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may look similar). This phenomenon happens due to the

geometrical distortion caused by hot weather into the in-

put image shown in Figure 1(a). Hence, it becomes neces-

sary for us to ponder upon the problem of adapting seman-

tic segmentation models in such weather variations due to

the change in geographical location. This condition, espe-

cially variations caused by hot weather, is also referred to

as atmospheric turbulence [44] as it affects the atmospheric

parameters such as the refractive index between an object

and a camera. In the remaining paper, we interchangeably

use atmospheric turbulence and hot weather conditions for

convenience. The problem of semantic segmentation model

to generalize for hot weather can be bypassed by collected

data, especially in such weather conditions and training a

model on the collected images. However, collecting and

annotating images for such atmospheric conditions is an ex-

tremely tedious task, which is time consuming and very ex-

pensive.

In this paper, we propose a solution to improve seman-

tic segmentation model performance in hot weather with-

out explicitly creating an annotated dataset. The proposed

framework consists of two networks: Restoration network

and Segmentation network. The restoration network is

specifically intended to minimize the geometrical distortion

caused by atmospheric turbulence in an image. We could

have used existing machine learning methods [24, 37] for

restoring images from atmospheric turbulence. But, these

methods suffer from two significant limitations: (i) none

of the methods works for single image restoration, and (ii)

considerable variation in an atmospheric parameter cannot

be handled by these methods. To overcome these issues, we

train our restoration model on a large scale dataset, having

images with varying atmospheric parameters for better gen-

eralization. At inference time, the trained restoration net-

work can perform single image restoration. The architec-

ture of our restoration network is adapted from the widely

used image-to-image translation network [13]. Addition-

ally, we introduce Channel Attentive Multi-Scale Residual

Block (CA-MSRB), which learns local multi-scale features

along with the inter-dependencies between residual chan-

nels using an attention mechanism.

The restored images obtained from the restoration net-

work are passed to the segmentation network. The segmen-

tation network consists of a DeepLabV3 [2] model, which

is trained on multi-class cross-entropy loss between seg-

mentation colormap of the restored image and ground-truth

segmentation colormap. To make our semantic segmen-

tation model more adaptive to the turbulent environment,

we additionally use CORAL loss [30] between the restored

image segmentation colormap and the non-turbulent image

segmentation colormap got from pre-trained DeepLabV3

model. By using the additional loss, there is further im-

provement in segmentation results, and the domain gap be-

tween restored and non-turbulent segmentation colormap

reduces. Our method shows significant improvement in seg-

mentation results on the Cityscapes dataset, particularly for

small classes (Figure 1) like poles, person, and, rider which

are essential and valuable classes in autonomous navigation.

Our Contributions:

• We propose an adaptive semantic segmentation frame-

work, which shows significant improvement in seg-

mentation accuracy in hot-weather conditions. This

framework bypasses the tedious task of semantic an-

notation on turbulent images.

• We use CORAL loss [30], as an additional loss to

train our semantic segmentation network, which im-

proves the segmentation accuracy and reduces the do-

main gap. Extensive experiments were conducted on

Cityscapes [3] dataset to show improvement in seg-

mentation accuracy, particularly for small classes.

• We proposed a restoration network for removing at-

mospheric turbulence in the images. Further, we also

improve the restoration capabilities of our network on

multi-scale, by introducing CA-MSRB block, which

achieves state-of-the-art performance over the general

image-to-image translation methods.

2. Related Work

Restoration In Atmospheric Turbulence: Removing

the phenomena of atmospheric turbulence from images has

been studied from the past few decades. Initial methods

used adaptive optics [24], which were purely motivated

by optics. These methods required precise experimental

set-up, which was mainly used for astronomical applica-

tions. Lucky imaging [6] was another widely used method

that relied on the probabilistic approach to restore images.

Multi-frame image restoration approaches [1, 43] by Lucky

imaging has also been proposed for enhancing the images

and videos degraded from turbulence by correcting the ge-

ometrical distortion and reducing the blur present in the

images. Frequency-based methods such as Fourier analy-

sis [40] were also used to restore the images.

Recent methods have started using a machine learning

approach to recover images from atmospheric turbulence.

Zhu et al. [44] proposed a restoration method that first sup-

presses the geometrical distortion of each frame by using

B-Spline built on non-rigid registration. After that, an im-

age is generated from the set of registered images by using

a temporal regression process. This regression process can

also be viewed as the convolution of images with space in-

variant near-diffraction-limited blur. At last, the final output

is produced by applying blind deconvolution on the regres-

sion output. However, this approach suffered from a signif-

icant limitation from the use of temporal mean to calculate
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learned weights are used to scale channel features learned

by the 1 × 1 convolutional layer. At last, we perform lo-

cal residual learning by adding input of CA-MSRB block to

the channel attention output, so that the atmospheric distor-

tion learned from the previous layers is effectively is passed

deeper into the network. Figure 3(b) shows the architectural

details of a CA-MSRB.

The output features obtained after all CA-MSRB blocks

are then upsampled by upsampling blocks. The architec-

ture of the upsampling block is similar to downsampling

blocks, instead of the convolutional layer, it uses transpose

convolution to upsample the features. The number of out-

put features decreases from 256 to 32 across the upsampling

block. Finally, we use the output convolutional layer to get

the final warping field, which contains the flow movement

of pixels displaced from its original position due to atmo-

spheric turbulence. The field is warped bi-linearly applied

to the input image to get the restored image. We also add

skip-connection [26] to our restoration network to recover

information lost during downsampling.

Restoration Loss Function: Our restoration network

can be trained only on L1 loss (content loss), however, it

results in overly smooth output images. To overcome this

problem, we train our restoration network by minimizing a

loss function consisting of a linear combination of content

loss, perceptual loss [14], and adversarial loss [8]. Percep-

tual loss is used to add perceptually relevant characteris-

tics into the output image. This loss is calculated by tak-

ing the L1 distance between the restored and non-turbulent

images feature representation of Conv4 3 of VGG16 [28].

Lastly, we add adversarial loss to our loss function, so that,

the output image lies in the natural image manifold. Our

restoration network Gθ is used as the generator for our ad-

versarial training. The architecture of the discriminator is

adopted from DCGAN [25]. Also, we use spectral normal-

ization [22] which stabilizes the training of discriminator

networks. We use least-square loss function [21] in train-

ing the network which results in high-quality output image

generation. The overall loss function of our restoration or

generator network is:

lgen = λ1||I −Gθ(It)||1 + λ2[Dβ(Gθ(It))− 1]2

+ λ3||ψ4,3(I)− ψ4,3(Gθ(It))||1 (1)

where, ψ4,3 is the feature map of VGG16 at Conv4 3 layer

output and λ1, λ2, and λ2 are hyper-parameters that em-

pirically estimated during training the network.The loss for

discriminator is formulated as:

ldisc = [Dβ(Gθ(It))
2 + (Dβ(I)− 1)2] (2)

also, we apply spectral normalization on each layer of dis-

criminator, so that ||Dβ ||Lip ≤ 1.

Method PSNR SSIM MS-SSIM MSE

CycleGAN [42] 22.3450 0.6597 0.9010 203.6862

Pix2Pix [13] 25.1881 0.7934 0.9563 146.6870

UNet [26] 25.9149 0.8042 0.9611 134.6829

Li et al. [18] 26.1525 0.8095 0.9631 131.7664

Ours 26.6137 0.8120 0.9655 125.7047

Table 1: Quantitative comparison of our restoration model

with state-of-the-art image-to-image translation models.

All the models were trained on the Cityscapes dataset. We

can observe that our model outperforms the other general

image-to-image translation models over all the image qual-

ity metrics.

3.2. Segmentation Network

The restored images Iir obtained as output from the

restoration network are passed into Sβ1. The output of Sβ1

network is Ci
r = Sβ1(I

i
r), which is the predicted colormap

of restored image. The parameters β1 of Sβ1 is trained by

using multi-class cross-entropy loss function. Ideally, our

predicted colormap of restored images Ci
r from Sβ1 should

be equal to Ci = Sβ2(I
i), the predicted colormap of non-

turbulent image on pre-trained network. Hence, we use

CORAL [30] as an additional loss function to further min-

imize the gap between Ci
r and Ci. CORAL loss is widely

used in domain adaptation to match the second-order statis-

tics of source and target distribution. In this problem, Ci
r

can be considered as a sample from the source domain and

Ci sample from the target domain. We take natural loga-

rithm of the output of CORAL loss for better stability. The

overall segmentation loss function can be formulated as:

Ls = lcross−entopy(C
i
r, C

i
gt) + γlcoral(C

i
r, Ci) (3)

where, Ci
gt is the ground-truth segmentation colormap of

input image Ii and γ is the hyper-parameter of Ls. For

all our semantic segmentation experimentation, we use

DeepLabV3 [2] as our semantic segmentation network to

get predicted colormap of an image.

4. Experimentation

4.1. Experimental Settings

Dataset: Turbulent images can be simulated by using

computer graphics [10]. But, these methods use high com-

putational power for rendering. So, we use a physics-based

method [27], which efficiently renders turbulent images by

following a few simple 2D operations. We use pixel-level

Cityscapes dataset to create our turbulent dataset, which

was used in the experiments of our proposed framework.

The synthesized dataset consists of 2975 training image

pairs and 500 validation image pairs of turbulent and non-

turbulent image pairs. We follow the evaluation method
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