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Abstract

We introduce a new, rigorously-formulated Bayesian
meta-learning algorithm that learns a probability distri-
bution of model parameter prior for few-shot learning.
The proposed algorithm employs a gradient-based varia-
tional inference to infer the posterior of model parame-
ters for a new task. Our algorithm can be applied to any
model architecture and can be implemented in various ma-
chine learning paradigms, including regression and clas-
stfication. We show that the models trained with our pro-
posed meta-learning algorithm are well calibrated and ac-
curate, with state-of-the-art calibration and classification
results on three few-shot classification benchmarks (Om-
niglot, mini-ImageNet and tiered-ImageNet), and compet-
itive results in a multi-modal task-distribution regression.

1. Introduction

Machine learning, in particular deep learning, has
thrived during the last decade, producing results that were
previously considered to be infeasible in several areas. For
instance, outstanding results have been achieved in speech
and image understanding [1-4], and medical image analy-
sis [5]. However, the development of these machine learn-
ing methods typically requires a large number of training
samples to achieve notable performance. Such requirement
contrasts with the human ability of quickly adapting to new
learning tasks using few “training” samples. This difference
may be due to the fact that humans tend to exploit prior
knowledge to facilitate the learning of new tasks, while ma-
chine learning algorithms often do not use any prior knowl-
edge (e.g., training from scratch with random initialisa-
tion [6]) or rely on weak prior knowledge to learn new tasks
(e.g., training from pre-trained models [7]). This challenge
has motivated the design of machine learning methods that
can make more effective use of prior knowledge to adapt to
new learning tasks using few training samples [8].

Such methods assume the existence of a latent distribu-

tion over classification or regression tasks that share a com-
mon structure. This common structure means that solv-
ing many tasks can be helpful to solve a new task, sam-
pled from the same task distribution, even if it contains a
limited number of training samples. For instance, in multi-
task learning [9], an agent simultaneously learns the shared
representation of many related tasks and a main task that
are assumed to come from the same domain. The extra
information provided by this multi-task training tends to
regularise the main task training, particularly when it con-
tains few training samples. In domain adaptation [10, 11],
a learner transfers the shared knowledge of many training
tasks drawn from one or several source domains to perform
well on tasks (with small training sets) drawn from a tar-
get domain. Bayesian learning [12] has also been explored,
where prior knowledge is represented by a probability den-
sity function on the parameters of the visual classes’ prob-
ability models. In learning to learn or meta-learning [13,
14], a meta-learner extracts relevant knowledge from many
tasks learned in the past to facilitate the learning of new fu-
ture tasks.

From the methods above, meta-learning currently pro-
duces state-of-the-art results in many benchmark few-shot
learning datasets [15-22]. Such success can be attributed
to the way meta-learning leverages prior knowledge from
several training tasks drawn from a latent distribution of
tasks, where the objective is to perform well on unseen tasks
drawn from the same distribution. However, a critical issue
arises with the limited amount of training samples per task
combined with the fact that most of these approaches [15,
16, 18, 19, 23] do not try to estimate model uncertainty —
this may result in overfitting. This issue has been recently
addressed with Laplace approximation to estimate model
uncertainty, involving the computationally hard estimation
of a high-dimensional covariance matrix [24], and with vari-
ational Bayesian learning [20, 25] containing sub-optimal
point estimate of model parameters and inefficient optimi-
sation.

In this work, we propose a new variational Bayesian
learning by extending model-agnostic meta-learning
(MAML) [19] based on a rigorous formulation that is
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efficient and does not require any point estimate of model
parameters. In particular, compared to MAML [19], our
approach explores probability distributions over possible
values of meta-parameters, rather than having a fixed value.
Learning and prediction using our proposed method are,
therefore, more robust due to the perturbation of learnt
meta-parameters that coherently explains data variability.
Our evaluation shows that the models trained with our
proposed meta-learning algorithm is at the same time well
calibrated and accurate, with competitive results in terms
of Expected Calibration Error (ECE) and Maximimum
Calibration Error (MCE), while outperforming state-of-the-
art methods in some few-shot classification benchmarks
(Omniglot, mini-ImageNet and tiered-ImageNet).

2. Related Work

Meta-learning has been studied for a few decades [13,
14, 26], and recently gained renewed attention with the use
of deep learning methods. As meta-learning aims at the
unique ability of learning how to learn, it has enabled the
development of training methods with limited number of
training samples, such as few-shot learning. Some notable
meta-learning approaches include memory-augmented neu-
ral networks [15], deep metric learning [18, 23], learning
how to update model parameters [16, 27] and learning good
prior [19] using gradient update. These approaches have
generated some of the most successful meta-learning re-
sults, but they lack the ability to estimate model uncertainty.
Consequently, their performances may suffer in uncertain
environments and real world applications.

Bayesian meta-learning techniques have, therefore, been
developed to incorporate uncertainty into model estima-
tion. Among those, MAML-based meta-learning has at-
tracted much of research interest due to the straightfor-
ward use of gradient-based optimisation. LLAMA [24]
uses Laplace method to extend the point estimates made in
MAML to Gaussian distributions to improve the robustness
of the trained model, but the need to estimate and invert the
Hessian matrix makes this approach computationally chal-
lenging, particularly for large-scale models used in deep
learning. Variational inference (VI) addresses such scal-
ability issue — remarkable examples of VI-based methods
are PLATIPUS [25], BMAML [20] and the methods sim-
ilar to our proposal, Amortised Bayesian Meta-Learning
(ABML) [28] and VERSA [29] !. However, PLATIPUS
optimises the lower bound of data prediction, leading to the
need to approximate a joint distribution between the task-
specific and meta parameters. This approximation compli-
cates the implementation and requires a point estimate of
the task-specific parameters to reduce the complexity of the

'ABML [28] and VERSA [29] have been developed in parallel to our
proposed VAMPIRE.

estimation of this joint distribution. Employing point es-
timate may, however, reduce its ability to estimate model
uncertainty. BMAML uses a closed-form solution based
on Stein Variational Gradient Descent (SVGD) that simpli-
fies the task adaptation step, but it relies on the use of a
kernel matrix, which increases its computational complex-
ity. ABML uses the both train and validation subsets to
update meta-parameters, potentially resulting in overfitting.
VERSA takes a slightly different approach by employing
an external neural network to learn the variational distribu-
tion for certain parameters, while keeping other parameters
shared across all tasks. Another inference-based method is
Neural Process [30] that employs the train-ability of neu-
ral networks to model a Gaussian-Process-like distribution
over functions to achieve uncertainty quantification in few-
shot learning. However, due to the prominent weakness of
Gaussian Process that suffers from cubic complexity to data
size, this might limit the scalability of Neural Process and
makes it infeasible for large-scale datasets.

Our approach, in contrast, is a straightforward extension
of MAML, which uses VI to model the distributions of task-
specific parameters and meta-parameters, where we do not
require the use of point estimate of any term, nor do we
need to compute Hessian or kernel matrices or depend on
an external network. Our proposed algorithm can be con-
sidered a rigorous and computationally efficient Bayesian
meta-learning algorithm. A noteworthy non-meta-learning
method that employs Bayesian methods is the neural statis-
tician [31] that uses an extra variable to model data distri-
bution within each task, and combines that information to
solve few-shot learning problems. Our proposed algorithm,
instead, does not introduce additional parameters, while still
being able to extract relevant information from a small num-
ber of examples.

3. Methodology

In this section, we first define and formulate the few-
shot meta-learning problem. We then describe MAML, de-
rive our proposed algorithm, and mention the similarities
and differences between our method and recently proposed
meta-learning methods that are relevant to our proposal.

3.1. Few-shot Learning Problem Setup

While conventional machine learning paradigm is de-
signed to optimise the performance on a single task, few-
shot learning is trained on a set of conditional indepen-
dent and identically distributed (i.i.d.) tasks given meta-
parameters. We employ the notation of “task environ-
ment” [32], where tasks are sampled from an unknown task
distribution D over a family of tasks. Each task 7; in this
family is indexed by ¢ € {1,...,T} and consists of a sup-

port set {X”, Y1 and a query set {X), Y}, with
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Figure 1: (a) Hierarchical graphical model of the few-shot meta-learning, where a prior parameterised by 6 is shared across
many tasks; (b) and (c) Visualisation between MAML and VAMPIRE, respectively, where VAMPIRE extends both the

deterministic prior p(w;; ) and posterior p(w; D/Z-(t), #) in MAML by using probabilistic distributions.

RO = GOP and YO = (O3, X and Y

are similarly defined). The aim of few-shot learning is to
predict the output yg;’) of the query input xl(;.’) given the
small support set for task 7; (e.g. M < 20). We rely on
a Bayesian hierarchical model [24] to model the few-shot
meta-learning problem. In the graphical model shown in
Figure la, 6 denotes the meta-parameters of interest, and
w; represents the task-specific parameters for task 7;. One
typical example of this modelling approach is MAML [19],
where w; are the neural network weights adapted to task
T; by performing truncated gradient descent using the data
from the support set {)Ci(t)7 y}t)} and the initialisation 6.

The objective function of few-shot learning is, therefore,
to find a meta-learner, parameterised by 6, across tasks sam-
pled from D, as follows:

T
. _ — (®) ()
0 = arg min T;hlp(yi V.7, 0), (D

where 1" denotes the number of tasks, and, hereafter, we
simplify the notation by dropping the explicit dependence
on Xi(t) and X,i(v) from the set of conditioning variables.
Each term of the predictive probability on the right hand
side of (1) can be expanded by applying the sum rule of
probability and lower-bounded by Jensen’s inequality:

lnp(yi(v)|yi(t), 6) =In EP(W1|3}Z~(t),9) |:p(y2(v)|wl>i| > £§U)’
where:
! p(wi| Y .0) i i) -

Hence, instead of minimising the negative log-likelihood
in (1), we minimise the upper-bound of the corresponding
negative log-likelihood which can be presented as:

T
£0)(9) = _% 3, 3)

i=1

If each task-specific posterior, p(wi\yi(t)ﬁ), is well-
behaved, we can apply Monte Carlo to approximate the
expectation in (3) by sampling model parameters w; from
p(wi|yi(t), ). Thus, depending on the formulation of the
task-specific posterior p(w; D)i(t), 6), we can formulate dif-
ferent algorithms to solve the problem of few-shot learning.
We review a deterministic method widely used in the liter-
ature in subsection 3.2, and present our proposed approach
in subsection 3.3.

3.2. Point Estimate - MAML

A simple way is to approximate p(w; |y§”, 6) by a Dirac
delta function at its local mode:

p(wil VY, 0) = 8(w; — wMAP), “)

where the local mode wMAP

imum a posterior (MAP):

wiAP = argmax Inp(Y"|w;) + Inp(wi; 0).  (5)

can be obtained by using max-

In the simplest case where the prior is also assumed to be
a Dirac delta function: p(w;;6) = §(w; — 6), and gradient
descent is used, the local mode can be determined as:

wMAP — g _ oV, |- lnp(yi(t)|wi) , (6)

(2

where « is the learning rate, and the truncated gradient de-
scent consists of a single step of (6) (the extension to a larger
number of steps is trivial). Given the point estimate assump-
tion in (4), the upper-bound of the negative log-likelihood
in (3) can be simplified to:

T
LO@) = 23 ~mp WA )

i=1
Minimising the upper-bound of the negative log-
likelihood in (7) w.rt. 6 represents the MAML algo-
rithm [19]. This derivation also explains the intuition be-
hind MAML, which finds a good initialisation of model pa-
rameters as illustrated in Figure 1b.
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3.3. Gradient-based Variational Inference

In contrast to the deterministic method presented in sub-
section 3.2, we use a variational distribution g(w;; A;), pa-
rameterized by \; — a function of yf” and ), to approxi-

mate the task-specific posterior p(w; Dii(t) ,0). In variational
inference, ¢(w;; \;) can be obtained by minimising the fol-
lowing Kullback-Leibler (KL) divergence:

Af = arg rr)l\ln KL [q(wi; )\Z-)||p(wi|yi(t), 0)}

Yy ()
= argmin/q(wi;/\i)ln Q(V"(zt,))\z)l)(yz |6) dw,
" p(Y; " [wi)p(wi; 0)
= argmin £ (A, 0) + np(YV]9)
Ai
const. wrt A\;
®

where:
LY (\i,0) = KL [g(wi; A;)[p(wi; 0)]
+ Eq(wiini) [* npVwi)| . ©

The resulting cost function (excluding the constant term)
ﬁgt) is often known as the variational free energy (VFE).
The first term of VFE can be considered as a regularisation
that penalises the difference between the prior p(w;; 6) and
the approximated posterior ¢(w;; A;), while the second term
is referred as likelihood cost. Exactly minimising the cost
function in (9) is computationally challenging, so gradient
descent is used with 6 as the initialisation of \;:

A 0—aVa L (\,0), (10)

where « is the learning rate.

Given the approximated posterior q(w;; A;) with param-
eter \; updated according to (10), we can calculate and op-
timise the upper-bound in (3) to find a local-optimal meta-
parameter 6.

In Bayesian statistics, the prior p(w;|f) represents a
modelling assumption, and the approximated posterior
g(w;; A;) is a flexible function that can be adjusted to
achieve a good trade-off between performance and com-
plexity. For simplicity, we assume that both p(w;;6) and
q(wy; \;) are Gaussian distributions with diagonal covari-
ance matrices:

p(wi;0) =N [wi|pe, By = diag(od)] an

where pg, iy, 09,0, € R4, with d denoting the num-

ber of model parameters, and the operator diag(.) returns a
diagonal matrix of the vector in its input parameter.

Given the prior p(w;|f) and the posterior g(w;; ;)

in (11), we can compute the KL divergence of VFE shown

Algorithm 1 VAMPIRE training

Require: task distribution D
Require: Hyper-parameters: 7', Ly, L,,, o and y
1: initialise 0
2: while 6 not converged do
3:  sample a mini-batch of tasks 7; ~D,i=1:T

4 for each task 7; do

5: N0

6 draw L; samples vAvElt) ~gwis i), =111
7 update: \; < A — 2V, £ (\;,0) {Eq (10)}

8: draw L, samples ng”) ~q(wiz Ai), I, =1: L,

o L0 = i ()
{Eq. @)}

10:  end for

11:  meta-update: 6 <— 0 + £V ZiT:1 /;Z(.”) (0)

12: end while

in (9) by using either Monte Carlo sampling or a closed-
form solution. According to [33], sampling model parame-
ters from the approximated posterior ¢(w;; \;) to compute
the KL divergence term and optimise the cost function in (9)
does not perform better or worse than using the closed-form
of the KL divergence between two Gaussian distributions.
Therefore, we employ the closed-form formula of the KL
divergence to speed up the training process.

For numerical stability, we parameterise the standard de-
viation point-wisely as o = exp(p) when performing gra-
dient update for the standard deviations of model parame-
ters. The meta-parameters 0 = (g, exp(pg)) are the ini-
tial mean and standard deviation of neural network weights,
and the variational parameters \; = (py,,exp(py,;)) are
the optimised mean and standard deviation of those net-
work weights adapted to task 7;. We also implement the
re-parameterisation trick [34] when sampling the network
weights from the approximated posterior to compute the ex-
pectation of the data log-likelihood in (9):

wi = py, + €O exp(py,), (12)

where € ~ NM(0,1,), and © is the element-wise multiplica-
tion. Given this direct dependency, the gradients of the cost

function El(.t) in (9) with respect to A; can be derived as:

oc)  or®

Vo L = 22

HXx; = awl + 8“/)\1 (13)
v, £ = LL‘?) e ®exp(py,) + aﬁgt)

Px; 1 8w, i 80/\,,-, .

After obtaining the variational parameters A; in (10),
we can apply Monte Carlo approximation by sampling L,
sets of model parameters from the approximated posterior
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q(w;; \;) to calculate and optimise the upper-bound in (3)
w.r.t. 6. This approach leads to the general form of our
proposed algorithm, named Variational Agnostic Modelling
that Performs Inference for Robust Estimation (VAMPIRE),
shown in Algorithm 1.

3.4. Differentiating VAMPIRE and Other Bayesian
Meta-learning Methods

VAMPIRE is different from the “probabilistic MAML”
- PLATIPUS [25] in several ways. First, PLATIPUS uses
VI to approximate the joint distribution p(w, 9|yft> , y}’”) ),
while VAMPIRE uses VI to approximate the task-specific
posterior p(wiD/Z—(t), #). To handle the complexity of
sampling from a joint distribution, PLATIPUS relies on
the same point estimate of the task-specific posterior as
MAML, as shown in (4). Second, to adapt to task 7;,
PLATIPUS learns only the mean, without varying the vari-
ance. In contrast, VAMPIRE learns both g and >y for
each task 7;. Lastly, when adapting to a task, PLATIPUS
requires 2 additional gradient update steps, corresponding
to steps 7 and 10 of Algorithm 1 in [25], while VAMPIRE
needs only 1 gradient update step as shown in step 7 of Al-
gorithm 1. Hence, VAMPIRE is based on a simpler for-
mulation that does not rely on any point estimate, and it is
also more flexible and efficient because it allows all meta-
parameters to be learnt while performing less gradient up-
date steps.

VAMPIRE is also different from the PAC-Bayes meta-
learning method designed for multi-task learning [35] at
the relation between the shared prior p(w;; ) and the vari-
ational task-specific posterior g(w;; \;). While the PAC-
Bayes meta-learning method does not relate the “posterior”
to the “prior” as in the standard Bayesian analysis, VAM-
PIRE relates these two probabilities through a likelihood
function by performing a fixed number of gradient updates
as shown in (10). Due to this discrepancy, the PAC-Bayes
meta-learning needs to maintain all the task-specific poste-
riors, requiring more memory storage, consequently result-
ing in an un-scalable approach, especially when the number
of tasks is very large. In contrast, VAMPIRE learns only
the shared prior, and hence, is a more favourable method
for large-scaled applications, such as few-shot learning.

Our proposed algorithm is different from BMAML [20]
at the methods used to approximate task-specific posterior
p(w;| Y. 6): BMAML is based on SVGD, while VAM-
PIRE is based on a variant of amortised inference. Although
SVGD is a non-parametric approach that allows a flexible
variational approximation, its downsides are the computa-
tional complexity of kernel matrix, and high memory usage
when increasing the number of particles. In contrast, our
approach uses a straightforward VI using parametric func-
tions, resulting in a simpler computational and memory-
efficient approach. One advantage of BMAML compared

to our method in Algorithm 1 is the use of Chaser Loss,
which may be an effective way of preventing overfitting.
Nevertheless, in principle, we can also implement the same
loss for our proposed algorithm.

VAMPIRE is different from ABML [28] at the data sub-
set used to update the meta-parameters §: whole data set of
task 7; in ABML versus only the query subset { X", Y(*)}
in VAMPIRE. This discrepancy is due to the differences in
the objective function. In particular, ABML maximises the
lower bound of marginal likelihood, while VAMPIRE max-
imises the predictive probability in (1). Moreover, when
deriving a lower bound of marginal log-likelihood using
VI [28, Derivation right before Eq. (1)], the variational dis-
tribution ¢ must be strictly greater than zero for all § and
variational parameters. The assumption that approximates
the variational distribution ¢(¢; ) by a Dirac delta function
made in Amortised ML [28, Eq. (4)] is, therefore, arguable.

Another Bayesian meta-learning approach similar to
VAMPIRE is VERSA [29]. The two methods are differ-
ent at the methods modelling the parameters of interest
0. VAMPIRE relies on gradient update to relate the prior
and posterior through likelihood function, while VERSA is
based on an amortisation network to output the parameters
of the variational distributions. To scale up to deep neural
network models, VERSA models only the parameters of the
last fully connected layer, while leaving other parameters as
point estimates that are shared across all tasks. As a result,
VAMPIRE is more flexible since it does not need to define
which parameters are shared or not shared, nor does it re-
quire any additional network.

4. Experimental Evaluation

The goal of our experiments is to present empirical eval-
uation of VAMPIRE compared to state-of-art meta-learning
approaches. Our experiments include both regression and
few-shot classification problems. The experiments are car-
ried out using the training procedure shown in Algorithm 1.
All implementations of VAMPIRE use PyTorch [36]>.

4.1. Regression

We evaluate VAMPIRE using a multi-modal task distri-
bution where half of the data is generated from sinusoidal
functions, while the other half is from linear functions [25].
A detailed configuration of the problem setup, the model
used, as well as additional visualisation results, can be re-
ferred to Supplementary Material A.

The results in Figures 2a and 2b show that VAMPIRE
can effectively reason which underlying function generates
the training data points as the predictions are all sinusoidal
or linear. In addition, VAMPIRE is able to vary the predic-

2Code can be found at
https://github.com/cnguyenl0/few_shot meta_learning
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Figure 2: Qualitative and quantitative results on multi-
modal data — half of the tasks are generated from sinusoidal
functions, and the other half are from linear functions: (a)
and (b) visualisation of MAML and VAMPIRE, where the
shaded area is the prediction made by VAMPIRE + 2x
standard deviation, (c) reliability diagram of various meta-
learning methods averaged over 1000 tasks, and (d) ECE
and MCE of the Bayesian meta-learning methods.

tion variance, especially when there is more uncertainty in
the training data. In contrast, due to the deterministic na-
ture, MAML can only output a single value at each input.
To quantitatively compare the performance between
VAMPIRE and other few-shot meta-learning methods, we
use the reliability diagram which is based on the quantile
calibration for regression [37]. A model is perfectly cal-
ibrated when its predicted probability equals to the actual
probability, resulting in a curve that is well-aligned with the
diagonal y = x. We re-implement some few-shot meta-
learning methods, train until convergence, and plot their re-
liability diagram for 1000 tasks in Figure 2c. To have a fair
comparison, BMAML is trained without Chaser Loss, and
ABML is trained with a uniform hyper-posterior. Due to
the deterministic nature, the performance curve of MAML
is presented as a horizontal line. For a further quantita-
tive comparison, we also plot the expected calibration error
(ECE), which averages the absolute errors measuring from
the diagonal, and the maximum calibration error (MCE),
which returns the maximum of absolute errors in Figure 2d.

Overall, in terms of ECE and MCE, the model trained
with VAMPIRE is better than BMAML and ABML, while
competitive with PLATIPUS. The performance of BMAML
could be higher if more particles and Chaser Loss are used.
Another observation is that ABML has slightly lower per-
formance than MAML, although the training procedures of
the two methods are very similar. We hypothesise that this
is due to overfitting induced by using the whole training
data subset that includes {Xi(t)7 yf”}, while MAML and

VAMPIRE use only the query data subset {X", Y} to
train the meta-parameters, which is consistent between the
training and testing scenarios.

4.2. Few-shot Classification

The experiments in this sub-section are based on the V-
way k-shot learning task, where a meta learner is trained on
many related tasks containing N classes and small training
sets of k samples for each class (i.e., this is the size of y§t)).
We benchmark our results against the state of the art on the
data sets Omniglot [8], mini-ImageNet [16, 23] and tiered-
ImageNet [38].

Omniglot contains 1623 different handwritten characters
from 50 different alphabets, where each one of the charac-
ters was drawn online via Amazon’s Mechanical Turk by
20 different people [8]. Omniglot is often split by randomly
picking 1200 characters for training and the remaining for
testing [16, 18, 19]. However, for language character clas-
sification, this random split may be unfair since knowing
a character of an alphabet may facilitate the learning of
other characters in the same alphabet. The original train-test
split [8] suggests 30 alphabets for training and 20 alphabets
for testing — such split clearly avoids potential information
leakage from the training set to the testing set. We run ex-
periments using both splits to compare with state-of-the-art
methods and to perform testing without any potential data
leakage. As standardly done in the literature, our training
includes a data augmentation based on rotating the samples
by multiples of 90 degrees [15]. Before performing experi-
ments, all Omniglot images are down-sampled to 28-by-28
pixels to be consistent with the reported works in the meta-
learning literature [16, 19, 23].

Mini-ImageNet [23] was proposed as an evaluation for
few-shot learning. It consists of 100 different classes, each
having 600 colour images taken from the original ImageNet
data set [42]. We use the common train-test split that con-
sists of 64 classes for training, 16 for validation, and 20 for
testing [16]. Similarly to Omniglot, the examples in mini-
ImageNet are pre-processed by down-sampling the images
to 84-by-84 pixels to be consistent with previous works in
the literature.

Tiered-ImageNet [38] is a larger subset of ImageNet that
has 608 classes grouped into 34 high-level categories. We
use the standard train-test split that consists of 20, 6, and 8
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5-WAY 20-WAY

1-SHOT 5-SHOT 1-sHOT 5-SHOT
OMNIGLOT [8] - ORIGINAL SPLIT, STANDARD 4-LAYER CNN
MAML 96.68 = 0.57 98.33 +0.22 84.38+0.64 96.32+0.17
VAMPIRE 96.27 £ 0.38 98.77 £0.27 86.60+0.24 96.14 £+ 0.10
OMNIGLOT [8] - RANDOM SPLIT, STANDARD 4-LAYER CNN
MATCHING NETS [23] 98.1 98.9 93.8 98.5
PROTO. NETS [18] 2 98.8 99.7 96.0 98.9
MAML [19] 98.7+0.4 99.9+0.1 95.8 + 0.3 98.9+0.2
VAMPIRE 98.43 £ 0.19 99.56 + 0.08 93.20 + 0.28 98.52 +0.13
OMNIGLOT [8] - RANDOM SPLIT, NON-STANDARD CNNS
STIAMESE NETS [39] 97.3 98.4 88.2 97.0
NEURAL STATISTICIAN [31] 98.1 99.5 93.2 98.1
MEMORY MODULE [40] 98.4 99.6 95.0 98.6
RELATION NETS [41] 99.6 £0.2 99.84+0.1 97.6 £ 0.2 99.1 +0.1
VERSA [29] 99.70 £0.20 99.75+0.13 97.66 +0.29 98.77+0.18

Table 1: Few-shot classification accuracy (in percentage) on Omniglot, tested on 1000 tasks and reported with 95% confidence
intervals. The results of VAMPIRE are competitive to the state-of-the-art baselines which are carried out on a standard 4-
convolution-layer neural networks. The top of the table contains methods trained on the original split defined in [8], while
the middle part contains methods using a standard 4-layer CNN trained on random train-test split. The bottom part presents
results of different methods using different network architectures, or requiring external modules and additional parameters
trained on random split. Note that the Omniglot results on random split cannot be fairly compared.

categories for training, validation and testing. The experi-
ments on tiered-ImageNet is carried with input as features
extracted by a residual network that was pre-trained on data
and classes from training meta-set [22, Section 4.2.2].

For Omniglot and mini-ImageNet, we use the same net-
work architecture of state-of-the-art methods [16, 19, 23].
The network consists of 4 hidden convolution modules,
each containing 64 3-by-3 filters, followed by batch nor-
malisation [43], ReLU activation, and a 2-by-2 strided con-
volution. For the mini-ImageNet, the strided convolution is
replaced by a 2-by-2 max-pooling layer, and only 32 filters
are used on each convolution layer to avoid over-fitting [16,
19]. For tiered-ImageNet, we use a 2-hidden-layer fully-
connected network with 128 and 32 hidden units. Please
refer to Supplementary Material B for detailed description
on the configuration and the hyperparameters used.

The N-way k-shot classification accuracy measured on
Omniglot, and mini-ImageNet, tiered-ImageNet data sets
are shown in Tables 1 and 2, respectively. Overall, the
results of VAMPIRE are competitive to the state-of-the-art
methods that use the same network architecture [16, 19, 23].

On Omniglot, our results on a random train-test split are
competitive in most scenarios. Our proposed method out-
performs some previous works in few-shot learning, such as

Trained with 60-way episodes.

siamese networks [39], matching networks [23] and mem-
ory models [40], although they are designed with a focus
on few-shot classification. Our result on the 20-way 1-
shot is slightly lower than prototypical networks [18] and
VERSA [29], but prototypical networks need more classes
(higher “way”) per training episode to obtain advantageous
results and VERSA requires an additional amortised net-
works to learn the parameters of variational distributions.
Our results are also slightly lower than MAML, potentially
due to the difference of train-test split. To obtain a fair com-
parison, we run the public code provided by MAML’s au-
thors, and measure its accuracy on the original split sug-
gested in [8]. Using this split, VAMPIRE achieves compet-
itive performance, and outperforms MAML in some cases.

On mini-ImageNet, VAMPIRE outperforms all reported
methods that use the standard 4-layer CNN architecture
on the 1-shot tests, while being competitive on the 5-shot
episodes. Prototypical Networks achieve a higher accuracy
on the 5-shot tests due to, again, the use of extra classes dur-
ing training. Although our work does not aim to achieve the
state-of-the-art results in few-shot learning, we also run an
experiment using input as features extracted by a residual
network that was pre-trained on data and classes from train-
ing meta-set [22, Sect. 4.2.2]. The results, including the
state-of-the-art methods that employ much deeper networks
with various architectures, are presented in Supplementary
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MINI-IMAGENET [16]

1-SHOT 5-SHOT
STANDARD 4-BLOCK CNN
MATCHING NETS [23] 43.56 + 0.84 55.31 +0.73
META-LEARNER 43.44+£0.77 60.60 + 0.71
LSTM [16]
MAML [19] 48.70 £ 1.84 63.15 + 0.91
PROTO. NETS [18]° 49.42+0.78 68.20 +0.66
LLAMA [24] 49.40 £ 1.83 _
PLATIPUS [25] 50.13 + 1.86 _
BMAML [20]* 49.17 £ 0.87 64.23 + 0.69
AMORTISED ML [28] 45.00 + 0.60 _
VAMPIRE 51.54+0.74 64.31+0.74

TIERED-IMAGENET [38]

1-SHOT

5-SHOT

DIFFERENT SETTINGS AND NETWORK ARCHITECTURES

MAML [45] 51.67 & 1.81 70.30 4+ 0.08
PROTO. NETS [38] 53.31 +0.89 72.69 £ 0.74
RELATION NET [45] 54.48 + 0.93 71.324+0.78
TRNS. PRP. NETS [45] 57.41 +£0.94 71.554+0.74
LEO [22] 66.33 £ 0.05 81.44 £ 0.09
METAOPTNET [46] 65.81 +£0.74 81.75 + 0.53
VAMPIRE 69.87 £0.29 82.70+0.21

Table 2: The few-shot 5-way classification accuracy re-
sults (in percentage) of VAMPIRE averaged over 600 mini-
ImageNet tasks and 5000 tiered-ImageNet tasks are com-
petitive to the state-of-the-art methods.

Material B. Note that deeper networks tend to reduce intra-
class variation, resulting in a smaller gap of performance
among many meta-learning methods [44].

On tiered-ImageNet, VAMPIRE outperforms many
methods published previously by a large margin on both 1-
and 5-shot settings.

To evaluate the predictive uncertainty of the models
trained with different meta-learning methods, we show in
Figure 3a the “normalised” reliability diagrams [47] which
presents the absolute errors averaged over many unseen
tasks. A perfectly calibrated model will have its “nor-
malised” values overlapped with the y-axis, indicating that
the probability associated with the label prediction is the
same as the true probability. To have a fair comparison,
we train all the methods of interest under the same config-
uration, e.g. network architecture, number of gradient up-
dates, while keeping all method-specific hyper-parameters
the same as the reported values. Due to the constrain of
GPU memory, BMAML is trained with only 8 particles,

3Trained with 30-way episodes for 1-shot classification and 20-way
episodes for 5-shot classification
“Produced locally

0.124 - MAML 0.125
—— PLATIPUS - — e
0.10 BMAML 0.100 HeE
= ABML  fiTN
S 0.081 — VAMPIRE /- \ 5 0.075
S /: \ =
T w
. 0.050
I+t
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0.000 - "y 4 i w
s o = = 4
04 06 08 1.0 5 @ 3
conf. = g
(a) “Normalised” reliability dia- (b) ECE and MCE

gram

Figure 3: (a) Uncertainty evaluation between different
meta-learning methods using reliability diagrams, and (b)
expected calibration error (ECE) and maximum calibration
error (MCE), in which the evaluation is carried out on 5-
way 1-shot setting for (250) = 15504 unseen tasks sampled
from mini-ImageNet dataset.

while PLATIPUS, Amortimised Meta-learner and VAM-
PIRE are trained with 10 Monte Carlo samples. Accord-
ing to the reliability graphs, the model trained with VAM-
PIRE shows a much better calibration than the ones trained
with the other methods used in the comparison. To fur-
ther evaluate, we compute the expected calibration error
(ECE) and maximum calibration error (MCE) [47] of each
models trained with these methods. Intuitively, ECE is the
weighted average error, while MCE is the largest error. The
results plotted in Figure 3b show that the model trained
with VAMPIRE has smaller ECE and MCE compared to
all the state-of-the-art meta-learning methods. The slightly
low performance of ABML might be due to the usage of
the whole task-specific dataset, potentially overfitting to the
training data. Another factor contributed might be the ar-
guable Dirac-delta hyper-prior used, which can be also the
cause for the low prediction accuracy shown in Table 2.

5. Conclusion

We introduce and formulate a new Bayesian algorithm
used for few-shot meta-learning. The proposed algorithm,
VAMPIRE, employs variational inference to optimise a
well-defined cost function to learn a distribution of model
parameters. The uncertainty, in the form of the learnt dis-
tribution, can introduce more variability into the decision
made by the model, resulting in well-calibrated and highly-
accurate prediction. The algorithm can be combined with
different models that are trainable with gradient-based opti-
misation, and is applicable in regression and classification.
We demonstrate that the algorithm can make reasonable
predictions about unseen data in a multi-modal 5-shot learn-
ing regression problem, and achieve state-of-the-art calibra-
tion and classification results with only 1 or 5 training ex-
amples per class on public image data sets.
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