhibits natural internal statistics for SR [18]. We illustrate

the performance of CFL in the training data-independent

setup for SR task (Sec. 4.2).

DCIL performs image retargeting by changing the size

and the shape of the generator output. The target image

is subjected to preserve the distribution of image patches.

Adversarial loss and contextual loss are well suited for the

above task. More specifically, the contextual feature learn-

ing with the internal patch distribution learning (InGAN) is

observed to preserve good object statistics for image retar-

geting task (Sec. 4.3).

The key contributions of the paper are as follows.

1. We propose a generalized framework (DCIL) for image

resize in various scenarios by coupling an internal learn-

ing scheme in a novel unsupervised contextual feature

learning framework (Sec. 3 and Table 2).

2. We verify effectiveness of DCIL by extensive experimen-

tation for DSR, SR, and image retargeting tasks (Sec. 4).

3. To the best of our knowledge, we are the first to study

CFL in an unsupervised framework for DSR task (Ta-

ble 1).

4. DCIL preserves the object structure and alignment in the

image retargeting output (Fig. 6 and Fig. 5). We also give

ablation studies for understanding various aspects of the

loss functions (Sec. 5).
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Figure 1: Deep Contextual Internal Learning (DCIL). The figure shows the pictorial representation of the DCIL framework

for image retargeting. It contains a generator G that takes an input image x of size (h,w) and outputs an image y of a different

size using the scaling factors (sh, sw). The output of the generator y = G(x, sh, sw) is fed into the discriminator D and feature

extractor pre-trained V GG19 network [25]. The same framework is used for image restoration where the definitions of the

loss functions is different. The idea here is to create the generator and discriminator using network construction module and

then iteratively minimize the loss functions (we describe various entities of the pictorial representation above in Sec. 3).

Figure 2: Network Construction. The figure illustrate var-

ious network components needed for the construction of the

network F , defined in Eq. 1 and Sec. 3.1. φi denotes the net-

work layers. skip(φi, φj) denote the link between ith and

jth layer. cascade(x, φi) denotes the cascading of input x

at ith layer. Similarly, k residual blocks are shown. The

network description is F = (Φ,S, C,R) (Eq. 1, Eq. 2, and

Eq. 3).

2. Related work

Our approach is related to the training data-independent

CNN based methods. We bridge the gap between vari-

ous unsupervised methods proposed to minimize the use

of training samples such as deep image prior [26], contex-

tual learning [18], and internal learning [21, 22]. Unlike

the classical image prior [1, 10, 12], the deep prior learning

[26] shows that hand-crafted structure of the network work

as a prior to capture good image statistics for various image

restoration tasks. Zero-shot learning uses the internal recur-

rence of information inside a single image to collect various

image specific statistics for super-resolution [23]. InGAN

uses multi-scale patch discriminator for learning the patch

distribution from the source image [21, 22]. DCIL gets net-

work structure insight from [17]. The construction of DCIL

loss is related to [26, 18, 21].

3. Deep Contextual Internal Learning

DCIL uses image-conditional GAN to map the input

image (as opposed to noise) to a different size target image.

It performs the image restoration and retargeting without

using training data-set. Fig. 1 shows how the major parts

of the DCIL framework (highlighted in red) are connected.

We describe how these components are related as follows.

Overview. Given a source image x, the objective is to out-

put a target image y from the target distribution Y . The

learning procedure is unsupervised and only uses informa-

tion from the source x. The image in the target domain is of

different size than that of y (image resizing). For example,

in Denoising-Super-Resolution (DSR), the source image x

is a low resolution noisy image and the target domain Y is

a set of high-resolution clean image (image restoration).

DCIL constructs generator G and discriminator D using

the network components described in Sec. 3.1. The network

parameters are randomly initialized. The source image x is

fed to the generator G(·, sh, sw), where sh and sw are the

scaling factors for height and width. Next, we iteratively

minimize the total loss (Eq. 6) computed between the gen-

erator output y = G(x, sh, sw) (i.e., target image) and input

source image x. The total loss consists of contextual loss

LCL for contextual feature learning, adversarial loss LGAN

for internal patch distribution learning, and reconstruction
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loss LR for global features learning. We describe these ma-

jor parts of the DCIL below.

3.1. Network Construction

We simplify the network construction based on the ma-

jor components and abstract out network layer specific de-

tails. The structure of the network influences the quality

of the image features captured. More specifically, the net-

work structure itself works as a prior in the training data-

independent methods [26]. Therefore, the purpose of this

component is to provide more modularity and a degree of

freedom for the DCIL framework.

Consider a network F which could be a generator or a

discriminator. The formal description of network F is given

in Eq. 1.

F = (Φ,S, C,R) (1)

Here, φ denotes the set of network layers, S denotes the

configurations of the skip connections, C denotes the set of

layers for which the cascading of the network inputs is per-

formed, and R denotes the residual blocks. We discuss the

major network components given in Eq. 1 as follows.

• Network Layers (Φ). The network layers store image

representations. Given a network F with depth N , let

Φ = {φl}
N
l=1

be the set of layers present in the network.

Here, φi could be a convolution layer, an activation layer,

or a batch normalization layer.

• Skip connections (S). The skip link between the layers

φi and φj , where i < j, is made by concatenating the

output of the layer φj−1 with the output of the layer φi

and then feeding into the layer φj . Let skip(φi, φj) =
conv(conv(φi)‖φj−1) denote the skip link between the

layers φi and φj . The set of skip connections of F is

given in Eq. 2.

S = {skip(φi, φj) : φi, φj ∈ φ; i < j} (2)

To simplify the network description, let us denote S by

the set of tuples where each tuple contains the network

layer identifier for the skip connection. For example, S =
{(1, N), (2, N − 1)} denotes the two skip connections,

skip(φ1, φN ) and skip(φ2, φN−1).

• Cascading of network input (C). It is a procedure to suc-

cessively resize the network input x and then feed it into

the intermediate layer φi of the network. We have not

used cascading of network input in DCIL as it was shown

to not significantly improve the performace [17]. We de-

note this by {} in the network description for complete-

ness. We have described it more in the supplementary

material.

• Residual Block (R). The residual learning framework

helps in training higher depth networks while prevent-

ing the vanishing gradients problem [13]. It adds the

output of two convolution layers b blocks apart. Let

residual(φl, b) = add(conv(φl+b), φl) denotes the output

residual block {φi}
l+b
i=l+1

of length b. The set of residual

blocks R of F is defined in Eq. 3.

R = {residual(φl, b) : φl ∈ Φ, b ∈ [N ]} (3)

To simplify the description, let us denote R = [k], where

k is the number of residual blocks.

Generator. Fig. 2 shows an example construction of the

generator G : X → Y to show the four-tuple network de-

scription. It is an encoder-decoder network which maps the

given source image x to the target image y = G(x, sh, sw),
x ∼ X and y ∼ Y . The network description of the genera-

tor G = (Φ,S, C,R) based on Eq. 1 is defined in Eq. 4.

G =
(

{φl}
N
l=1, {(i, N − i)}

N

2
−1

i=2
, {}, [k]

)

(4)

Here, Φ = {φl}
N
l=1

is the set of network layers. We

have defined network components S and R in Eq. 2 and

Eq. 3. {} denotes that cascading of the network input is

not performed. We use network configurations defined in

Eq. 11 and Eq. 13 for our experiments.

Discriminator. It maps the generated image G(x) ∈ Y to

a patch discriminator m ∈ M , where each entry in m de-

notes the probability of a patch coming from the patch dis-

tribution of the natural image, i.e., D : Y → M . We define

discriminator as D(z) =
∑4

i=1
wiD

i(z). Here, each Di is

a convolution patch discriminator which outputs a map con-

taining the scores of the image patches to be real. And there

are four discriminators. The description of discriminator Di

is given in Eq. 5.

Di =
(

{dil}
4
l=1, {}, {}, {}

)

(5)

Here, Di is a CNN with 4-layers. The empty set {} denote

the absence of the network component. Therefore, Di does

not have skip links, no residual blocks, and no cascading of

network input. The multiscale discriminator D matches the

patch distribution over a range of patch sizes capturing both

the fine-grained details as well as the coarse structures in

the image [21] 1.

3.2. Loss Function

Given the source image x, the objective is to generate

the target image G(x) = y from the target domain Y . Total

loss function L minimizes the difference in features of the

source image and the target image at different feature repre-

sentations: pixel-to-pixel comparison (reconstruction loss

1In the supplementary material, we provide more details on the gener-

ator and the discriminator network.
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LR), context vectors comparison (contextual loss LCL),

and patch-based comparison (adversarial loss LGAN ). The

total loss function L is described in Eq. 6.

L = λC LCL(G(x), x) + λG LGAN (G,D, x, y)

+λR LR(G,D, x, y)
(6)

Here, G and D are both CNN described in Sec. 3.1. The

terms λC , λG , and λR are the coefficients of the loss func-

tions.

The intuition behind loss in Eq. 6 is that minimizing

feature differences at different image representations could

help in maximizing the image feature learning from the

source image. LCL compares context vectors to make

the distribution of the generator output to be contextually

similar to the distribution of the natural images [19]. LGAN

is aimed to output distribution of the image patches, which

is indistinguishable from the patch distribution of the nat-

ural images. LR performs the pixel-to-pixel comparisons

between the source image and the target image or an inverse

mapping of the target image. It ensures that we do not miss

any of the object details in the generator output image. We

now describe the loss terms used in Eq. 6 for completeness.

Contextual loss (LCL). It is used to enhance the contextual

features in the reconstruction. The set of context vectors are

obtained by feeding image x and y into pre-trained VGG19

φ [25]. In Fig. 1, we have pictorially shown context vec-

tors as the output of VGG19. Let φl(x) and φl(y) denote

the feature extracted from layer l of the network φ. The

contextual loss is defined in Eq. 7.

LCL(x, y, l) = − logCX(φl(x), φl(y)) (7)

Here, CX denotes the contextual similarity measure.

It is computed by considering cosine distance between

the context vectors extracted from the network φ [19].

Eq. 7 minimizes dissimilarities between the contex-

tual feature computed from the source image x and the

target image y. CX is normalized and lies in the range [0, 1].

Adversarial loss (LGAN ). The purpose of adversarial

learning is to synthesize new image features in the output

image from the patch distribution of the natural images.

It is a sum of the generator loss LG and the discriminator

loss LD. The generator G and the discriminator D are both

CNN. The generator loss LG and the discriminator loss LD

are used for distribution matching. G generates the desired

image. D tries to distinguish the output of G and the source

image. Therefore, the generator learns the patch distribution

through the interaction with the discriminator. We show the

adversarial loss in Eq. 8.

LGAN (G,D, x, y) = LG(x) + LD(x, y) (8)

CL [18] DIP [26] DCIL (ours)

BSD100 0.60 0.62 0.63

SET14 0.62 0.66 0.67

SET5 0.64 0.66 0.66

Table 1: 2×Denoising-Super-Resolution. Performance

comparision (SSIM) for 2×SR where low resolution image

contains noise with strength σ = 100.

Here, G outputs the target image G(x) = y. The fea-

ture learning in the adversarial framework could suffer

from mode collapse [3, 4]. The use of multi-scale dis-

criminator prevents it by maximizing feature learning

by comparing the reconstruction at multiple scales [21].

We have described the multi-scale discriminator in Sec. 3.1.

Reconstruction loss (LR). It is used to maximize the like-

lihood of randomly initialized network weights. One could

define a spatial correspondence in the case of image restora-

tion [26]. However for image retargeting, reconstruction

loss in a cycle consistent approach performs well as the gen-

erator output does not have spatial correspondence with the

source image [21]. Therefore, the two different ways of

computation of reconstruction loss are as follows.

LR for image restoration is computed between the gen-

erator output G(x) and the source image x, as in Eq. 9.

LR(G, sh, sw, x, y) = ‖G(x, sh, sw)− x)‖ (9)

LR for image retargeting is computed between the source

image x and the inverse mapping of the generator output

G(y), where y = G(x, sh, sw), as in Eq. 10.

LR(G, sh, sw, x, y) = ‖G(y,
1

sh
,
1

sw
)− x)‖ (10)

4. Applications

In this section, we describe image resizing in two dif-

ferent setups. The first setup is image restoration problems.

There are two ways for it. DSR where the low-resolution in-

put contains noise. SR where the low-resolution input does

not contain noise. The second setup for image resizing is

content-aware image retargeting. We describe these appli-

cations below.

4.1. Denoising­Super­Resolution.

DSR makes the image resize operation challenging as

one has to perform two tasks - image denoising and image

super-resolution. The description of the generator network

for DSR is given in Eq. 11.

G1 =
(

{Gl}
10
l=1, {(i, 10− i)}4i=2, {}, {}

)

(11)

Here, {Gl}
10
l=1

is the depth-5 encoder-decoder network

where {Gl}
5
l=1

are the layers of encoder and {Gl}
10
l=6

are
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(a) HR image (b) Corrupted image (c) CL [18] (d) DIP [26] (e) DCIL (Ours)

Figure 3: 2×Denoising-Super-Resolution. The corrupted low resolution images contain noise with strength σ = 100. CL

[18] and DIP [26] create noisy spots in the image restoration output. DCIL (ours) output clean images compared to CL [18],

DIP [26] (see the cropped images below the figures).

(a) HR

image

(b) LR

image

(c) DIP [26]

(0.88, 28.2)

(d) DCIL

(0.88, 24.55)

Figure 4: 4× SR comparison for (SSIM, PSNR) values.

DCIL output image is comparable to DIP [26] (the images

are best viewed after zooming). It could be observed that

a higher PSNR value does not imply a higher perceptual

quality [17].

the layers of decoder. There are skip connections from en-

coder layers to the decoder layer in G1. The cascading of

the network input is not performed and there are no residual

blocks. Encoder-decoder architecture contermeasures the

mode collapse and improves stability [21].

Given low-resolution noisy image Î , the loss function for

DSR is defined in Eq. 12.

L1 = λC LCL(G1(x), y) + λG1
LGAN (G1,D, Î, x)

+λR ‖G1(x)− Ut(Î))‖+λTV ‖TV (G1(x))‖
(12)

Here, D is similar to the one defined in Eq. 5. Ut(·) is the

up-sampling operator with the scaling factor as t. λTV is the

coefficient of the Total variation (TV) regularization. TV

norm in Eq. 12 reduces the noise from the corrupted image2.

We have discussed the loss terms of Eq.12 in Sec. 3.2.

2Total variation is a sum of the absolute differences of neighboring

pixel values in the input image. It measures the noise in the image.

The adversarial loss LGAN uses the multi-scale patch

discriminator to learn the image features at different reso-

lutions. Intuitively, it utilizes the patch replication across

multiple scales to augment feature learning. The contex-

tual loss LCL improvises feature learning at the scale of the

target image using context vectors. The reconstruction loss

‖G1(x)−Ut(Î))‖ provides the global features in the result-

ing output.

In Table 1, we give quantitative comparisons for DSR.

The aim is to perform 2×SR with denoising, where noise

strength is σ = 100. The visual comparison for the gener-

ated images is provided in Fig. 3. One could observe that we

outperform the state-of-the-art methods which we compare

with3.

4.2. Super­Resolution.

CNN based SR has been studied in two ways. First,

we can use pixel-to-pixel loss, which leads to high PSNR

at the price of low perceptual quality [31, 7]. Second, we

can use feature space loss or an adversarial loss to achieve

higher perceptual quality [16, 15]. CL combines the two

training data based approaches above to generate natural-

looking images, with good structural similarity [18].

The generator and the discriminator for SR are similar to

the ones used in DSR. The loss function for SR is similar

to DSR given in Eq. 12 but without TV norm as there is no

noise in the input images.

3We use original implementation of contextual loss (github.

com/roimehrez/contextualLoss) and DIP (github.com/

DmitryUlyanov/deep-image-prior). We generated DIP output

images using the default hyper-parameters [26].
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Figure 5: Image Retargeting (Object Structure). The size of the local objects (e.g., fruits and man) confirms the preserva-

tion of object structure in the image retargeting output. SC [5] does not preserve the structure of the objects (e.g., the man in

the 8th column is deformed). DCIL (ours) preserve the structure of the objects by adding new objects or removing objects.

Figure 6: Image Retargeting (Object Alignment). The

line-shaped clouds (contrails) produced by aircraft confirms

the preservation of the object alignment in the image retar-

geting output. SC [5] does not preserve the alignment of the

objects. DCIL (ours) preserves the alignment of the con-

trails when increasing height and when increasing width.

We perform 4×SR on BSD100 data set. Fig. 4 shows

the perceptual quality comparison for 4×SR. The average

SSIM scores on BSD100 dataset are as follows. Mechrez

et al. [18]: 0.64, ZSSR [23]: 0.72, DIP [26]: 0.79, and our

DCIL: 0.76. We found that MSE based methods capture

strong prior for SR compared to the contextual loss and ad-

versarial loss-based frameworks, which is counter-intuitive

[26]. We confirm this by the following results (our run) 4.

For Set-5, the score are, Mechrez et al. [18]: 0.86, ZSSR

[23]: 0.87, DIP [26]: 0.90, and our DCIL: 0.87. For Set-14,

Mechrez et al. [18]: 0.78, ZSSR [23]: 0.76, DIP [26]: 0.81,

and our DCIL: 0.79. Our interpretation of this phenomenon

is as follows. Pixel-to-pixel comparison is converging to

better optima in SR. However, in the case of DSR, a pixel-

to-pixel comparison could be over-learning noise with fea-

tures (Table 1). We believe that the performance of DIP and

DCIL could probably be further improvised using hyper-

parameter search.

4.3. Image Retargeting.

It is a content-aware image resizing operation which

aims to output image with a different size, smaller or larger,

and with a different aspect ratio. Image retargeting is per-

4For BSD100, we have used SSIM values provided in [18]. For Set-5

and Set-14 dataset, we have used unsupervised implementation of [18] for

a fair comparison. SSIM values for [26] is computed by our run.

(a) HR image (b) Corrupted (c) GnoSkip (d) Gskip

Figure 7: Ablation Study. 2×Denoising-Super-Resolution

with noise value σ = 100. The network with skip con-

nections Gskip performed better than the network without

skip connections GnoSkip. The above experiment study skip

connections for multiple corruptions, unlike [26, 17] (the

images are best viewed after zooming).

(a) Input (b) SC [5] (c) InGAN [22] (d) DCIL

Figure 8: Failure Example. The aim is to preserve the

object context when performing image retargeting. SC [5]

deforms the object (i.e., man). InGAN does not partition the

object well [22]. DCIL partition the object, but the image

feature of the elbow is not well-formed (the images are best

viewed after zooming).

formed in various ways. There are methods which are

aimed to preserve only the salient objects and discard-

ing/extending the object background (e.g., [8, 28]). Other

methods (e.g., [21, 22, 24] ) including our DCIL preserve

the local sizes/aspect-ratios of the local objects while resiz-

ing the image. The replication/reduction of the objects is

desired to fill the scene with similar image features.

Suppose input image x is of size (h,w). The scaling

factors sh and sw are used as the input for retargeting.

The retargeting objective is to output image y with the size

(shh, sww). The description of the generator network for

image retargeting is given in Eq. 13.

G3 =
(

{Gl}
10
l=1, {(i, 10− i)}4i=2, {}, {6}

)

(13)

Here, {Gl}
10
l=1

are the layers of the depth-5 encoder-

decoder network. The network is equipped with skip con-
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nections from the layers of the encoder to the layers of the

decoder. There are six residual blocks. The discriminator

network is similar to the one defined in the Eq. 5.

The loss function for image retargeting is given in Eq. 14.

L3 = λC LCL(G3(x), y)+λGAN LGAN (G3,D, x, y)

+ λR ‖G3(G3(x))− y‖

(14)

Here, λC , λGAN , and λR are the scaling factors. The adver-

sarial loss LGAN and the contextual loss LCL both matches

the distribution of image patch of the source image and the

target images. Distribution matching is the essential re-

quirement for image retargeting [21]. Also, they both work

for the non-aligned image data of the source and the target

images, unlike DIP [26].

We compute an automorphism as the cycle consistency

check to preserve all the object details in the synthesized

output [21]. The automorphism retargets the generator out-

put back to its source domain. Then we could perform the

pixel comparison using reconstruction loss. It preserves the

global image features in the retargeted image.

Our DCIL uses contextual learning to preserve the object

features and object alignment in the image retargeting out-

put better than Seam-Carving (SC) [5] as shown in Fig. 5

and Fig. 6. DCIL maximizes the feature learning and per-

forms comparably to InGAN (Fig. 8).

ZSSR [23] CL [18] DIP [26] InGAN [22] DCIL (ours)

DSR ✖ ✔ ✔ ✖ ✔

SR ✔ ✔ ✔ ✔ ✔

Retargeting ✖ ✖ ✖ ✔ ✔

Table 2: The table shows the comparison between various

frameworks. DCIL (ours) is a generalized framework which

performs all the tasks and generates images comparable to

the other methods. We provide the extended version of Ta-

ble 2 and the implementation details of DCIL in the supple-

mentary material.

User study. We conducted a user study to evaluate the

image retargeting results. We collected feedback from 58

human experts with a total of 290 votes. Each subject is

asked to vote the perceptually better images constrained to

the preservation of object properties. The percentage of the

votes for SC [5] is 35%. Our DCIL got 65% votes. The user

study shows that DCIL performs good image retargeting.

5. Ablation Study and Limitations

The limitations of the DCIL framework are due to the

lack of contextual understanding by feature learning from a

single image. Fig. 7 shows that the network with skip con-

nection outperforms the network without skip connections.

Therefore, one needs to carefully design an application-

specific network to maximize feature learning [17]. Fig. 8

(a) Image (b) Mask (c) DIP [26] (d) DCIL

Figure 9: Image Inpainting. This shows the results for re-

gion inpainting (the images are best viewed after zooming).

shows that contextual feature learning of DCIL leverages

adversarial learning of InGAN for object partitioning limi-

tations in image retargeting. However, the perceptual qual-

ity in the presence of object replications could be further

improvised.

6. Discussion

DCIL is unsupervised and different from the supervised

methods RCAN [32] and DRLN [2], which use training data

to perform image restoration. DCIL exploits the inherent

self-similarity present in the source image. Ulyanov et al.

have shown that self-similarity prior emerged because of

the convolutional operations tend to impose self-similarity

in the generated images [26]. DCIL incorporates image

prior using the network structure implicitly. Similar to the

DSR, SR, and image retargeting, it could also perform im-

age inpainting (Fig. 9). It is due to the self-similarity prior

captured by DCIL helps to perform inpainting task. The

quality of the deep prior for the various tasks depends upon

the learning procedure. The network initially learns the im-

age feature, but then it tends to over-learn the noise from

the corrupted input [17]. The learning procedure is gener-

ally more tricky when we perform distribution matching us-

ing GAN and CL. However, an exhaustive hyper-parameter

search helped us in the above scenario.

7. Conclusion

DCIL fits a randomly-initialized untrained generator.

The structure of the network and the loss function are the

main tools for unsupervised approaches described in the

paper. We performed image resizing in many challenging

scenarios. The performance depends upon the high corre-

lation between the features of the source and the target im-

ages. For example, in the presence of high corruption due

to noise in the source image, the performance of various

methods degrade. We believe that it would be interesting

to investigate the image statistics captured by DCIL for the

other single image applications, e.g., image inpainting.
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