
Template-Based Automatic Search of Compact Semantic Segmentation

Architectures

Vladimir Nekrasov Chunhua Shen Ian Reid

The University of Adelaide, Australia

E-mail: {vladimir.nekrasov, chunhua.shen, ian.reid}@adelaide.edu.au

Abstract

Automatic search of neural architectures for various vi-

sion and natural language tasks is becoming a prominent

tool as it allows to discover high-performing structures on

any dataset of interest. Nevertheless, on more difficult do-

mains, such as dense per-pixel classification, current auto-

matic approaches are limited in their scope – due to their

strong reliance on existing image classifiers they tend to

search only for a handful of additional layers with discov-

ered architectures still containing a large number of param-

eters. In contrast, in this work we propose a novel solution

able to find light-weight and accurate segmentation archi-

tectures starting from only few blocks of a pre-trained clas-

sification network. To this end, we progressively build up a

methodology that relies on templates of sets of operations,

predicts which template and how many times should be ap-

plied at each step, while also generating the connectivity

structure and downsampling factors. All these decisions are

being made by a recurrent neural network that is rewarded

based on the score of the emitted architecture on the holdout

set and trained using reinforcement learning. One discov-

ered architecture achieves 63.2% mean IoU on CamVid and

67.8% on CityScapes having only 270K parameters.

1. Introduction

While convolutional neural networks (CNNs) keep out-

performing competing approaches on various computer vi-

sion benchmarks, manually designing novel and more ac-

curate (or more compact) architectures is becoming an in-

creasingly challenging task to handle by human experts.

Hence, the recent rise of automatic neural design has turned

it into one of appealing solutions in such areas as image

classification [32], natural language processing [33] and

even semantic segmentation [3]. At its core, the space of

thousands of different architectures is traversed with the

help of either reinforcement learning [32] (Fig. 1a), evo-

lutionary strategies [20] or Bayesian learning [8], before a

set of ‘optimal’ architectures is found.

Controller

Sample

Train

Evaluate

(a) NAS outline

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

ENet

ESPNet

ERFNet

SegNet

FRRN−A

ICNet

BiSeNet−X39

BiSeNet−R18

Dilation8

FCN−8s

PSPNet

DeepLab−v3+

ESPNet−v2

arch0 (ours)

arch1 (ours)

55

60

70

80

0.3 1.0 5.0 10.0 100.0

Number of Parameters, M

M
e
a
n
 I
o
U

, 
%

(b) SOTA comparison

Figure 1. (a) High-level overview of NAS: an architecture is first

sampled from a recurrent neural network, controller, and then

trained on the meta-train set. Finally, the validation score on the

meta-val set is used as the reward signal to train the controller.

(b) Comparison of our networks to other methods2on the test set

of CityScapes [6] with respect to the number of parameters and

mean IoU.

Even for small domains of image classification tasks,

this may require an excessive number of resources. For

larger domains of dense per-pixel tasks (such as seman-

tic segmentation), where the common practice involves an

adaptation of existing image classifiers into fully convolu-

tional networks [13], the neural architecture search (NAS)

2ENet [17], ESPNet [14], ESPNet-v2 [15], SegNet [1], FRRN [19],

ERFNet [21], ICNet [30], FCN-8s [13], Dilation8 [29], BiSeNet [28], PSP-

Net [31], DeepLab-v3+ [5]

1980



methods have been even more limited in their scope. Con-

cretely, recent methods only considered searching for a lim-

ited portion of a network and re-used pre-trained image

classifiers [3, 16], or used continuous relaxation method-

ology that severely restricts the search space [10]. In sit-

uations where the final segmentation network must be ex-

tremely light-weight and compact, the classifier-based solu-

tion does not fare well as the classifier part requires a signif-

icantly larger number of parameters. For example, in the ar-

eas of robotics or medical imaging, existing datasets tend to

comprise only a scarce set of annotations, and, as evident by

recent successes (e.g. U-Net [22]), compact networks may

well be surprisingly sufficient in such domains.

A naive approach of overcoming the aforementioned

limitation may first include the search of compact classifica-

tion networks followed by the search of operations specific

for semantic segmentation. While potentially working, it

would require a significant amount of resources to carry out

two instantiations of NAS, and might be sub-optimal as the

structures found for image classification may still possess

redundant operations that are not necessary for semantic

segmentation. Another way might rely on the direct search

of segmentation architectures end-to-end: reinforcement

learning-based existing methodologies will not fare well

as they would require to make an exceedingly large num-

ber of sequential decisions, while continuous relaxation-

based methods will severely limit the search space and may

not explore enough architectures. Hence we face a diffi-

cult challenge of how to compactly represent the space of

segmentation architectures in a way that is representative

enough and not over-complicated for the search algorithm

to solve.

In our approach, we are motivated by the so-called ‘cell’

(or ‘motif’) strategies [33, 11], where a sequence of opera-

tions is tied together to form a template. Starting from a tiny

stem of a pre-trained classifier, the search algorithm gener-

ates several such templates together with the full structure

of the segmentation network. At each decision step, it pre-

dicts two locations of layers to be used in a template, the

template number, the number of repetitions that the tem-

plate will be used for and the downsampling factor (stride)

of the first operations in the template.

As we show in the experimental part, such an approach

leads to flexible representations of end-to-end architectures

for semantic segmentation. We search on CityScapes [6],

and train best discovered architectures both on it and an-

other common benchmark, CamVid [2]. Our smallest

model with only 270K parameters achieves 67.8% and

63.2% mean IoU, on CityScapes and CamVid, respectively,

which compares favourably to other methods (Fig. 1b). It

must also be noted that our methodology requires only 2
GPUs to carry out the search process.

In conclusion to this introduction, we re-iterate that our

first and foremost contribution is to showcase a simple

method for searching semantic segmentation architectures

with a limited reliance on only few layers of a pre-trained

image classifier. We methodically build up our solution and

approach the issues defined above in the following sections.

2. Related Work

Semantic Segmentation

In semantic segmentation the goal is to come up with

a per-pixel semantic labelling of the given image. Over

the last years, most prominent approaches have been built

upon fully convolutional networks [13], where image clas-

sifier’s fully-connected layers are being converted into con-

volutional ones. Important and task-specific design choices

include skip-connections [13], dilated convolutions [4] and

contextual blocks [4, 9, 31] – all of which tend to improve

semantic segmentation results.

Recently, several manually designed segmentation ar-

chitectures have emerged that achieved highly accurate re-

sults across common benchmarks with compact networks.

In particular, Romera et al. [21] altered the popular resid-

ual block [7] by replacing 3×3 convolutions in it with fac-

torised counterparts – i.e. 3×1 and 1×3 convolutions. On

the test set of CityScapes [6] their model, ERFNet, achieved

69.7% mean IoU having 2.1M parameters. Guided by the

same principle of efficiently and effectively enlarging the

receptive field size, Mehta et al. [14] replaced a convolu-

tional layer with a hierarchical pyramid of point-wise and

dilated convolutions. On the same benchmark, the proposed

approach, ESPNet, showed 60.3% mean IoU with only

0.4M parameters. Later, Mehta et al. [15] made ESPNet

even more efficient by exploiting separable convolutions

– ESPNet-v2 with 0.7M parameters attained 62.1% mean

IoU. The authors of BiSeNet [28] relied on two paths in-

stead: one that keeps the spatial information intact, and one

contextual with aggressive downsampling strategy. Two

paths are merged by a specifically designed fusion mod-

ule with per-channel attention. Their model obtained 71.4%
mean IoU with 5.8M parameters.

While these manually designed approaches do show

promising performance, coming up with even better mod-

els is becoming extremely challenging for human experts.

In contrast, our solution is automatic and able to find high-

performing compact architectures.

NAS background

We rely on NAS using reinforcement learning (RL) [33],

where a recurrent neural network (‘controller’) sequentially

outputs actions that when fused together fully define an ar-

chitecture. The emitted architecture is then trained on the

task of interest, and its validation score is sent back to the

controller as a reward signal. The controller is trained with

1981



proximal policy optimisation (PPO) [25] to maximise the

average reward of emitted architectures.

The first NAS works in image classification [32] emit-

ted a full description of the layers to use – for example,

the number of input / output channels, kernel sizes, strides,

etc. Exploring the space with all those decisions required

excessive resources, hence, an alternative solution was pro-

posed, where the search algorithm is tasked with discover-

ing only two sets of operations – so-called, reduction and

normal cells [33], that are stacked and arranged in blocks

to form the final network. Naturally, this limits the search

space but tends to work well in practice. In a similar vein,

Liu et al. [11] defined so-called motifs that are used inside

an evolutionary search algorithm and undergo mutations de-

pending on their fitness scores. To speed-up the search pro-

cess and reduce the overload, several methods considered to

instantiate all possible architectures beforehand and either

choose the single path with RL [18] or perform weighted av-

erage with continuous relaxation [12]. Inherently, this line

of work considers only a limited set of architectures and is

able to explore only the paths pre-defined in the beginning

of the search process.

NAS approaches for semantic segmentation have fol-

lowed in the footsteps of NAS in image classification –

in particular, Chen et al. [3] searched for a single cell on

top of a fully convolutional classifier, while Nekrasov et

al. [16] searched for the decoder part inside the encoder-

decoder type of the segmentation network. Both methods

extensively rely on existing image classifiers and thus are

limited in the way of describing the search space. Besides,

even though in [16] the goal is to find compact segmenta-

tion networks, their lower bound in terms of efficiency is

already pre-defined by the choice of a classifier. In contrast,

our search setup allows to discover extremely tiny networks

without relying on expensive tricks such as knowledge dis-

tillation and Polyak averaging as in [16]. Furthermore, our

method no longer requires a complete encoder and instead

finds architectures starting only from 60K pre-trained pa-

rameters.

Most recently, Liu et al. [10] also adapted the continuous

learning relaxation for semantic segmentation and achieved

impressive results. As mentioned above, such methodol-

ogy has very low diversity as the space of architectures to

explore is confined. While future advances may well over-

come these limitations, in this work we instead concentrate

on the RL-based approach.

3. Our methodology

As the stem of our architecture we consider three initial

residual blocks of MobileNet-v2 [24] – in total they con-

tain only 60K parameters and reduce the spatial resolution

to 1

8
. This aggressive downsampling in the beginning is a

common feature among most fully convolutional networks.

OPs

2

1

0

AGG
OPs

2

1

0
Template

0

1 2

0
...

Template
M-1

0 1

2

Figure 2. We generate M templates each of which takes two inputs

and produces one output. The template comprises two individual

operations and one aggregation operation.

Notably, we generate a significantly larger portion of the

network automatically.

From the stem, we record two outputs of 1

4
and 1

8
spa-

tial resolution. Given those, for the rest of the network

we use a recurrent neural network, controller, to predict

actions aij at each step i of block j. We begin from the

sequence of actions used in [16] that looks as follows:

A = [loc1, loc2, op1, op2], where loci is the layer the op-

eration opi will be applied to.3

In Sect. 3.1 we start by describing our template mod-

elling approach motivated by cells and motifs, in Sect. 3.2

we propose another modification that allows us to control

the depth of the network, and in Sect. 3.3 we discuss how to

alter the spatial resolution.

3.1. Hierarchical template modelling

First of all, we note that the definition of the action se-

quence above is restrictive: if we were to apply the same ar-

rangement of operations somewhere in the network again,

we would need to sample it again, too – which would be

wasteful. To this end, we separate the sampling process of

locations and operations. In particular, we generate a set of

templates of operations that can be plugged into the network

at multiple locations. Inside the template, we also include

the aggregation operation opagg (to be either per-pixel sum-

mation or channel-wise concatenation). The template takes

two inputs and produces one output. Each input undergoes

the corresponding operation, and the aggregation operation

is used on the intermediate outputs (Fig. 2). Thus, any tem-

plate can be written as follows: T = [op1, op2, opagg]. In

cases where inputs have unequal number of channels, the

output channel dimension of each operation is set to the

largest among the inputs.

Having generated the templates, we move on to gener-

ating the network structure: in particular, we sample (with

3From here on we omit the block indices and use capital letters to de-

note the sequence of tokens.

1982



Locations
Block 

0

...

0

1

2

Templates

0

1

2

0 1

0

Block 
N-1 

1 2

1

Figure 3. We generate N blocks by sampling two locations and

one template applied to them.

replacement) two locations out of the sampling pool (ini-

tialised with two stem outputs), and the index of the tem-

plate (Fig. 3) – A = [loc1, loc2, idT ]. The template’s output

is added into the sampling pool and the process is repeated

multiple times. In the end, we concatenate all non-sampled

outputs from the sampling pool, reduce their channel di-

mension with the help of 1×1 convolution and predict per-

pixel labels with a single 3×3 convolutional layer.

The benefit of using templates in this approach is that the

number of decisions to be made increases slowly with the

number of blocks: e.g. consider the length of the sentence

that describes the architecture – it would be (2 + 3) ∗N for

the baseline solution, where N is the number of blocks, and

(2 + 1) ∗N + 3 ∗M for the template one, where M is the

number of templates. Having the number of templates lower

than 2/3 of the number of blocks would require less deci-

sions to be made for the same network depth. At the same

time, the template modelling would allow the controller to

efficiently re-use existing designs.

3.2. Increasing the number of templates

While the template modelling has its benefits, it still pos-

sesses one significant disadvantage: in order to generate a

deeper network, we can only increase the number of blocks,

which, in turn, would lead to significantly more decisions

to be made. Hence, we propose to include an additional pa-

rameter in the structure generator at the cost of having N
more decisions to be made. Concretely, we generate k – the

number of times the template must be repeated – we con-

sider k to take values from 1 to 4; accordingly, the action

sequence then becomes A = [loc1, loc2, idT , k]. While we

could have also abstracted away k into the template defi-

nition to reduce the number of decisions, we chose not to

because at different blocks it might be optimal to vary k.

The process of repeating the template is as follows: af-

ter the template is applied on two sampled locations and

the template’s output is recorded, the second input and the

template’s output are considered as another two inputs to

a new instantiation of the same template but with different

weights (Fig. 4). This is repeated k times, and the last out-

Block 
j 

2 0

1

1

1

Figure 4. A template can be recursively applied multiple times

(with non-shared weights): the output of the previous template

becomes the first input to the current one, and the final output is

considered as the block’s output. New instantiations of the tem-

plate together with connections are depicted with dotted lines.

put is appended to the sampling pool.

3.3. Adding strides

It must be noted that up until now we did not make any

assumptions with regards to the strides of operations used

with the exception of the fixed stem block. Nevertheless,

in order to generate a complete segmentation architecture it

is important to consider the downsampling factors. Keep-

ing all consecutive operations at a constant stride would not

fare well as the common wisdom suggests that in order to

extract better features, we need to keep reducing the spatial

dimensions while increasing the number of channels until a

certain point.

Taking this into account, we append an additional deci-

sion to make in the sequence definition: the stride prediction

– either 1 or 2. If the stride is 2, we decrease spatial dimen-

sions and multiply the channel dimension by a pre-defined

constant that would allow us to control the compactness of

the generated network if needed. We only predict strides

for the first half of all the blocks, and assume that the rest of

them uses stride 1. Analogously, to deal with inputs of vary-

ing resolutions when applying an aggregation operation, we

downsample the inputs to the lowest resolution among them

for the first half, and upsample to the largest resolution – for

the rest. This is similar to the encoder-decoder architecture

design that fares well in semantic segmentation. The stride

prediction is taken out of the template definition to allow the

same template to be used with varying strides at different lo-

cations. Likewise, it is straightforward to add the prediction

of dilation rates per template to recover the dilated decoder

approach [4], but it is out of scope of this paper.

Our final string describing a complete architecture can

be written as follows: [loc1, loc2, idT , k, s]×N , where N is

the number of blocks, T = [op1, op2, opagg], and the num-

ber of templates is M . As can be easily seen, we decom-

posed the original decision sequence into multiple compo-

nents that allowed us to be compact and flexible.

1983



4. Search Experiments

4.1. NAS setup

As the stem of the network, we use three first blocks of

MobileNet-v2 [24] pre-trained on ImageNet [23]; two out-

puts from the second and third blocks with 24 and 32 chan-

nels and the spatial resolution of 1

4
and 1

8
from the original

size, respectively, are added into the initial sampling pool.

During search, the number of channels is doubled after spa-

tial downsampling. In the beginning, all layers in the sam-

pling pool are transformed to have 48 channels with the help

of 1×1 convolution. The pre-classifier layer has the same

number of 48 channels.

To keep the number of potential architectures to discover

at reasonable level, we set the number of templates and the

number of layers to 3 and 7, correspondingly. The maxi-

mum number of times the template can be used sequentially

is set to 4.

As the search dataset, we consider the training split of

CityScapes [6] with 2975 images randomly divided into

meta-train (2677, or 90%) and meta-val (298). We resize

all images to have a longer side of 1024 and train on square

crops of 321×321. Each sampled architecture is trained for

10 epochs and validated twice every 5 epochs. For the first

five epochs, we pre-compute stem outputs and only train

the generated part of the network; for the second five, the

whole network is trained end-to-end. As the reward we

employ the geometric mean of mean IoU, mean accuracy

and frequency-weighted IoU as done in [16]. To speed up

the convergence of sampled architectures, we rely on Adam

with the learning rate of 7e−3, used on mini-batches of 32
examples.

We consider the following set of operations

• separable conv 3× 3,

• separable conv 5× 5,

• global average pooling followed by upsampling and

conv 1× 1,

• max-pool 3× 3,

• separable conv 5× 5 with dilation rate 6,

• skip-connection.

There are also two aggregation operations – summation and

concatenation.

To train the controller, we use PPO [25] with the learning

rate of 0.0001. In total, we sample, train and evaluate over

2000 architectures in 8 days using two 1080Ti GPUs.

4.2. Analysis of Search Results

We first study the rewards progress through time. The

median reward is steadily increasing with more epochs as

can be inferred from Fig. 5. While most architectures are

tightly clustered together, there are several notable outliers

● ●● ●●● ● ● ●

● ●●● ●● ● ●● ●● ●● ● ●

●●● ●● ●●● ●● ●●● ●●●●●● ●●

● ●● ●● ● ●●● ● ●●● ●●● ●●●● ●● ● ●

● ●● ● ● ●● ●● ●● ●●●● ●● ● ●● ● ●● ● ●●● ●

●● ●● ● ●● ● ●● ● ●●●● ●● ● ●●● ● ●●● ●

● ● ●●● ● ●●● ●● ● ●● ●● ● ● ● ●

●● ● ●● ●● ● ● ●● ●● ●●● ●● ●●●

●● ●● ● ●●● ●● ● ●●● ●●● ●●● ●

[0,250]

(250,500]

(500,750]

(750,1000]

(1000,1250]

(1250,1500]

(1500,1750]

(1750,2000]

(2000,2250]

0.40 0.45 0.50 0.55

Reward

S
e
a
rc

h
 E

p
o
c
h

Figure 5. Distribution of rewards attained by architectures sampled

by the controller. For compactness of the plot, we only visualise

rewards greater than or equal to 0.40.

on the far right with the reward of near 0.55 that we will

explore in full training experiments in Sect. 5.

We also consider how the resolution of the architecture

is related to its reward score. To this end, we first analyse

how often the controller chose to downsample4. Consid-

ering that all outcomes are equally likely in the beginning,

one would expect the extreme resolutions of 1 and 1

8
to be

less present. As seen on Fig. 6, it is indeed what happens

with the controller at the start of the training. Nevertheless,

by the end of the search process the controller becomes far

too conservative with regards to downsampling and is more

likely to pass on actions that reduce the spatial dimensions.

This raises a question of how the downsampling factor in

the generated architecture relates to the reward?

[0,250]

(250,500]

(500,750]

(750,1000]

(1000,1250]

(1250,1500]

(1500,1750]

(1750,2000]

(2000,2250]

0% 25% 50% 75% 100%

Proportion

S
e
a
rc

h
 E

p
o
c
h

Downsampling Factor 1 2 4 8

Figure 6. Proportion of downsampling factors through time. The

minimum downsampling of 1 happens when the controller chooses

to use stride=1 everywhere; the maximum downsampling of 8

happens when the controller uses stride=2 three times (hence,

2
3
= 8).

In an attempt to answer that question, we visualise the

reward distribution of architectures with different down-

sampling factors on Fig. 7. As the plot implies, the re-

wards for architectures with higher resolution tend to be

larger, hence, the controller becomes biased towards sam-

pling fewer downsampling actions.

Please refer to our supplementary material for more anal-

4With 7 blocks the maximum number of times downsampling can be

performed is ⌊7/2⌋ = 3. Note that here we do not take into account the

stem resolution.

1984



● ●● ●● ● ● ●● ●● ●● ●● ●● ● ●●● ●●●● ●● ● ●● ●●● ●● ●●

●● ●●● ● ●●●●● ●● ● ●●●● ● ● ●●●● ●●● ●● ●● ●●●● ● ● ●●● ● ● ●● ●●● ●●● ● ●●●● ● ● ●● ●● ●● ●●●● ●●● ● ●● ●● ●● ●● ● ●

● ● ●●● ●● ●● ● ●●● ● ● ● ●●● ● ●● ● ●●●● ●●● ● ●● ●● ● ● ●●● ●●● ● ● ●● ●

●●● ● ●

1

2

4

8

0.40 0.45 0.50 0.55

Reward

D
o
w

n
s
a
m

p
lin

g
 F

a
c
to

r

Figure 7. Distribution of rewards attained by architectures sam-

pled by the controller with varying downsampling factors. For

compactness of the plot, we only visualise rewards greater than or

equal to 0.40.

ysis of the search results.

4.3. Comparison with Random Search

An important question to ask with NAS is whether the

trained controller performs reliably better than a naive base-

line – e.g. random search. Relevant to that is the question

of whether the ranking of architectures based on rewards

achieved during the search is well-correlated with the rank-

ing of architectures based on their scores during a longer

training.

We strive to answer those questions by performing an ex-

periment similar to the one in [16]: concretely, we sample

two sets with 20 architectures each - the first set is com-

ing from the pre-trained controller, while the second set is

sampled randomly. Each set is trained and evaluated on two

setups - the search one as described in Sect. 4.1 and the one

where the training continues for more epochs (we increase

it to 20 for the second stage).

We visualise the performance results in Fig. 8. The archi-

tectures sampled by the trained controller reliably achieve

higher rewards - both within the search and longer training

setups.

●

●

●

●0.40

0.45

0.50

0.55

0.60

Controller Random Search

Sampled by

R
e
w

a
rd

Training Setup Longer Search

Figure 8. Rewards distribution of 40 architectures, 20 of which are

sampled by the trained controller and 20 by random search.

We further plot corresponding rankings on Fig. 9. As

evident from the plot, when trained for longer the architec-

tures tend to be ranked similarly to the order attained dur-

ing the search process. In particular, high values of Spear-

man’s rank correlation – ρ = 0.734 for the controller, and

ρ = 0.904 for random search – indicate that the rewards

achieved during the searching process may serve as a reli-

able estimate of the architecture’s potential.

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

Controller Random Search

1 5 10 20 1 5 10 20

1

5

10

20

Longer Training Rank

S
e
a
rc

h
 T

ra
in

in
g
 R

a
n
k

Figure 9. Ranks of architectures based on rewards during the

longer training setup (x-axis) and the search training setup (y-

axis).

5. Training Experiments

5.1. Setup

To evaluate the best discovered architectures, we con-

sider two common benchmarks for semantic segmentation

– CityScapes [6] and CamVid [2]. Our choice is motivated

by the fact that the majority of hand-designed compact net-

works is being extensively tested on these two datasets.

The training setup slightly differs from the searching

one: in particular, we use the ‘poly’ training schedule [4] –

lrinit · (1−
epoch

nepochs
)0.9 – with SGD with the initial learning

rate of 5e−2 and the momentum value of 0.9. The weight

decay is set to 1e−5, the initial number of channels to 64.

5.2. CityScapes

We train on the full training split and test on the valida-

tion split of 500 images. Here we use a square crop size of

769 and train for 1000 epochs with mini-batches of 6 exam-

ples.

As given in Table 1, two of our automatically discovered

models achieve 67.7% and 67.8% mean IoU, respectively,

with both having less than 300K trainable parameters. We

outperform all other compact methods with the exclusion of

ERFNet [21] that comprises 7× more parameters than any

of our models, and BiSeNet [28] - with more than 20× more

parameters. We overcome ICNet [30] on the validation set,

but fall behind on the test set as their method was further

trained on the validation set, too. Furthermore, we sig-

nificantly surpass the results of ESPNet [14] and ESPNet-

v2 [15] by more than 5.4% in both cases while requiring

considerably fewer parameters.

5Link to test results: https://bit.ly/2HItlwm
6Link to test results: https://bit.ly/2FlAfEW

1985



Image GT arch0 arch1
Figure 10. Qualitative results of the discovered models - (arch0 and arch1) - on the validation set of CityScapes. The last row shows failure

cases.

Method val mIoU,% test mIoU,% Params,M

ENet [17] - 58.3 0.37

ESPNet [14] 61.4 60.3 0.36

ESPNet-v2 [15] 62.7 62.1 0.72

ICNet [30] 67.7 69.5 6.7

ERFNet [21] 71.5 69.7 2.1

BiSeNet [28] 72.0 71.4 5.8

Ours (arch0) 68.1 67.75 0.28

Ours (arch1) 69.5 67.86 0.27

Table 1. Quantitative results on the validation and test sets of

CityScapes among compact models (<10M parameters). Note

that opposed to what is commonly done, we did not train our mod-

els on the val set and did not use any post-processing for test eval-

uation.

We visualise qualitative results in Fig. 10. Both architec-

tures are able to correctly segment most parts of the scenes

and even identify thin structures such as traffic lights and

poles (rows 1−2). Nevertheless, they tend to misclassify

large objects, such as trains (row 3).

5.3. CamVid

CamVid [2] is another outdoor urban driving dataset that

contains 367 images for training and 233 – for testing with

11 semantic classes and resolution of 480×360. We train

for 1000 epochs with 10 examples in mini-batch.

The architectures discovered by our method attain mean

IoU values of 63.9% and 63.2%, respectively, once again

exceeding the majority of other compact and even larger

models. We outperform both SegNet [1] and ESPNet [14]

by more than 7%, DeepLab-LFOV [4] – by more than 1.6%,

and fall behind BiSeNet [28] and ICNet [30], both of which

exploited higher resolution images of 960×720.

Method mIoU,% Params,M

SegNet [1] 55.6 29.7

ESPNet [14] 55.6 0.36

DeepLab-LFOV [4] 61.6 37.3

†BiSeNet [28] 65.6 5.8

†ICNet [30] 67.1 6.7

Ours (arch0) 63.9 0.28

Ours (arch1) 63.2 0.26

Table 2. Quantitative results on the test set of CamVid. (†) means

that 960×720 images were used opposed to 480×360.

With the lower quality and resolution of annotations, the

predictions are no longer sharp as on CityScapes (Fig. 11).

Overall, both architectures capture the semantics of the

scenes well (rows 1−2) and only fail significantly at de-

lineating long chunks of the same class on the edges of the

image (row 3).

5.4. Architecture Characteristics

We provide quantitative details of the trained architec-

tures in Table 3. Two models possess similar qualities – they

are light-weight, both in terms of parameters and the size

on disk, and have output resolution of 1

4
. Interestingly, even

though arch0 is slightly larger than arch1, it is still faster

with almost 10FPS on high-resolution 2048×1024 images.

This indicates that the connectivity structure plays an im-

portant role in determining the runtime of a network, which

may signal that to enforce a real-time constraint, one would

need to include an explicit loss term in the RL objective –

e.g. as done in [27, 26].

We further visualise one of discovered architectures –

1986








