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Abstract

We introduce a new, rigorously-formulated Bayesian

meta-learning algorithm that learns a probability distri-

bution of model parameter prior for few-shot learning.

The proposed algorithm employs a gradient-based varia-

tional inference to infer the posterior of model parame-

ters for a new task. Our algorithm can be applied to any

model architecture and can be implemented in various ma-

chine learning paradigms, including regression and clas-

sification. We show that the models trained with our pro-

posed meta-learning algorithm are well calibrated and ac-

curate, with state-of-the-art calibration and classification

results on three few-shot classification benchmarks (Om-

niglot, mini-ImageNet and tiered-ImageNet), and compet-

itive results in a multi-modal task-distribution regression.

1. Introduction

Machine learning, in particular deep learning, has

thrived during the last decade, producing results that were

previously considered to be infeasible in several areas. For

instance, outstanding results have been achieved in speech

and image understanding [1–4], and medical image analy-

sis [5]. However, the development of these machine learn-

ing methods typically requires a large number of training

samples to achieve notable performance. Such requirement

contrasts with the human ability of quickly adapting to new

learning tasks using few “training” samples. This difference

may be due to the fact that humans tend to exploit prior

knowledge to facilitate the learning of new tasks, while ma-

chine learning algorithms often do not use any prior knowl-

edge (e.g., training from scratch with random initialisa-

tion [6]) or rely on weak prior knowledge to learn new tasks

(e.g., training from pre-trained models [7]). This challenge

has motivated the design of machine learning methods that

can make more effective use of prior knowledge to adapt to

new learning tasks using few training samples [8].

Such methods assume the existence of a latent distribu-

tion over classification or regression tasks that share a com-

mon structure. This common structure means that solv-

ing many tasks can be helpful to solve a new task, sam-

pled from the same task distribution, even if it contains a

limited number of training samples. For instance, in multi-

task learning [9], an agent simultaneously learns the shared

representation of many related tasks and a main task that

are assumed to come from the same domain. The extra

information provided by this multi-task training tends to

regularise the main task training, particularly when it con-

tains few training samples. In domain adaptation [10, 11],

a learner transfers the shared knowledge of many training

tasks drawn from one or several source domains to perform

well on tasks (with small training sets) drawn from a tar-

get domain. Bayesian learning [12] has also been explored,

where prior knowledge is represented by a probability den-

sity function on the parameters of the visual classes’ prob-

ability models. In learning to learn or meta-learning [13,

14], a meta-learner extracts relevant knowledge from many

tasks learned in the past to facilitate the learning of new fu-

ture tasks.

From the methods above, meta-learning currently pro-

duces state-of-the-art results in many benchmark few-shot

learning datasets [15–22]. Such success can be attributed

to the way meta-learning leverages prior knowledge from

several training tasks drawn from a latent distribution of

tasks, where the objective is to perform well on unseen tasks

drawn from the same distribution. However, a critical issue

arises with the limited amount of training samples per task

combined with the fact that most of these approaches [15,

16, 18, 19, 23] do not try to estimate model uncertainty –

this may result in overfitting. This issue has been recently

addressed with Laplace approximation to estimate model

uncertainty, involving the computationally hard estimation

of a high-dimensional covariance matrix [24], and with vari-

ational Bayesian learning [20, 25] containing sub-optimal

point estimate of model parameters and inefficient optimi-

sation.

In this work, we propose a new variational Bayesian

learning by extending model-agnostic meta-learning

(MAML) [19] based on a rigorous formulation that is
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efficient and does not require any point estimate of model

parameters. In particular, compared to MAML [19], our

approach explores probability distributions over possible

values of meta-parameters, rather than having a fixed value.

Learning and prediction using our proposed method are,

therefore, more robust due to the perturbation of learnt

meta-parameters that coherently explains data variability.

Our evaluation shows that the models trained with our

proposed meta-learning algorithm is at the same time well

calibrated and accurate, with competitive results in terms

of Expected Calibration Error (ECE) and Maximimum

Calibration Error (MCE), while outperforming state-of-the-

art methods in some few-shot classification benchmarks

(Omniglot, mini-ImageNet and tiered-ImageNet).

2. Related Work

Meta-learning has been studied for a few decades [13,

14, 26], and recently gained renewed attention with the use

of deep learning methods. As meta-learning aims at the

unique ability of learning how to learn, it has enabled the

development of training methods with limited number of

training samples, such as few-shot learning. Some notable

meta-learning approaches include memory-augmented neu-

ral networks [15], deep metric learning [18, 23], learning

how to update model parameters [16, 27] and learning good

prior [19] using gradient update. These approaches have

generated some of the most successful meta-learning re-

sults, but they lack the ability to estimate model uncertainty.

Consequently, their performances may suffer in uncertain

environments and real world applications.

Bayesian meta-learning techniques have, therefore, been

developed to incorporate uncertainty into model estima-

tion. Among those, MAML-based meta-learning has at-

tracted much of research interest due to the straightfor-

ward use of gradient-based optimisation. LLAMA [24]

uses Laplace method to extend the point estimates made in

MAML to Gaussian distributions to improve the robustness

of the trained model, but the need to estimate and invert the

Hessian matrix makes this approach computationally chal-

lenging, particularly for large-scale models used in deep

learning. Variational inference (VI) addresses such scal-

ability issue – remarkable examples of VI-based methods

are PLATIPUS [25], BMAML [20] and the methods sim-

ilar to our proposal, Amortised Bayesian Meta-Learning

(ABML) [28] and VERSA [29] 1. However, PLATIPUS

optimises the lower bound of data prediction, leading to the

need to approximate a joint distribution between the task-

specific and meta parameters. This approximation compli-

cates the implementation and requires a point estimate of

the task-specific parameters to reduce the complexity of the

1ABML [28] and VERSA [29] have been developed in parallel to our

proposed VAMPIRE.

estimation of this joint distribution. Employing point es-

timate may, however, reduce its ability to estimate model

uncertainty. BMAML uses a closed-form solution based

on Stein Variational Gradient Descent (SVGD) that simpli-

fies the task adaptation step, but it relies on the use of a

kernel matrix, which increases its computational complex-

ity. ABML uses the both train and validation subsets to

update meta-parameters, potentially resulting in overfitting.

VERSA takes a slightly different approach by employing

an external neural network to learn the variational distribu-

tion for certain parameters, while keeping other parameters

shared across all tasks. Another inference-based method is

Neural Process [30] that employs the train-ability of neu-

ral networks to model a Gaussian-Process-like distribution

over functions to achieve uncertainty quantification in few-

shot learning. However, due to the prominent weakness of

Gaussian Process that suffers from cubic complexity to data

size, this might limit the scalability of Neural Process and

makes it infeasible for large-scale datasets.

Our approach, in contrast, is a straightforward extension

of MAML, which uses VI to model the distributions of task-

specific parameters and meta-parameters, where we do not

require the use of point estimate of any term, nor do we

need to compute Hessian or kernel matrices or depend on

an external network. Our proposed algorithm can be con-

sidered a rigorous and computationally efficient Bayesian

meta-learning algorithm. A noteworthy non-meta-learning

method that employs Bayesian methods is the neural statis-

tician [31] that uses an extra variable to model data distri-

bution within each task, and combines that information to

solve few-shot learning problems. Our proposed algorithm,

instead, does not introduce additional parameters, while still

being able to extract relevant information from a small num-

ber of examples.

3. Methodology

In this section, we first define and formulate the few-

shot meta-learning problem. We then describe MAML, de-

rive our proposed algorithm, and mention the similarities

and differences between our method and recently proposed

meta-learning methods that are relevant to our proposal.

3.1. Few-shot Learning Problem Setup

While conventional machine learning paradigm is de-

signed to optimise the performance on a single task, few-

shot learning is trained on a set of conditional indepen-

dent and identically distributed (i.i.d.) tasks given meta-

parameters. We employ the notation of “task environ-

ment” [32], where tasks are sampled from an unknown task

distribution D over a family of tasks. Each task Ti in this

family is indexed by i ∈ {1, ..., T} and consists of a sup-

port set {X
(t)
i ,Y

(t)
i } and a query set {X

(v)
i ,Y

(v)
i }, with
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Figure 1: (a) Hierarchical graphical model of the few-shot meta-learning, where a prior parameterised by θ is shared across

many tasks; (b) and (c) Visualisation between MAML and VAMPIRE, respectively, where VAMPIRE extends both the

deterministic prior p(wi; θ) and posterior p(wi|Y
(t)
i , θ) in MAML by using probabilistic distributions.

X
(t)
i = {x

(t)
ij }

M
j=1 and Y

(t)
i = {y

(t)
ij }Mj=1 (X

(v)
i and Y

(v)
i

are similarly defined). The aim of few-shot learning is to

predict the output y
(v)
ij of the query input x

(v)
ij given the

small support set for task Ti (e.g. M ≤ 20). We rely on

a Bayesian hierarchical model [24] to model the few-shot

meta-learning problem. In the graphical model shown in

Figure 1a, θ denotes the meta-parameters of interest, and

wi represents the task-specific parameters for task Ti. One

typical example of this modelling approach is MAML [19],

where wi are the neural network weights adapted to task

Ti by performing truncated gradient descent using the data

from the support set {X
(t)
i ,Y

(t)
i } and the initialisation θ.

The objective function of few-shot learning is, therefore,

to find a meta-learner, parameterised by θ, across tasks sam-

pled from D, as follows:

θ∗ = argmin
θ

−
1

T

T�

i=1

ln p(Y
(v)
i |Y

(t)
i , θ), (1)

where T denotes the number of tasks, and, hereafter, we

simplify the notation by dropping the explicit dependence

on X
(t)
i and X

(v)
i from the set of conditioning variables.

Each term of the predictive probability on the right hand

side of (1) can be expanded by applying the sum rule of

probability and lower-bounded by Jensen’s inequality:

ln p(Y
(v)
i |Y

(t)
i , θ) = lnE

p(wi|Y
(t)
i

,θ)

�

p(Y
(v)
i |wi)

�

≥ L
(v)
i ,

where:

L
(v)
i (θ) = E

p(wi|Y
(t)
i

,θ)

�

ln p(Y
(v)
i |wi)

�

. (2)

Hence, instead of minimising the negative log-likelihood

in (1), we minimise the upper-bound of the corresponding

negative log-likelihood which can be presented as:

L(v)(θ) = −
1

T

T�

i=1

L
(v)
i . (3)

If each task-specific posterior, p(wi|Y
(t)
i , θ), is well-

behaved, we can apply Monte Carlo to approximate the

expectation in (3) by sampling model parameters wi from

p(wi|Y
(t)
i , θ). Thus, depending on the formulation of the

task-specific posterior p(wi|Y
(t)
i , θ), we can formulate dif-

ferent algorithms to solve the problem of few-shot learning.

We review a deterministic method widely used in the liter-

ature in subsection 3.2, and present our proposed approach

in subsection 3.3.

3.2. Point Estimate - MAML

A simple way is to approximate p(wi|Y
(t)
i , θ) by a Dirac

delta function at its local mode:

p(wi|Y
(t)
i , θ) = δ(wi −w

MAP
i ), (4)

where the local mode wMAP
i can be obtained by using max-

imum a posterior (MAP):

w
MAP
i = argmax

wi

ln p(Y(t)|wi) + ln p(wi; θ). (5)

In the simplest case where the prior is also assumed to be

a Dirac delta function: p(wi; θ) = δ(wi − θ), and gradient

descent is used, the local mode can be determined as:

w
MAP
i = θ − α∇wi

�

− ln p(Y
(t)
i |wi)

�

, (6)

where α is the learning rate, and the truncated gradient de-

scent consists of a single step of (6) (the extension to a larger

number of steps is trivial). Given the point estimate assump-

tion in (4), the upper-bound of the negative log-likelihood

in (3) can be simplified to:

L(v)(θ) =
1

T

T�

i=1

− ln p(Y
(v)
i |wMAP

i ). (7)

Minimising the upper-bound of the negative log-

likelihood in (7) w.r.t. θ represents the MAML algo-

rithm [19]. This derivation also explains the intuition be-

hind MAML, which finds a good initialisation of model pa-

rameters as illustrated in Figure 1b.
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3.3. Gradient-based Variational Inference

In contrast to the deterministic method presented in sub-

section 3.2, we use a variational distribution q(wi;λi), pa-

rameterized by λi – a function of Y
(t)
i and θ), to approxi-

mate the task-specific posterior p(wi|Y
(t)
i , θ). In variational

inference, q(wi;λi) can be obtained by minimising the fol-

lowing Kullback-Leibler (KL) divergence:

λ∗

i = argmin
λi

KL
�

q(wi;λi)�p(wi|Y
(t)
i , θ)

�

= argmin
λi

�

q(wi;λi) ln
q(wi;λi)p(Y

(t)
i |θ)

p(Y
(t)
i |wi)p(wi; θ)

dwi

= argmin
λi

L
(t)
i (λi, θ) + ln p(Y(t)|θ)

� �� �

const. wrt λi

.

(8)

where:

L
(t)
i (λi, θ) = KL [q(wi;λi)�p(wi; θ)]

+ Eq(wi;λi)

�

− ln p(Y
(t)
i |wi)

�

. (9)

The resulting cost function (excluding the constant term)

L
(t)
i is often known as the variational free energy (VFE).

The first term of VFE can be considered as a regularisation

that penalises the difference between the prior p(wi; θ) and

the approximated posterior q(wi;λi), while the second term

is referred as likelihood cost. Exactly minimising the cost

function in (9) is computationally challenging, so gradient

descent is used with θ as the initialisation of λi:

λi ← θ − α∇λi
L
(t)
i (λi, θ) , (10)

where α is the learning rate.

Given the approximated posterior q(wi;λi) with param-

eter λi updated according to (10), we can calculate and op-

timise the upper-bound in (3) to find a local-optimal meta-

parameter θ.

In Bayesian statistics, the prior p(wi|θ) represents a

modelling assumption, and the approximated posterior

q(wi;λi) is a flexible function that can be adjusted to

achieve a good trade-off between performance and com-

plexity. For simplicity, we assume that both p(wi; θ) and

q(wi;λi) are Gaussian distributions with diagonal covari-

ance matrices:
�

p(wi; θ) = N
�
wi|µθ,Σθ = diag(σ2

θ)
�

q(wi;λi) = N
�
wi|µλi

,Σλi
= diag(σ2

λi
)
�
,

(11)

where µθ,µλi
,σθ,σλi

∈ R
d, with d denoting the num-

ber of model parameters, and the operator diag(.) returns a

diagonal matrix of the vector in its input parameter.

Given the prior p(wi|θ) and the posterior q(wi;λi)
in (11), we can compute the KL divergence of VFE shown

Algorithm 1 VAMPIRE training

Require: task distribution D
Require: Hyper-parameters: T, Lt, Lv,α and γ

1: initialise θ

2: while θ not converged do

3: sample a mini-batch of tasks Ti ∼ D, i = 1 : T
4: for each task Ti do

5: λi ← θ

6: draw Lt samples ŵ
(lt)
i ∼ q(wi;λi), lt = 1 : Lt

7: update: λi ← λi −
α
Lt

∇λi
L
(t)
i (λi, θ) {Eq (10)}

8: draw Lv samples ŵ
(lv)
i ∼ q(wi;λi), lv = 1 : Lv

9: L
(v)
i (θ) = 1

Lv

�Lv

lv=1 ln p
�

Y
(v)
i |ŵ

(lv)
i

�

{Eq. (2)}
10: end for

11: meta-update: θ ← θ + γ
T
∇θ

�T

i=1 L
(v)
i (θ)

12: end while

in (9) by using either Monte Carlo sampling or a closed-

form solution. According to [33], sampling model parame-

ters from the approximated posterior q(wi;λi) to compute

the KL divergence term and optimise the cost function in (9)

does not perform better or worse than using the closed-form

of the KL divergence between two Gaussian distributions.

Therefore, we employ the closed-form formula of the KL

divergence to speed up the training process.

For numerical stability, we parameterise the standard de-

viation point-wisely as σ = exp(ρ) when performing gra-

dient update for the standard deviations of model parame-

ters. The meta-parameters θ = (µθ, exp(ρθ)) are the ini-

tial mean and standard deviation of neural network weights,

and the variational parameters λi = (µλi
, exp(ρλi

)) are

the optimised mean and standard deviation of those net-

work weights adapted to task Ti. We also implement the

re-parameterisation trick [34] when sampling the network

weights from the approximated posterior to compute the ex-

pectation of the data log-likelihood in (9):

wi = µλi
+ �� exp(ρλi

), (12)

where � ∼ N (0, Id), and � is the element-wise multiplica-

tion. Given this direct dependency, the gradients of the cost

function L
(t)
i in (9) with respect to λi can be derived as:







∇µλi
L
(t)
i =

∂L
(t)
i

∂wi

+
∂L

(t)
i

∂µλi

∇ρλi
L
(t)
i =

∂L
(t)
i

∂wi

�� exp(ρλi
) +

∂L
(t)
i

∂ρλi

.

(13)

After obtaining the variational parameters λi in (10),

we can apply Monte Carlo approximation by sampling Lv

sets of model parameters from the approximated posterior
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q(wi;λi) to calculate and optimise the upper-bound in (3)

w.r.t. θ. This approach leads to the general form of our

proposed algorithm, named Variational Agnostic Modelling

that Performs Inference for Robust Estimation (VAMPIRE),

shown in Algorithm 1.

3.4. Differentiating VAMPIRE and Other Bayesian
Meta-learning Methods

VAMPIRE is different from the “probabilistic MAML”

- PLATIPUS [25] in several ways. First, PLATIPUS uses

VI to approximate the joint distribution p(wi, θ|Y
(t)
i ,Y

(v)
i ),

while VAMPIRE uses VI to approximate the task-specific

posterior p(wi|Y
(t)
i , θ). To handle the complexity of

sampling from a joint distribution, PLATIPUS relies on

the same point estimate of the task-specific posterior as

MAML, as shown in (4). Second, to adapt to task Ti,
PLATIPUS learns only the mean, without varying the vari-

ance. In contrast, VAMPIRE learns both µθ and Σθ for

each task Ti. Lastly, when adapting to a task, PLATIPUS

requires 2 additional gradient update steps, corresponding

to steps 7 and 10 of Algorithm 1 in [25], while VAMPIRE

needs only 1 gradient update step as shown in step 7 of Al-

gorithm 1. Hence, VAMPIRE is based on a simpler for-

mulation that does not rely on any point estimate, and it is

also more flexible and efficient because it allows all meta-

parameters to be learnt while performing less gradient up-

date steps.

VAMPIRE is also different from the PAC-Bayes meta-

learning method designed for multi-task learning [35] at

the relation between the shared prior p(wi; θ) and the vari-

ational task-specific posterior q(wi;λi). While the PAC-

Bayes meta-learning method does not relate the “posterior”

to the “prior” as in the standard Bayesian analysis, VAM-

PIRE relates these two probabilities through a likelihood

function by performing a fixed number of gradient updates

as shown in (10). Due to this discrepancy, the PAC-Bayes

meta-learning needs to maintain all the task-specific poste-

riors, requiring more memory storage, consequently result-

ing in an un-scalable approach, especially when the number

of tasks is very large. In contrast, VAMPIRE learns only

the shared prior, and hence, is a more favourable method

for large-scaled applications, such as few-shot learning.

Our proposed algorithm is different from BMAML [20]

at the methods used to approximate task-specific posterior

p(wi|Y
(t)
i , θ): BMAML is based on SVGD, while VAM-

PIRE is based on a variant of amortised inference. Although

SVGD is a non-parametric approach that allows a flexible

variational approximation, its downsides are the computa-

tional complexity of kernel matrix, and high memory usage

when increasing the number of particles. In contrast, our

approach uses a straightforward VI using parametric func-

tions, resulting in a simpler computational and memory-

efficient approach. One advantage of BMAML compared

to our method in Algorithm 1 is the use of Chaser Loss,

which may be an effective way of preventing overfitting.

Nevertheless, in principle, we can also implement the same

loss for our proposed algorithm.

VAMPIRE is different from ABML [28] at the data sub-

set used to update the meta-parameters θ: whole data set of

task Ti in ABML versus only the query subset {X
(v)
i ,Y

(v)
i }

in VAMPIRE. This discrepancy is due to the differences in

the objective function. In particular, ABML maximises the

lower bound of marginal likelihood, while VAMPIRE max-

imises the predictive probability in (1). Moreover, when

deriving a lower bound of marginal log-likelihood using

VI [28, Derivation right before Eq. (1)], the variational dis-

tribution q must be strictly greater than zero for all θ and

variational parameters. The assumption that approximates

the variational distribution q(θ;ψ) by a Dirac delta function

made in Amortised ML [28, Eq. (4)] is, therefore, arguable.

Another Bayesian meta-learning approach similar to

VAMPIRE is VERSA [29]. The two methods are differ-

ent at the methods modelling the parameters of interest

θ. VAMPIRE relies on gradient update to relate the prior

and posterior through likelihood function, while VERSA is

based on an amortisation network to output the parameters

of the variational distributions. To scale up to deep neural

network models, VERSA models only the parameters of the

last fully connected layer, while leaving other parameters as

point estimates that are shared across all tasks. As a result,

VAMPIRE is more flexible since it does not need to define

which parameters are shared or not shared, nor does it re-

quire any additional network.

4. Experimental Evaluation

The goal of our experiments is to present empirical eval-

uation of VAMPIRE compared to state-of-art meta-learning

approaches. Our experiments include both regression and

few-shot classification problems. The experiments are car-

ried out using the training procedure shown in Algorithm 1.

All implementations of VAMPIRE use PyTorch [36]2.

4.1. Regression

We evaluate VAMPIRE using a multi-modal task distri-

bution where half of the data is generated from sinusoidal

functions, while the other half is from linear functions [25].

A detailed configuration of the problem setup, the model

used, as well as additional visualisation results, can be re-

ferred to Supplementary Material A.

The results in Figures 2a and 2b show that VAMPIRE

can effectively reason which underlying function generates

the training data points as the predictions are all sinusoidal

or linear. In addition, VAMPIRE is able to vary the predic-

2Code can be found at

https://github.com/cnguyen10/few shot meta learning
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(a) Sinusoidal data (b) Linear data
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(c) Reliability diagram
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(d) ECE and MCE

Figure 2: Qualitative and quantitative results on multi-

modal data – half of the tasks are generated from sinusoidal

functions, and the other half are from linear functions: (a)

and (b) visualisation of MAML and VAMPIRE, where the

shaded area is the prediction made by VAMPIRE ± 2×
standard deviation, (c) reliability diagram of various meta-

learning methods averaged over 1000 tasks, and (d) ECE

and MCE of the Bayesian meta-learning methods.

tion variance, especially when there is more uncertainty in

the training data. In contrast, due to the deterministic na-

ture, MAML can only output a single value at each input.

To quantitatively compare the performance between

VAMPIRE and other few-shot meta-learning methods, we

use the reliability diagram which is based on the quantile

calibration for regression [37]. A model is perfectly cal-

ibrated when its predicted probability equals to the actual

probability, resulting in a curve that is well-aligned with the

diagonal y = x. We re-implement some few-shot meta-

learning methods, train until convergence, and plot their re-

liability diagram for 1000 tasks in Figure 2c. To have a fair

comparison, BMAML is trained without Chaser Loss, and

ABML is trained with a uniform hyper-posterior. Due to

the deterministic nature, the performance curve of MAML

is presented as a horizontal line. For a further quantita-

tive comparison, we also plot the expected calibration error

(ECE), which averages the absolute errors measuring from

the diagonal, and the maximum calibration error (MCE),

which returns the maximum of absolute errors in Figure 2d.

Overall, in terms of ECE and MCE, the model trained

with VAMPIRE is better than BMAML and ABML, while

competitive with PLATIPUS. The performance of BMAML

could be higher if more particles and Chaser Loss are used.

Another observation is that ABML has slightly lower per-

formance than MAML, although the training procedures of

the two methods are very similar. We hypothesise that this

is due to overfitting induced by using the whole training

data subset that includes {X
(t)
i ,Y

(t)
i }, while MAML and

VAMPIRE use only the query data subset {X
(v)
i ,Y

(v)
i } to

train the meta-parameters, which is consistent between the

training and testing scenarios.

4.2. Few-shot Classification

The experiments in this sub-section are based on the N -

way k-shot learning task, where a meta learner is trained on

many related tasks containing N classes and small training

sets of k samples for each class (i.e., this is the size of Y
(t)
i ).

We benchmark our results against the state of the art on the

data sets Omniglot [8], mini-ImageNet [16, 23] and tiered-

ImageNet [38].

Omniglot contains 1623 different handwritten characters

from 50 different alphabets, where each one of the charac-

ters was drawn online via Amazon’s Mechanical Turk by

20 different people [8]. Omniglot is often split by randomly

picking 1200 characters for training and the remaining for

testing [16, 18, 19]. However, for language character clas-

sification, this random split may be unfair since knowing

a character of an alphabet may facilitate the learning of

other characters in the same alphabet. The original train-test

split [8] suggests 30 alphabets for training and 20 alphabets

for testing – such split clearly avoids potential information

leakage from the training set to the testing set. We run ex-

periments using both splits to compare with state-of-the-art

methods and to perform testing without any potential data

leakage. As standardly done in the literature, our training

includes a data augmentation based on rotating the samples

by multiples of 90 degrees [15]. Before performing experi-

ments, all Omniglot images are down-sampled to 28-by-28

pixels to be consistent with the reported works in the meta-

learning literature [16, 19, 23].

Mini-ImageNet [23] was proposed as an evaluation for

few-shot learning. It consists of 100 different classes, each

having 600 colour images taken from the original ImageNet

data set [42]. We use the common train-test split that con-

sists of 64 classes for training, 16 for validation, and 20 for

testing [16]. Similarly to Omniglot, the examples in mini-

ImageNet are pre-processed by down-sampling the images

to 84-by-84 pixels to be consistent with previous works in

the literature.

Tiered-ImageNet [38] is a larger subset of ImageNet that

has 608 classes grouped into 34 high-level categories. We

use the standard train-test split that consists of 20, 6, and 8
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5-WAY 20-WAY

1-SHOT 5-SHOT 1-SHOT 5-SHOT

OMNIGLOT [8] - ORIGINAL SPLIT, STANDARD 4-LAYER CNN

MAML 96.68± 0.57 98.33± 0.22 84.38± 0.64 96.32± 0.17

VAMPIRE 96.27± 0.38 98.77± 0.27 86.60± 0.24 96.14± 0.10

OMNIGLOT [8] - RANDOM SPLIT, STANDARD 4-LAYER CNN

MATCHING NETS [23] 98.1 98.9 93.8 98.5

PROTO. NETS [18] 2
98.8 99.7 96.0 98.9

MAML [19] 98.7± 0.4 99.9± 0.1 95.8± 0.3 98.9± 0.2

VAMPIRE 98.43± 0.19 99.56± 0.08 93.20± 0.28 98.52± 0.13

OMNIGLOT [8] - RANDOM SPLIT, NON-STANDARD CNNS

SIAMESE NETS [39] 97.3 98.4 88.2 97.0

NEURAL STATISTICIAN [31] 98.1 99.5 93.2 98.1

MEMORY MODULE [40] 98.4 99.6 95.0 98.6

RELATION NETS [41] 99.6± 0.2 99.8± 0.1 97.6± 0.2 99.1± 0.1

VERSA [29] 99.70± 0.20 99.75± 0.13 97.66± 0.29 98.77± 0.18

Table 1: Few-shot classification accuracy (in percentage) on Omniglot, tested on 1000 tasks and reported with 95% confidence

intervals. The results of VAMPIRE are competitive to the state-of-the-art baselines which are carried out on a standard 4-

convolution-layer neural networks. The top of the table contains methods trained on the original split defined in [8], while

the middle part contains methods using a standard 4-layer CNN trained on random train-test split. The bottom part presents

results of different methods using different network architectures, or requiring external modules and additional parameters

trained on random split. Note that the Omniglot results on random split cannot be fairly compared.

categories for training, validation and testing. The experi-

ments on tiered-ImageNet is carried with input as features

extracted by a residual network that was pre-trained on data

and classes from training meta-set [22, Section 4.2.2].

For Omniglot and mini-ImageNet, we use the same net-

work architecture of state-of-the-art methods [16, 19, 23].

The network consists of 4 hidden convolution modules,

each containing 64 3-by-3 filters, followed by batch nor-

malisation [43], ReLU activation, and a 2-by-2 strided con-

volution. For the mini-ImageNet, the strided convolution is

replaced by a 2-by-2 max-pooling layer, and only 32 filters

are used on each convolution layer to avoid over-fitting [16,

19]. For tiered-ImageNet, we use a 2-hidden-layer fully-

connected network with 128 and 32 hidden units. Please

refer to Supplementary Material B for detailed description

on the configuration and the hyperparameters used.

The N -way k-shot classification accuracy measured on

Omniglot, and mini-ImageNet, tiered-ImageNet data sets

are shown in Tables 1 and 2, respectively. Overall, the

results of VAMPIRE are competitive to the state-of-the-art

methods that use the same network architecture [16, 19, 23].

On Omniglot, our results on a random train-test split are

competitive in most scenarios. Our proposed method out-

performs some previous works in few-shot learning, such as

2Trained with 60-way episodes.

siamese networks [39], matching networks [23] and mem-

ory models [40], although they are designed with a focus

on few-shot classification. Our result on the 20-way 1-

shot is slightly lower than prototypical networks [18] and

VERSA [29], but prototypical networks need more classes

(higher “way”) per training episode to obtain advantageous

results and VERSA requires an additional amortised net-

works to learn the parameters of variational distributions.

Our results are also slightly lower than MAML, potentially

due to the difference of train-test split. To obtain a fair com-

parison, we run the public code provided by MAML’s au-

thors, and measure its accuracy on the original split sug-

gested in [8]. Using this split, VAMPIRE achieves compet-

itive performance, and outperforms MAML in some cases.

On mini-ImageNet, VAMPIRE outperforms all reported

methods that use the standard 4-layer CNN architecture

on the 1-shot tests, while being competitive on the 5-shot

episodes. Prototypical Networks achieve a higher accuracy

on the 5-shot tests due to, again, the use of extra classes dur-

ing training. Although our work does not aim to achieve the

state-of-the-art results in few-shot learning, we also run an

experiment using input as features extracted by a residual

network that was pre-trained on data and classes from train-

ing meta-set [22, Sect. 4.2.2]. The results, including the

state-of-the-art methods that employ much deeper networks

with various architectures, are presented in Supplementary
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MINI-IMAGENET [16]

1-SHOT 5-SHOT

STANDARD 4-BLOCK CNN

MATCHING NETS [23] 43.56± 0.84 55.31± 0.73

META-LEARNER

LSTM [16]

43.44± 0.77 60.60± 0.71

MAML [19] 48.70± 1.84 63.15± 0.91

PROTO. NETS [18] 3
49.42± 0.78 68.20± 0.66

LLAMA [24] 49.40± 1.83

PLATIPUS [25] 50.13± 1.86

BMAML [20]4
49.17± 0.87 64.23± 0.69

AMORTISED ML [28] 45.00± 0.60

VAMPIRE 51.54± 0.74 64.31± 0.74

TIERED-IMAGENET [38]

1-SHOT 5-SHOT

DIFFERENT SETTINGS AND NETWORK ARCHITECTURES

MAML [45] 51.67± 1.81 70.30± 0.08

PROTO. NETS [38] 53.31± 0.89 72.69± 0.74

RELATION NET [45] 54.48± 0.93 71.32± 0.78

TRNS. PRP. NETS [45] 57.41± 0.94 71.55± 0.74

LEO [22] 66.33± 0.05 81.44± 0.09

METAOPTNET [46] 65.81± 0.74 81.75± 0.53

VAMPIRE 69.87± 0.29 82.70± 0.21

Table 2: The few-shot 5-way classification accuracy re-

sults (in percentage) of VAMPIRE averaged over 600 mini-

ImageNet tasks and 5000 tiered-ImageNet tasks are com-

petitive to the state-of-the-art methods.

Material B. Note that deeper networks tend to reduce intra-

class variation, resulting in a smaller gap of performance

among many meta-learning methods [44].

On tiered-ImageNet, VAMPIRE outperforms many

methods published previously by a large margin on both 1-

and 5-shot settings.

To evaluate the predictive uncertainty of the models

trained with different meta-learning methods, we show in

Figure 3a the “normalised” reliability diagrams [47] which

presents the absolute errors averaged over many unseen

tasks. A perfectly calibrated model will have its “nor-

malised” values overlapped with the y-axis, indicating that

the probability associated with the label prediction is the

same as the true probability. To have a fair comparison,

we train all the methods of interest under the same config-

uration, e.g. network architecture, number of gradient up-

dates, while keeping all method-specific hyper-parameters

the same as the reported values. Due to the constrain of

GPU memory, BMAML is trained with only 8 particles,

3Trained with 30-way episodes for 1-shot classification and 20-way

episodes for 5-shot classification
4Produced locally
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gram

�
�
�
�

�
�
�
�
��
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�
��
�

�

�����

�����

�����

�����

�����

�����

�
�
�
�
�

���

���

(b) ECE and MCE

Figure 3: (a) Uncertainty evaluation between different

meta-learning methods using reliability diagrams, and (b)

expected calibration error (ECE) and maximum calibration

error (MCE), in which the evaluation is carried out on 5-

way 1-shot setting for
�
20
5

�
= 15504 unseen tasks sampled

from mini-ImageNet dataset.

while PLATIPUS, Amortimised Meta-learner and VAM-

PIRE are trained with 10 Monte Carlo samples. Accord-

ing to the reliability graphs, the model trained with VAM-

PIRE shows a much better calibration than the ones trained

with the other methods used in the comparison. To fur-

ther evaluate, we compute the expected calibration error

(ECE) and maximum calibration error (MCE) [47] of each

models trained with these methods. Intuitively, ECE is the

weighted average error, while MCE is the largest error. The

results plotted in Figure 3b show that the model trained

with VAMPIRE has smaller ECE and MCE compared to

all the state-of-the-art meta-learning methods. The slightly

low performance of ABML might be due to the usage of

the whole task-specific dataset, potentially overfitting to the

training data. Another factor contributed might be the ar-

guable Dirac-delta hyper-prior used, which can be also the

cause for the low prediction accuracy shown in Table 2.

5. Conclusion

We introduce and formulate a new Bayesian algorithm
used for few-shot meta-learning. The proposed algorithm,
VAMPIRE, employs variational inference to optimise a
well-defined cost function to learn a distribution of model
parameters. The uncertainty, in the form of the learnt dis-
tribution, can introduce more variability into the decision
made by the model, resulting in well-calibrated and highly-
accurate prediction. The algorithm can be combined with
different models that are trainable with gradient-based opti-
misation, and is applicable in regression and classification.
We demonstrate that the algorithm can make reasonable
predictions about unseen data in a multi-modal 5-shot learn-
ing regression problem, and achieve state-of-the-art calibra-
tion and classification results with only 1 or 5 training ex-
amples per class on public image data sets.
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