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Figure 1: Image examples from Visual Genome [12]. Im-

ages with similar sets of objects can have very different

meanings, which is why understanding the relations be-

tween objects is vital to image understanding.

Abstract

Understanding images relies on the understanding of

how visible objects are linked to each other. Current ap-

proaches of Visual Relation Detection (VRD) are hindered

by the high frequency of some relations: when an important

focus is put on them, more meaningful ones are overlooked.

We address this challenge by learning the relative relevance

of relations, and integrating this term into a novel scene

graph extraction scheme. We show that this allows our

model to predict relations on fewer and more relevant object

pairs. It outperforms MOTIFNET, a state of the art model,

on the Visual Genome dataset. It increases the Class Macro

recall, the metric we propose to use, from 38.1% to 44.4%.

In addition, we propose a new split of Visual Genome, with

a more balanced relation distribution, emphasizing on the

detection of uncommon relations and validates the use of

the previous metric. On this set, our model outperforms

MOTIFNET on all metrics, e.g. from 39.6% to 44.0% at 10

predictions per image on the relation classification task.

1. Introduction

Images are more than the sum of their parts and only

knowing what objects are visible is not sufficient to fully

understand their content. Indeed, the relations between ob-

jects shape the understanding of an image, because they

make an image stand out and bring meaning that is missing

when considering only objects. Consider images in Figure

1. Knowing that the images pictures a horse, rider and wa-

ter does not capture the meaning of the image. However,

the relation ’rider falls from horse’ shows that the first im-

age depicts an unusual event, because usually, riders tend to

stay on horses.

The broad problem of extracting meaning from images

has been tackled in recent years. First, the foundations of

image recognition were laid with successful neural archi-

tectures [23, 6] and soon after with new architectures for

object detection [3, 22, 21]. This enabled the extraction

of higher order concepts, such as image caption generation

[11, 25, 28], which lays at the intersection between image

analysis and natural language processing. In this work, we

focus on the detection of visual relations, aiming to repre-

sent an image by its scene graph, i.e. representing visible

objects by nodes and relations between them by edges of

the graph. These relations can be interactions or spatial re-

lations (e.g. fall from between rider and horse in Figure

1).

The task of extracting a scene graph is a combinato-

rial problem, because the number of object pairs increases

quadratically with respect to the number of objects and each

pair can usually be described by several relations. Further-

more, images are very rich sources of information, thus it is

necessary to filter out information in order to keep a low vol-

ume of stored data, low bandwidth use and noise levels; and

most of the available information is not relevant and can de-

tract from relations with higher information content. More-

over, as pointed in [16], much of this information is not

relevant to humans, because it is redundant with their prior

knowledge. Thus people tend not to mention these pieces

of information when describing images, omitting attributes

that are ”obvious or typical”. For example, in Figure 2, sev-

eral hundred relations are true, among which bed in front

of wall, bed near wall, doctor has jacket, doctor in shirt,

picture below picture, pen hanging from jacket. However,

these relations are not mentioned in annotations of Visual

Genome [12].

For this reason, it is necessary to model the relevance

of relations: this characterizes how salient they are and
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Figure 2: Image from Visual Genome. Several hundred re-

lations are true but provide little understanding of the image.

how much information content they represent. Modelling

the relevance of relations increases, without loss of per-

formance, the variety and relevance of predicted relations.

This change to the generation of scene graphs contrasts

from most recent works which focus on the training pro-

cess of relation classifiers; however it can have a strong im-

pact on the model performance, especially for small scene

graphs.

Finally, many recent models mainly focus on a high re-

trieval rate of relations per image. However, the most stud-

ied VRD dataset, Visual Genome, has a highly skewed re-

lation distribution towards a few relations, such as ‘on‘ and

‘wear‘ (in respectively 29% and 12% of the training rela-

tions). Thus, the overall recall provides a limited picture on

the capabilities of the model. For tasks focusing on a single

image, increasing the overall recall is important. However,

when considering a high number of images, the rarer re-

lations are critical to differentiate one image from another.

Moreover, many applications require learning new classes,

with little available data. Our method is especially useful

for those difficult cases. To better evaluate the capacity of

models to predict unusual and relevant relations, we pro-

pose a new split of Visual Genome (VG) [12] and an addi-

tional metric aimed at showing how the model performs at

retrieving rarer relations.

Contributions Our contributions are summarized as fol-

lows:

1. A Relation Detection Model with Relevance. To filter

out irrelevant and obvious relations, we predict relation

relevance at test time, making use of dataset statistics

to decrease noise and increase precision.

2. A new evaluation metric Due to the aforementioned

skewness of relations, the overall recall on the test set

only gives limited information on the capability of the

model to generalize to new situations, especially less

common relations. To remedy this, we propose a new

evaluation metrics which increases the importance of

retrieving uncommon relations.

3. A new split of Visual Genome The most studied split

of VG is highly skewed towards a small number of

relations, due to the annotation process and the pre-

ponderance of similar scenes such as streets. This is

a hindrance to the evaluation of VRD models as pre-

dicting the most common relation for two objects is a

viable strategy in many cases. To offset this, we pro-

pose a split where the number of relation examples for

each object pair is more evenly distributed.

2. Related Work

Visual Relation Detection has been shown to be ben-

eficial to image generation [9], image retrieval [10] and

Visual Question Answering [24]. Hence, it has re-

cently received increased attention, first by focusing on

(human, action, object) triplets in images [2, 4], but also

on the broader task of detection and classification of (sub-

ject, relation, object) triplets. These models are based on

3 components: (1) an object detector [22], (2) a model that

extracts spatial features from coordinates and (3) a three-

branch classification model: one for the classification of

each object of the relational phrase and one to classify

relations. Many recent works focus on taking advantage

of statistical dependencies between relational phrase con-

stituents [13, 27, 30, 17, 14, 29, 32, 33], leveraging seman-

tic knowledge [15, 30, 14, 19, 29] and spatial information

[20, 18, 30, 35, 32, 33].

Zellers et al. [32] use bi-directional LSTM networks

[8] on the visual features of the detected objects and ob-

ject pairs in order to aggregate the global image context and

make use of the dependencies between all constituents of

the image. Woo et al. [26] integrate contextual information

using a relational embedding. Object features are refined

using an attention mechanism over all objects, called a re-

lational embedding. They show that this embedding coin-

cides with ground truth relations and represents the inter-

dependencies between objects. Our work contrasts with

these because we use an estimated relation relevance to ex-

tract graphs focused on important relations.

Concurrently, datasets providing object bounding box

annotations and relations for pairs of objects have been re-

leased, allowing the training of visual relations detection

models [15, 12, 2] and to test them on seen, unseen [15] or

unusual relations [18].

Concept Relevance refers to the phenomenon whereby

the probability that a concept is visible differs from the

probability that it is annotated by a human. Berg et al. [1]

showed that objects that are small or far from the center

of an image are less likely to be mentioned. Unusual ob-

jects and people however, tend to be mentioned more often.

Misra et al. [16] tackle this discrepancy by separately mod-

elling the presence of an object and its relevance so that

the model may simultaneously predict a high probability of
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presence and a low relevance. Here, we learn the relevance

of relation from its representation.

Model Bias Highly skewed datasets, comprised of a high

number of a small set of classes, can be a hurdle, prevent-

ing the model from correctly classifying instances into the

less frequent classes. This can also prevent the evaluation

of existing models, which learn to exploit biases and not be

penalized for it. Goyal et al. [5] propose an augmented Vi-

sual Question Answering test set in which answers to differ-

ent types of questions have several different answers. They

show that most existing works perform much worse on this

de-biased dataset. Similarly, to prevent models from ex-

ploiting biases in questions, Zellers et al. [31] propose a

new VQA dataset in which a justification is asked for the

selected answer. We take a similar approach to [5] with-

out additional images, selecting test images to increase the

diversity of relations for each pair of object categories.

3. Problem definition and notations

Let D = {I1, . . . , InD
a set of images each annotated

with nI object bounding boxes: {b1, . . . , bnI
}.

Let

C = {o1, . . . , onC
}: a set of object classes. (1)

R = {r1, . . . , rnR
}: a set of relation classes. (2)

Visual Relation Detection (VRD) is a task whereby a scene

graph G = (V,E) is extracted from an image I with

• a set of nodes V = {v1, . . . , vnI
} where for each i,

vi ∈ C

• a set of edges E = {eh→t|h 6= t ∈ [1 . . . nI ]} where

for each h, t, eh→t ∈ R

For image I and h, t ∈ [1 . . . nI ], we define Vh, Vt, Rh→t

and Zh→t random variables with values in C, C, R and

[0, 1].

4. Focused VRD with Prior Potentials

We present our model for Visual Relation Detection:

FOCUSEDVRD. Since in many images, many true relations

are very typical or link unimportant objects, most of them

should not be mentioned. Following this observation, we

introduce the relevance variable, which allows the model to

focus on a smaller number of object pairs and extract more

relevant relations from an image. Thus, we propose the fol-

lowing decomposition of scene graph probability:

P (G) =
∏

h

P (Vh)
∏

t 6=h

P (Rh→t, Zh→t|Vh, Vt) (3)

This formulation takes into account the variable corre-

sponding to the presence of a relation Rh→t and its rele-

vance to a human observer Zh→t, which we assume are in-

dependent variables. In this Section, we describe how the

relation distribution P (Rh→t|Vh, Vt) and relevance distri-

bution P (Zh→t|Vh, Vt) are modelled.

4.1. Network Architecture

First, we extract the visual and spatial representations

of relations using a Convolutional Neural Network (CNN).

This network first extracts the representation of the image

and its corresponding object region proposals as displayed

in Figure 3. (a) For each pair of objects, region representa-

tions are extracted from the image feature map using ROI-

Pooling [22]. (b) Following [32], we add the visual repre-

sentation of the union bounding box to spatial features ex-

tracted from the binary masks using a two-layer CNN. Then

the representations of head, tail and union bounding box are

passed through two feed-forward layers, noted fh, f t and

fh→t.

4.2. Relation Classification

For each object pair (h, t) (head and tail), the relation

probability distribution is computed using

• object feature vectors fh, ft

• the visual and spatial feature vectors of the relation:

fvish→t and f
spat
h→t

They are passed through feed-forward layers, as shown in

Figure 3 (c):

yvis
h→t = W vis

h fh +W vis
t f t +W vis

e [fh,f
vis
h→t,f t]

y
spat
h→t = W spat

r f
spat
h→t

p(Rh→t) = softmax
(

yvis
h→t + y

spat
h→t + logψ(vh, vt)

)

(4)

where the weights W vis and W spat project the represen-

tations of both objects (fh and f t) and relation in the nR-

dimensional relation space. All vectors are then summed

and the softmax function is applied to the sum to compute

the probability over the set of relations, including the null

relation ∅. Similarly to the semantic bias used in [32],

ψ(vh, vt) is a frequency prior computed by measuring the

frequency of each relation for each pair of object classes in

the training dataset.

4.3. Relevance Estimation with Prior Potentials

In existing datasets, a high number of relations are true

in each image, and only a small fraction of them are an-

notated. Thus supervised models have difficulty extracting

relation representations and boundaries that separate rele-

vant and irrelevant relations. Hence, as shown in Figure 3

(d), we propose to use frequency priors in order to smooth

the model predictions:

Phuman(Zh→t|vh, vt) = pθ(Z|vh, vt) + φ(vh, vt) (5)

where pθ(Zh→t|vh, vt) is a trained relevance classifier and

φ is a binary prior potential.
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Figure 3: FOCUSEDVRD framework. Visual and spatial representations of each object pair is extracted using CNNs.

Statistics-based priors are computed on the training set to predict relations more compatible with common sense (ψ) and

improve relevance estimation (φ). At test time, a Scene Graph is generated by combining object classification probabilities

(e), relation classification probabilities (c) and relevance probabilities (d). This allows the model to focus on relevant object

pairs in the image and predict uncommon relations.

Relevance Classifier We model the relevance classifica-

tion as the probability that any relation is annotated on the

given object pair:

pθ(Z|vh, vt) = 1− pθ(Rh→t = ∅) (6)

Prior Potential of Relevance The relation potentials ψ

and φ are inspired by [32, 33]. They use a semantic module

defined as the empirical distribution of relations given two

objects, stating that the number of probable interactions be-

tween two object is limited. Similarly, the likelihood that

two objects are linked by a relevant relation is estimated by

the frequency at which they interact in the training set.

This potential, noted φ, is used in addition to the rel-

evance classifier because the relevance of relations in the

training set has a high variance which makes the training of

this classifier unstable. It is computed by counting the num-

ber of co-occurrences of both objects in the train set and the

number of times they are in a share relation in the same set.

φ(vh, vt) = 1− Ptrain(Ri→j = ∅) (7)

=

∑

I

∑

r∈R 1I(vh, r, vt)
∑

I 1I(vh, vt)
(8)

5. Making the R in VRD matter

Goyal et al. [5] observed that the output of Visual Ques-

tion Answering models was much more dependent on text

priors than visual cues on the most commonly studied VQA

dataset. In the same vein, we note that, for existing mod-

els, relation predictions are conditioned more by the object

categories than by their visual relations in a specific image.

This is not directly apparent in results as text distributions

in Visual Genome [12] are heavily skewed. Figures 4a and

4b display the distribution of relations on Visual Genome

for the most frequent pairs of object categories. They are

computed by grouping object classes by manually defined

hypernyms. They show that the majority relation for each

pair often represents from 50% to 75% of the examples.

This makes the predictions of models biased towards these

relations and the evaluation does not reflect that.

In this section, we propose two ways to highlight the per-

formance of VRD models on rare relations. This is moti-

vated by two observations.

First, many applications require learning new classes,

with usually little available data, making these classes rare.

Our method is especially useful for those difficult cases. If

frequent relations are also important, our method could be

combined to another, more adapted for frequent relations.

Second, for many common relations triplets, e.g. (per-

son, wearing, clothes) (11% of the training set), we mostly

need to detect which objects are related, not to classify the

relation. For this task, overlap between objects is enough

90% of the time, according to [32]. Rarer triplets such as

(clothes, hanging from, vehicle) are important to differen-

tiate images but have a low impact on micro recall. We

propose a new split of Visual Genome [12] called VG-

RMATTERS, constructed so that predicting the most fre-

quent relation is a less viable solution.
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5.1. Dataset Construction

VG-RMATTERS is defined such that predicting the most

common relation of each pair of object categories is not a

viable strategy. Thus the dataset should be such that the

majority relation of each pair of object categories is dif-

ferent between the train dataset and the test dataset. The

main difficulty towards this stems from the fact that splits

are defined by grouping sets of images together instead of

processing arbitrary sets of relations. Thus if an image con-

tains one uncommon relation and a set of common relations,

it will offset the distribution of all object pairs in the image.

To this end, we use an algorithm that relies on target

numbers of relations for both train and test sets and image

scores that quantify how each image impacts those targets.

First, for the test set, the target distribution is defined as

ptest(e|h, t) ∝

{

0 if e is the most frequent class of (h,t)

pdata(e|h, t) otherwise

(9)

where (h, e, t) is a relation triplet and pdata is the relation

probability distribution computed on the whole dataset.

Target counts are then computed as

Counttest(h, r, t) = ptest(r|h, t) ∗ Counttest(h, t) (10)

Counttrain = Countdata − Counttest (11)

where Counttest(h, t) = 0.1 ∗ Countdata(h, t). The pro-

portion of test examples is set to 0.1, against 0.2 for VG-

IMP, in order to increase the relation diversity while keep-

ing a comparable number of examples for the rarer relations

in the training set. Since we only constrain distributions of

object categories separately, the overall relation distribution

is similar between both training sets.

From target counts, a score sI is computed for each im-

age, with higher (resp. lower) scores corresponding to im-

ages that should belong to the train (resp. test) set. The split

is defined in Algorithm 1. For relation (h, e, t), the relation

score is multiplied by the number of instances of this rela-

tion, so that relations that impact relation distributions more

have a higher absolute value.

5.2. Dataset Characteristics

Table 1 shows the average proportions of majority rela-

tion classes and entropies for each pair of object categories

for VG-IMP and VG-RMATTERS splits. They show that

the diversity of relations for VG-RMATTERS is higher.

Figure 4 shows a comparison of the distributions of rela-

tions for the 50 most frequent pairs of object categories in

both VG-IMP and VG-RMATTERS. Relations are much

more varied in VG-RMATTERS. Differences in distribu-

tions shown in Figure 4 and Table 1 suggest that this split

better tests how the model is able to recognize relations be-

tween two objects by making the most frequent relation a

worse option than in VG-IMP.

input : Dataset D of annotated images

output: Datasets Dtrain and Dtest

for I in D do
sI ← 0;

for rel = (h, e, t) annotated in I do

ρtrain(rel)←
Counttrain(rel)
Counttrain(h,t)

;

ρtest(rel)←
Counttest(rel)
Counttest(h,t)

srel ← Count(rel)∗(ρtrain(rel)−ρtest(rel))
sI ← sI + srel

end

end

Dtrain ← 0.9 ∗ |D| images with top sI scores

Dtest ← 0.1 ∗ |D| images with lowest sI scores
Algorithm 1: Definition of splits for VG-RMATTERS

Split Majority Proportion Average Entropy

VG-IMP [27] 0.62 0.55

VG-RMATTERS 0.44 0.68

Table 1: Entropy and proportion of the majority relation

in VG-IMP [27] and VG-RMATTERS for the top 50 pairs

of object categories (81% of examples). VG-RMATTERS

shows a greater diversity of relations.

5.3. Evaluating Relation Diversity

Lu et al. [15] observe that precision metrics are not

well adapted to VRD evaluation, because relation annota-

tions are incomplete. Thus measuring the precision and F1

scores risks penalizing predictions of true relations that have

not been annotated. Hence, following most recent works,

we measure recall@k, which corresponds to the fraction

of ground truth annotations in top k confident relationship

predictions. Most recent works focus on the model perfor-

mance on the image macro recall:

IMMACRO R@k =
1

|D|

∑

I∈D

R@kI (12)

where R@kI is the recall for image I .

However, retrieving uncommon relations is necessary for

many applications where important classes have a low num-

ber of training examples. To complement this evaluation,

we propose to also use class macro recall, which averages

the recall over each relation class:

CLSMACRO R@k =
1

|R|

∑

r∈R

R@kr (13)

where R@kr is the recall of relations of class r. The under-

lying intuition here, is that by averaging on every example,

the image macro recall exhibits the ability of the network

to reliably retrieve most relations. We focus the retrieval of
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(a) Relation train distribution in VG-IMP [27]

(b) Relation test distribution in VG-IMP [27]

(c) Relation test distribution in VG-RMATTERS (ours)

Figure 4: Distribution of relations for each object category

on VG-IMP [27] and VG-RMATTERS.

most relations but also of relations that occur more infre-

quently and differentiate images from one another.

Finally, we do not constrain the predictions to one rela-

tion per object pair, as several relations may be true for each

object pair (reported as K=50 in other works).

6. Experiments

We evaluate our model on the Visual Genome dataset

and compare it with state of the art approaches.

Figure 5: Recall per relation class for MOTIFNET [32] and

FOCUSEDVRD (Ours) on VG-RMATTERS, ordered by de-

creasing frequency in the training set. Focusing predictions

on important object pairs, FOCUSEDVRD is able to predict

a more diverse set of relations and to increase the recall of

rarer relations while keeping a competitive global recall.

6.1. Experimental settings

Datasets Visual Genome [12] has 108,077 images. The

split proposed in [27] is restricted to 150 object classes and

50 relations with an average of 22 relationships annotations

per image. 75% of images are used for training, 5% for

validation and 20% for test. The VG-RMATTERS. split has

the same classes with a partitioning of 85%/5%/10%.

Implementation details We use the same training proce-

dure as [32]: the combined loss is the sum of cross-entropy

losses for object and relation classifications. As in [32], it

is minimized by SGD with momentum, with a learning rate

of 6.10−3 and 6 images per batch.

Evaluation tasks The performance of several methods

are compared on two tasks. Relation detection (RELCLS):

given ground truth object bounding boxes and classes, the

task consists in predicting true relations between any pair of

objects. We also evaluate models on the scene graph clas-

sification (SGCLS), where the task is to predict object and

relation classes.

6.2. Comparative results

In Table 2, we compare our method to state of the

art approaches on VG-IMP [27] and VG-RMATTERS.

PIXEL2GRAPH [17] iteratively refines object and relation-

ship heatmaps with a stacked hourglass network making use

of global context. IMP [27] refines relation and object rep-

resentations by passing mesages through the scene graph.

MOTIFNET [32] captures higher order correlations between

objects and relationships using LSTM layers. SGP [7] is
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SGCLS RELCLS

IMMACRO IMMACRO CLSMACRO

R@20 R@50 R@100 R@20 R@50 R@100 R@20 R@50 R@100

FREQ BASELINE 31.0 39.2 43.9 52.9 69.8 80.0 11.2 22.1 33.7

PIXEL2GRAPH [17] - 26.5 30.0 - 68.0 75.2 - - -

IMP [27] - 43.4 47.2 - 75.2 83.6 - - -

SGP [7] - 45.5 50.8 - 80.8 88.2 - - -

MOTIFNET [32] 37.6 44.5 47.7 66.6 81.2 88.3 15.8 27.7 38.1

BASELINE (Ours) 37.1 44.1 47.2 66.7 81.4 88.7 17.6 30.2 41.3

FOCUSEDVRD (Ours) 36.8 43.8 47.0 66.6 81.0 87.7 18.8 32.3 44.4

Table 2: Results on VG-IMP. Recalls are in % and evaluated without scene graph constraints (k=50). The relevance factor

increases the CLSMACRO recall at all sizes of scene graphs but slightly decreases the IMMACRO.

SGCLS RELCLS N pairs

IMMACRO IMMACRO CLSMACRO

R@10 R@20 R@100 R@10 R@20 R@100 R@10 R@20 R@100 Pairs@10

MOTIFNET [32] 26.3 38.0 55.5 39.6 58.4 87.8 11.8 19.8 46.6 8.6

26.7 38.5 56.3 40.3 58.9 88.3 12.6 21.1 47.8 8.6

RC 27.8 39.8 56.4 44.2 62.3 87.7 14.5 24.0 52.6 7.4

BP 28.9 40.3 56.2 43.2 61.4 87.9 14.2 23.4 51.7 7.8

RC + BP 29.4 41.0 56.4 44.0 62.3 88.3 14.3 23.9 52.4 7.6

Table 3: Ablation study on VG-RMATTERS. Recalls are in % and evaluated without scene graph constraints (k=50). Ablation

study on VG-RMATTERS. In a more balanced dataset, the relevance factor increases both CLSMACRO and IMMACRO

recalls, especially for smaller scene graphs.

a permutation invariant graph predictor that refines predic-

tions from MOTIFNET using attention over linguistic and

visual features of neighbors. RELDN [34] is not included

because we noticed that the implementation resulted in a

different evaluation protocol, where object pairs without re-

lations are filtered out. Since we aim to improve the preci-

sion of VRD and to output more relevant relations, we will

focus on results on small scene graphs.

On VG-IMP [27], our baseline slightly outperforms MO-

TIFNET. FOCUSEDVRD provides a significant improve-

ment in the class macro recall, from 38.1% to 44.4% and a 3

points improvement over our baseline. This does not trans-

late into the image macro recall, which slightly drops from

88.7% to 87.7% for the R@100 but is competitive on small

graphs. Scores on smaller scene graphs show that when

higher precision is needed, our model is competitive. Fur-

thermore, the higher macro recall shows that our model per-

forms much better on detecting less common relations and

is thus able to highlight information that makes an image

stand out. This translates into a higher recall when relations

are more balanced for each object pair, on VG-RMATTERS,

where the R@10 image macro recall increases from 39.6%

for MOTIFNET to 44.0% for FOCUSEDNET.

6.3. Ablation study

Table 3 shows the results of our model on VG-

RMATTERS and the influence of Relevance Modeling, with

a Relevance Classifier (RC) and Binary Potential (BP).

With the relevance factor, class and image macro recalls

of smaller scene graphs increase. RC has a higher recall

than BP for most settings, due to a lower number of pre-

dicted pairs. BP is useful at a higher count of relations,

smoothing the relation scores and increasing the number of

selected object pairs. The combination of both factors acts

as ensembling by improving this selection. Finally, a higher

class macro recall is linked with improved performance on

R@10 and R@20 but does does not necessarily lead to im-

proved R@100.

Figure 6 shows the the output FOCUSEDVRD with RC

and BP compared to the baseline and the ground truth. The

model is able to detect and focus on important object pairs.

This removes the false relation (flower, on, chair) but in-
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Figure 6: Image example from VG and associated scene

graph (top right), with extracted scene graphs of our base-

line (bottom left) and FOCUSEDVRD (RC+BP) (bottom

right).

creases the risk of predicting false relations, such as (chair,

sitting on, table).

6.4. Discussion

Predicting the relevance of a relation is difficult due to

the various factors it depends on, such as the size, loca-

tion, distances of objects as well as who is annotating. In-

deed, only 47% of the descripted regions of VG [12] are

annotated with a relation, which suggests that the relations

deemed relevant to a human being can be very different to

another human being and makes the signal during training

very noisy. Hence our choice to augment the learned clas-

sifier with frequency priors. Results in Tables 2 and 3 show

that our method significantly improves the class macro re-

call. Furthermore, in Figure 5, we observe that by focusing

on a smaller number of pairs, FOCUSEDVRD outperforms

MOTIFNET on most relations, with a significant margin for

several rare relations, such as laying on and painted on.

These improvements translate into significant improvement

of the image macro recall in the case of VG-RMATTERS,

which was constructed so that predicting the most frequent

relation is less viable. However, overall performance is

comparable between both datasets. This might come from

the higher proportion of ’person - clothing’ pairs. It makes

the task of finding which pairs to annotate easier and re-

duces the overall frequency of other relations. yu

7. Conclusion and Perspectives

In order to tackle the subject of Visual Relation Detec-

tion (VRD), we proposed a novel scene graph generation

process integrating an approximation of the relative rele-

vance of relations. This enables it to better handle the diver-

sity of relations than MOTIFNET, a state of the art method

for Relation Classification. The gain in performance is most

relevant on small scene graphs, which we focus on to de-

crease output noise.

A deep neural network is trained to predict the relevance

of each pair of objects in an image. The learnt relevance

score is added to a statistics-based prior, measured on the

training set. Integrated to the scene graph generation pro-

cess, this new factor increases the focus of predictions on

small sets of relevant pairs. We showed that this improves

relation detection in the case of limited training data, in-

creasing the average recall of classes from 38.1% to 44.4%.

Thus, this method is most useful for datasets where, like Vi-

sual Genome, relations are highly skewed towards a small

set of relations and when downstream applications rely on

detecting anomalies rather than capturing a high number of

relations. In such cases, it is important to predict several

probable relations on a small number of object pairs, so that

more meaningful relations are extracted. To further show

the impact of this approach, we proposed a new split of

the Visual Genome dataset [12] with a more balanced re-

lation distribution in the test set. This was motivated by the

small impact that performance on uncommon relations has

on usual performance metrics.

Finally, we showed that both elements of the relevance

classifier should be used in different applications. For ap-

plications requiring a high recall, the added priors are ben-

eficial. However, when focusing on a high precision, one

should only use the relevance classifier, which focuses pre-

dictions on a smaller number of relations.

Perspectives Study of the model output shows that

weighing by relevance increases the risk of predicting false

positives. Thresholding probabilities in order to remove

less likely relations would help increase the precision of the

model. Furthermore, on heavily skewed test sets, methods

aimed at targeting data imbalance are not very effective, be-

ing too heavily punished by the most frequent classes. We

plan to explore these methods, such as under-sampling, in

order to improve relation classification on VG-RMATTERS.

Finally, the proposed split is limited by the relation distri-

bution in Visual Genome. For this reason we would like to

collect complementary images containing rare relations and

with a higher diversity of object pairs.
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