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Abstract

In semantic video segmentation the goal is to acquire

consistent dense semantic labelling across image frames.

To this end, recent approaches have been reliant on man-

ually arranged operations applied on top of static seman-

tic segmentation networks – with the most prominent build-

ing block being the optical flow able to provide informa-

tion about scene dynamics. Related to that is the line of

research concerned with speeding up static networks by ap-

proximating expensive parts of them with cheaper alterna-

tives, while propagating information from previous frames.

In this work we attempt to come up with generalisation of

those methods, and instead of manually designing contex-

tual blocks that connect per-frame outputs, we propose a

neural architecture search solution, where the choice of op-

erations together with their sequential arrangement are be-

ing predicted by a separate neural network. We showcase

that such generalisation leads to stable and accurate re-

sults across common benchmarks, such as CityScapes and

CamVid datasets. Importantly, the proposed methodology

takes only 2 GPU-days, finds high-performing cells and

does not rely on the expensive optical flow computation.

1. Introduction

Human beings are well-equipped by evolution to quickly

observe changes in dynamic environments. From merely

few seconds of studying an unknown scene, we are able to

coherently map out its main constituents. In contrast, static

semantic segmentation networks would perform poorly in

such conditions, and may as well produce contradictory pre-

dictions across the frames. Therefore, the question arises of

how to make the static models suitable for segmenting con-

tinuously evolving scenes?

One well-known approach would be to use the optical

flow that describes the motion in the scene between adja-

cent frames [10, 34]. The optical flow calculation tends

to be expensive and also comes with several notable dis-

advantages, among which its inability to deal with occlu-

sions and newly appeared objects. Nevertheless, as shown
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Figure 1. Semantic video segmentation approaches tend to com-

prise a dynamic cell that takes as inputs the information from the

previous and current frames, and outputs the segmentation mask.

For example, the dynamic cell can calculate the optical flow [10],

or predict convolutional filters [16]. In this work we use NAS to

discover novel and high-performing dynamic cells.

by Gadde et al. [10], a relatively poor estimate of the opti-

cal flow may still carry significant benefits, not the least of

which lies in computational savings.

Alternatively, one may choose to model which informa-

tion must be propagated across the frames, e.g. with the help

of a recurrent neural network with memory units [22]. Even

more biologically plausible are the models that compute dif-

ferent features at various time-scales [26], in a vein similar

to neural spikes. Naturally, this comes with its own set of

disadvantages, most notably the difficulty of choosing an

appropriate scheduling regime for updating individual parts

of the network.

Yet another complementary line of work focuses on

approximating the expensive per-frame forward pass with

cheaper alternatives: e.g. Li et al. [16] predicted local fil-

ters to be applied on the segmentation prediction from the

previous frame, while Jain et al. [14] used a larger network

for key frames and directly employed a smaller one for con-

secutive frames. Such savings may allow to re-use more

expensive optical flow methods without a significant slow-

down, but the choice of key frames can be crucial and not

readily justifiable.

Looking closely at the aforementioned approaches for

1970



video semantic segmentation, one may notice an easily dis-

cernible pattern: a typical video segmentation network pre-

dicts a labelling of the current frame based on the informa-

tion propagated from the previous one and hidden represen-

tations of the current one (Fig. 1). While seemingly obvi-

ous, it possesses certain variations depending on the goal

– e.g. whether efficiency, or real-time performance is de-

sired. Importantly, what we would like to emphasise here

is that, while technically sound, all the current approaches

have been manually designed and have not considered any

interplay between different building blocks.

Starting from that general pattern we instead propose to

leverage the neural architecture search (NAS) [35] method-

ology to find contextual blocks that enhance the per-frame

segmentation network with dynamic components. This mo-

tivation is justified by recent results achieved using NAS on

such tasks as image classification [36, 18], language mod-

elling [23] and static semantic segmentation [5, 20], that of-

tentimes outperform manually designed networks. We build

upon those results and adapt current approaches in a way

suitable for handling the dynamic nature of dense per-pixel

classification. To the best of our knowledge, we are the first

to consider the application of NAS to the task of video se-

mantic segmentation.

Our automated approach comes with certain benefits,

concretely:

i.) it considers a larger span of initial building blocks than

any previous work,

ii.) it empirically evaluates different design structures and

finds most promising ones, and

iii.) it requires only few GPU-days to find a set of high-

performing structures.

Furthermore, although we do not consider it in this work,

the proposed methodology can further be extended to

take into account different specific objectives (even non-

differentiable), such as runtime [27].

2. Related Work

2.1. Static semantic segmentation

Most recent approaches in static semantic segmenta-

tion have been exploiting fully convolutional neural net-

works [19]. Typical methods are based either on the

encoder-decoder structure with skip-connections [19, 17],

dilated convolutional layers [30, 32, 6], or the combina-

tion of the above [7]. Per-frame instantiations of these net-

works are usually computationally expensive, hence, sev-

eral works have considered building light-weight segmen-

tation architectures [31, 21]. Nevertheless, due to the lack

of information propagation between frames, these networks

perform poorly on videos and are unable to provide consis-

tent results.

2.2. Dynamic semantic segmentation

One of the first lines of work in video segmentation

has been built upon the usage of the optical flow [34], in

which features extracted from the previous frame are prop-

agated to the current one via warping. This usually results

in a slight computational overhead, although as noted by

Gadde et al. [10] an easily attainable noisy estimate of the

optical flow still carries significant benefits. Nevertheless,

the optical flow does not fair well in situations when scenes

are undergoing substantial changes with novel objects con-

stantly appearing and multiple occlusions being present.

Thus, Jain et al. [14] have proposed to combine the opti-

cal flow estimate with a relatively cheaper approximation

of the current frame using a smaller network. Xu et al. [28]

have chosen to assign different image regions to two dif-

ferent networks to process: while the first one – deep and

slow – works on regions that have significantly changed,

the second one – shallow – predicts new features based on

the optical flow information. In a similar vein, Nilsson and

Sminchisescu [22] have propagated labels from the previous

frame at only those pixels where the optical flow estimate is

reliable.

A seemingly different approach, proposed by Li et

al. [16], instead predicts local convolutional kernels based

on the low-level representation of the current frame that

are applied on the prediction from the previous frame. Im-

portantly, while the current estimate is being used for next

frame, a more accurate one is being computed in parallel for

future re-use.

In yet another line of work, Chandra et al. [3] have

adapted Deep Gaussian Random Field [4] to handle tempo-

ral information by predicting besides unary and spatial pair-

wise terms also temporal pairwise terms, efficiently propa-

gating features between frames.

2.3. Neural Architecture Search

NAS methods aim to find high-performing architectures

in an automated way. Here, we consider the reinforcement

learning-based (RL) approach [35], where a separate recur-

rent neural network (controller) outputs a sequence of to-

kens describing an architecture that should provide highest

score on the holdout validation set.

While there is no prior work on NAS for video segmen-

tation, two results in static segmentation are worth mention-

ing: Chen et al. [5] used a random search to find a single set

of operations (so-called ‘cell’) on the top of the DeepLab

architecture [6], while Nekrasov et al. [20] exploited RL

to find a cell together with the topological structure of the

encoder-decoder type of architecture. We borrow one of the

architectures found by Nekrasov et al. as our static base-

line, and extend their NAS approach for video segmenta-

tion. Since we are only searching for the dynamic com-

ponent that connects different instantiations of the already
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Figure 2. Network structure of arch2 from [20]. ‘gap’ stands for

global average pooling.

pre-trained static segmentation network, we are able to train

and evaluate each candidate in a short amount of time, the

trait that is extremely important for all NAS methods.

3. Methodology

As noted in introduction and depicted in Fig. 1, we at-

tempt to generalise previous solutions for video semantic

segmentation in such a way that NAS methods become

readily applicable. To this end, we look for a single cell

that connects representations from the previous frame and

enhances current predictions without a significant over-

head. What follows is the description of the input space

(Sect. 3.1), the search space (Sect. 3.2), and the search ap-

proach (Sect. 3.3).

3.1. Input space

We consider the arch2 network from the work of

Nekrasov et al. [20]. It is an encoder-decoder type of the

segmentation network with the encoder being a light-weight

classifier (MobileNet-v2 [24]), and the decoder being an au-

tomatically discovered structure presented in Fig. 2. This

architecture strikes a fine balance between accuracy and

runtime, both being important characteristics for semantic

video segmentation. Here it should be noted that the appli-

cation of our methodology is not directly tied to a concrete

architecture and can be easily adapted to work with other

networks.

In the proposed setup, the static network is applied

end-to-end on the first frame and three outputs are being

recorded: an intermediate representation - in this case, the

encoder’s output with the resolution of 1

32
of the input im-

age (layer 4), the decoder’s output before (dec) and after

the final classifier (pred) - both with resolutions of 1

8
of

the input image and with 64 and C numbers of channels,

correspondingly, where C is the number of output classes.

For the second frame, we record three outputs from the en-

coder only - two intermediate ones with the resolutions of
1

8
(layer 2) and 1

16
(layer 3), respectively, and the final one

with the resolution of 1

32
(layer 4).

We rely on the dynamic cell, the layout of which will

be described below, to predict the semantic labelling of the

current frame given 5 inputs: layer 4 and dec from the

previous frame (layer 4−prev and dec−prev, correspond-

ingly), and layers 2−3−4 from the current one. This way,

we do not have to execute the decoder part of the static seg-

mentation network on the current frame (thus decreasing la-

tency), at the same time re-using information from the pre-

vious frame. Note also that the output of the dynamic cell

can serve as the input dec for the next frame.

3.2. Search space

We rely on an LSTM-based controller to predict a se-

quence of operations together with locations where they

should be applied in order to form a dynamic cell [20]. Con-

cretely, we first choose two layers out of the provided five

(with replacement), two corresponding operations that need

to be applied on each of them, and an aggregation operation

that combines two inputs into a single output. On the next

step, we repeat this process, but now we are sampling two

layers out of six possible, with the aggregated result being

added into the sampling pool. This process can be repeated

multiple times, with the final output being formed by the

concatenation of all non-sampled aggregated results.

We rely on a similar set of operations as for static seg-

mentation (Table 1), and in order to enable the dynamic cell

to apply convolutional filters on irregular grids, we also in-

clude deformable 3× 3 convolution [33].

ID Description

0 separable conv 3× 3

1 global average pooling followed by upsampling and

conv 1× 1

2 separable conv 3× 3 with dilation rate 3

3 separable conv 5× 5 with dilation rate 6

4 skip-connection

5 deformable 3× 3 convolution

Table 1. Description of operations used in the search process.

While Nekrasov et al. [20] simply summed up two differ-

ent inputs at each step, here to compensate for the dynamic

nature of our problem we consider a set of aggregation op-

erations given in Table 2.

Based on the previous works, we conjecture that this set

of operations will be sufficient for the task of video segmen-

tation, and we provide experimental results to support this

claim. Please see the full code definitions of each operation

in the supplementary material.

3.3. Finding optimal architectures

We assume that there exists a video dataset that comes

with segmentation annotations for at least a subset of con-

secutive frames. From it, we build pairs (or triplets) of
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ID Description

0 summation with per-channel learnable weights per

each input

1 channel-wise concatenation of two inputs followed by

conv 1 × 1 to reduce the number of channels to the

original size

2 (weight) predictive operation, where the first input be-

comes a set of spatial convolutional filters (weights)

applied on the second one

3 bilinear sampling of the first input, where an affine

grid is predicted based on the values of the second

input [13]

4 3D-convolution where two inputs are stacked together

forming a new dimension with 2× 3× 3 convolution

applied on top

5 dense attention: i.e. element-wise multiplication be-

tween the first input and the sigmoid-activated second

one

Table 2. Description of aggregation operations used in the search

process.

frames such that in each sequence all the frames follow-

ing the first one are always annotated. As commonly done,

we further divide this set into two disjoint parts – meta-train

and meta-val. We further assume an existence of the static

segmentation network pre-trained on this dataset1 – in par-

ticular, arch2 from [20]. As mentioned above, we chose

this particular architecture due to its compactness and low

latency.

The controller samples a structure of the dynamic cell

which we train on the meta-train set and evaluate on meta-

val. As done in [20], we consider the geometric mean of

three metrics as the validation score: mean intersection-

over-union (mIoU), frequency-weighted IoU (fwIoU) and

mean-pixel accuracy (mAcc). This score is used by the con-

troller to update its weights, and the process is repeated

multiple times. After that, one can either sample several

cells from the trained controller, or simply choose best

found cells that achieved highest results during the search

process.

4. Experiments

We conduct all our experiments on two popular video

segmentation benchmark datasets – CamVid [2] and

CityScapes [8].

The first one, CamVid, comprises 701 RGB images of

resolution 480×360 densely annotated at 1FPS into 11 cat-

egories. Following the previous work [1], we use the dataset

splits of 367 images for training and 233 – for testing. We

train generated architectures with batches of examples each

1Please refer to the supplementary material for the details on pre-

training of static segmentation networks.

comprising 3 consecutive frames -- that is capturing 3 sec-

onds of video.

The CityScapes dataset contains 5000 high-resolution

2048×1024 images densely labelled with 19 semantic

classes - 2975 for training, 500 for validation and 1525 for

testing, respectively. In addition to that, raw unannotated

frames extracted from videos captured at the frame rate of

17FPS are also provided. For each annotated example, we

add an image frame that precedes it (i.e. 1/17 seconds in

the past) and train architectures with batches of sequences

of length 2, in which the second frame is always annotated.

In each case, we initialise the decoder’s output dec on

the first frame in the sequence using the pre-trained static

segmentation network, and rely on the dynamic cell at all

following frames for the length of the sequence as described

in Sect. 3.1. To update the dynamic cell weights, we sum

up cross-entropy loss terms at each frame after the first one

and back-propagate the gradients.

For both, search and training, we exploit a single V100

GPU with 32GB of memory.

4.1. Search

For searching we only employ the training splits of

each dataset. We further divide each randomly in 2 non-

overlapping sets – meta-train (90%) and meta-val (10%).

We pre-compute all required outputs from the pre-trained

static network and store them in memory. The static net-

work is kept unchanged during the whole search process.

Each generated architecture is trained on the meta-train split

and evaluated on meta-val. We keep track of average perfor-

mance and apply early stopping halfway through the train-

ing if the generated architecture is un-promising as done

in [20].

Our controller is a two-layer LSTM with 100 hidden

units randomly initialised from uniform distribution [20].

The controller is trained with PPO [25] with the learning

rate of 1e−4. To reduce the size of generated cells, we set

the number of emitted layers (each layer is a string of five

tokens as described in Sect. 3.2) to 5 on CamVid and to 4

on CityScapes.

For CamVid, we train predicted cells on mini-batches of

48 sequences for 20 epochs with the learning rate of 8e−3

and the Adam learning rule [15]. Each image–segmentation

mask pair in the sequence is cropped to 350 with the shorter

side being mean-padded to 550. No transformations are ap-

plied to the validation sequences.

For CityScapes, we train for 10 epochs with 48 se-

quences each cropped to 512×512 with the longer side be-

ing resized to 1024.
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Results

We visualise the progress of each metric together with the

reward signal on each dataset in Fig. 3. Although the re-

wards are not directly comparable between the datasets, the

growth dynamics on both datasets signal that the controller

is able to discover better architectures throughout the search

process across all the metrics.
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Figure 3. Average search metrics on CamVid and CityScapes

datasets.

We further look at the distributions of sampled opera-

tions, aggregation operations and input layers plotted on

Fig. 4. On both datasets, global average pooling and sepa-

rable 5×5 convolution with dilation rate 6 are sampled less

frequently than other operations, potentially indicating that

these layers could be omitted from the search process. On

average, the controller trained on CityScapes prefers sam-

pling deformable convolution (Fig. 4a), while the CamVid

one – separable 3×3 convolution (Fig. 4d).

In terms of aggregation operations, the dynamics be-

tween two controllers vary significantly: the CamVid-based

controller tend to rely on dense attention, while omitting the

predictive operation (Fig. 4e). In contrast, the CityScapes

controller is more likely to apply bilinear sampling on an

affine grid, and to ignore predictive operation together with

dense attention (Fig. 4b).

When sampling the input layers, the controllers behave

similarly: in particular, both tend to skip layer 4 from

the previous and current frames, which also permits com-

putational savings in the encoder. The CityScapes con-

troller extensively uses information from the previous dec
layer (Fig. 4c) (as the difference in frames is very mi-

nor), while the CamVid one – from layer 2 of the current

frame (Fig. 4f).

Importantly, these observations indicate that two con-

trollers trained on two different datasets exhibit various pat-

terns, capturing dataset-specific attributes (such as frame

rate between consecutive frames) in order to discover better

performing architectures.

4.2. End­to­end Training

We further select top-2 performing dynamic cells on

each dataset to train end-to-end on full training sets for

longer.

In particular, for CamVid, we pre-train the dynamic cell

with Adam and the learning rate of 8e−3 for 10 epochs with

the batch size of 16 sequences. Then we decrease the cell’s

learning rate in half, and fine-tune the whole architecture

(i.e., with the per-frame segmentation network) end-to-end

for 100 epochs – the static network weights are updated us-

ing SGD with momentum of 0.9 and the learning rate of

5e−4. Each sample in the batch is cropped to 600×600

with the shorter side being padded to 400.

On CityScapes we pre-train for 200 epochs with the

batch size of 16 sequences and fine-tune end-to-end for 200

epochs. Each example in the batch is cropped to 769×769.

CamVid Results

We provide quantitative results on CamVid in Table 3. The

inclusion of dynamic cells in both cases leads to an im-

provement over baseline by more than 1%. Importantly,

with the exclusion of the first frame in each sequence, we

do not rely on expensive computations involving the static

decoder.

Both our models perform comparably to other state-of-

the-art video segmentation networks even though the back-

bone that we rely on – MobileNet-v2 [24] – is much smaller

in comparison to ResNet-101 [11] exploited by Chandra et

al. [3], or DilatedNet [29] – by Gadde et al. [10] and

GRFP [22]. Furthermore, we did not make any use of

higher-resolution images of 960×720 to further improve

our scores.

Perhaps surprisingly, we found minuscule changes when

removing the dynamic connections between frames in the

discovered architectures. This implies that our approach

was able to find a smaller and better performing static seg-

mentation network, which is not unexpected as the origi-

nal baseline was discovered using a completely different

dataset (i.e. PASCAL VOC [9]). On the other hand, the

lack of dynamism can be explained by significant changes

in consecutive frames in the environment with fast moving

vehicles like cars – remember that adjacent frames are 1

second apart. To confirm this intuition, we conducted an-

other experiment using raw video frames from CamVid: in

particular, we re-trained the first architecture, ‘cell0’, on se-

quences of size 3, where the last frame is annotated and the

first two, 2/30 and 1/30 seconds before the last frame, are
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Figure 4. Average sampling proportion of operations, aggregation operations and input layers on CityScapes (a-c) and CamVid (d-f). Please

refer to Tables 1 and 2 for the description of operations.

not. In this case, we found that the discovered architecture

does exhibit dynamism while still outperforming the static

baseline2.

Method mIoU,% mAcc,% gAcc,% tIoU,%

per-frame baseline 65.3 76.1 90.8 41.4

w/ cell0 66.6 77.6 91.1 42.6

w/ cell1 66.9 78.5 90.1 42.4

GRFP [22] 66.1 - - -

Chandra et al. [3] 67.0 - - -

Gadde et al. [10] 67.1 - - 36.6

Table 3. Quantitative results on the test set of CamVid. Note that

our method uses MobileNet-v2 as the encoder network. For trimap

IoU the width is 3.

2Please refer to the supplementary material for more details on the

CamVid experiment with raw video frames.

CityScapes Results

We include the validation results of two discovered cells on

CityScapes in Table 4. Once again, both dynamic cells are

able to outperform the per-frame baseline by 1.2%. Fur-

thermore, our models achieve favourable results in compar-

ison to other video segmentation methods, all of which em-

ploy significantly larger backbones and, with the exclusion

of Li et al. [16], all rely on the optical flow computation.

Note also that Gadde et al. [10] improved over their re-

spective static baseline by 1.2%, too, while introducing a

non-negligible overhead of 40ms; and Li et al. [16] com-

promised more than 3% of the baseline score in order to

reduce the latency. In contrast, we overcame our static base-

line, while reducing the average per-frame latency (Table 5).

Furthermore, we do witness dynamism in both cells to a

varying extent as evident by a significant drop in perfor-

mance when dynamic connections are removed.
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Method mIoU,% mAcc,% tIoU, %

per-frame baseline 74.4 82.6 40.1

w/ cell23 75.6 84.4 41.5

no dynamism 28.2 39.6 15.5

w/ cell34 75.6 83.7 41.5

no dynamism 44.1 54.4 21.0

GRFP(5) [22] 69.5 - -

Xu et al. [28] 70.4 - -

Li et al. [16] 76.8 - -

Gadde et al. [10] 80.6 - 42.1

Table 4. Comparison with other video segmentation approaches on

the val set of CityScapes. Note that our method uses MobileNet-

v2 as the encoder network. For tIoU, the trimap width is 3. No

dynamism implies that there are no connections between adjacent

frames.

A few inference examples are visualised in Fig. 5. As can

be seen, the dynamic cells enhance the per-frame baseline

results and identify partially occluded vehicles more accu-

rately (rows 1−2, 5), while also avoiding misclassification

of traffic signs at pixels with similar texture patterns (rows

2−4).

4.3. Details of Discovered Architectures

We include characteristics of our networks together with

numbers reported by others in Table 5, assuming that the

dynamic cell is used on all the frames starting from the sec-

ond and does not exhibit a significant drift in quality (we

discuss ways of overcoming it in the final section).

Concretely, all our architectures contain at most 3.4M

parameters while having an average per-frame runtime of

50ms on high-resolution 2048×1024 images. This is possi-

ble due to both the network design and the exclusion of the

optical flow computation.

Method GPU Input Size Param.,M Avg. RT,ms

Baseline 1080Ti 2048×1024 2.85 92.4±0.3

w/ cell0 1080Ti 2048×1024 3.35 51.5±1.8

w/ cell1 1080Ti 2048×1024 3.19 52.6±1.8

w/ cell2 1080Ti 2048×1024 3.24 51.5±1.9

w/ cell3 1080Ti 2048×1024 3.30 50.5±1.9

GRFP [22] TitanX 512×512 > 40 685

Li et al. [16] − 2048×1024 > 40 171

Gadde et al. [10] TitanX 2048×1024 > 60 3040

Table 5. Number of parameters and average runtime (RT) compar-

ison between different models. To compute average runtime with

dynamic cells, we use the baseline on the first frame and the dy-

namic cell on the rest (1000 frames in total). Where possible, we

report same characteristics for other methods.

All the trained cells are visualised in Fig. 6. Notably,

layers with deformable convolution are present in all archi-

3Test results: https://bit.ly/2FrZ8jM
4Test results: https://bit.ly/2HyoVcb

tectures. To propagate information from the previous frame,

each cell exploits the dec output instead of layer 4. All the

cells prefer aggregating outputs via channel-wise concate-

nation with cell0 also relying on dense attention, and cell3

– on affine transformation with bilinear sampling. In ad-

dition, cell1 and cell2 employ 3D convolution in order to

capture information between various inputs.

5. Discussion & Conclusions

It is still an open question of what is the optimal way

of propagating and extracting information across video

frames. While a straightforward solution involving the opti-

cal flow allows to achieve solid results, it possesses several

disadvantages that stem from the limitations of the optical

flow itself and ultimately limit the ability of the network to

adapt to novel frames. Furthermore, computations involv-

ing the optical flow cause a significant overhead, prohibiting

the final system from being deployed in real-time.

In this work, instead of manually enhancing static seg-

mentation networks with dynamic components, we pro-

posed an automatic approach based on neural architecture

search methods. Such automation have multiple benefits

as it explores a large pool of networks and finds best-

performing ones on the given dataset. In a broader sense,

starting from a static per-frame segmentation network, we

showcased a way of generalising existing solutions without

any reliance on the optical flow. More importantly, all pre-

vious solutions in semantic video segmentation tend to add

new temporal blocks that improve accuracy but deteriorate

latency (or vice versa) – in contrast, the designed search

space leads us to models that are better (Tables 3, 4) and

faster (Table 5) than the respective baseline. In particular,

we extended the static baseline with a dynamic cell, the de-

sign of which is automatically discovered with the help of

reinforcement learning. The best discovered cells improve

the baseline by more than 1% at the same time leading to

significant memory and latency savings.

Limitations

While the proposed methodology relies on the static

baseline, we expect that omitting that requirement and

searching for a video segmentation network end-to-end

would further boost the results. Another limitation worth

mentioning is that at present we do not account for a differ-

ence between the pre-classifier output of the dynamic cell

and that of the static one (which serves as the input to the

dynamic cell on the next step). We believe that adding an

appropriate regularisation term (akin to knowledge distilla-

tion [12]) would lead to even better results. Furthermore,

as shown in the CamVid experiments on 1Hz annotations,

the temporal connections might either be not even needed

or might need to be extended further in time, for example,

requiring an external memory storage.
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Image GT Per-Frame w/ cell2 w/ cell3
Figure 5. Inference results on the validation set of CityScapes.
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Figure 6. Visualisation of the discovered cells. Orange blocks represent operations and green blocks represent aggregation operations.

Numbers inside blocks are operation identifiers as in Tables 1 and 2.
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