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Abstract

We present an audio-visual multimodal approach for the

task of zero-shot learning (ZSL) for classification and re-

trieval of videos. ZSL has been studied extensively in the

recent past but has primarily been limited to visual modal-

ity and to images. We demonstrate that both audio and

visual modalities are important for ZSL for videos. Since

a dataset to study the task is currently not available, we

also construct an appropriate multimodal dataset with 33
classes containing 156, 416 videos, from an existing large

scale audio event dataset. We empirically show that the per-

formance improves by adding audio modality for both tasks

of zero-shot classification and retrieval, when using multi-

modal extensions of embedding learning methods. We also

propose a novel method to predict the ‘dominant’ modal-

ity using a jointly learned modality attention network. We

learn the attention in a semi-supervised setting and thus do

not require any additional explicit labelling for the modali-

ties. We provide qualitative validation of the modality spe-

cific attention, which also successfully generalizes to un-

seen test classes.

1. Introduction

Zero-shot learning (ZSL) refers to the setting when test

time data comes from classes that were not seen during

training. In the past few years, ZSL for classification has

received significant attention [1–9] due to the challenging

nature of the problem, and its relevance to real world set-

tings, where a trained model deployed in the field may en-

counter classes for which no examples were available dur-

ing training. Initially, ZSL was proposed and studied in the

setting where the test examples were from unseen classes

and were classified into one of the unseen classes only [6].

This however is an artificial/controlled setting. More re-

cent ZSL works thus focus on a setting where unseen test

examples are classified into both seen and unseen classes

[2, 9, 10]. The present work follows the latter setting known

as the Generalized ZSL.

The majority of work involving generalized ZSL [3, 10]
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Figure 1. Illustration of the proposed method. We jointly embed

all videos, audios and text labels into the same embedding space.

We learn the space such that the corresponding embedding vec-

tors for the same classes have lower distances than those of differ-

ent classes. Once embeddings are learned, ZSL classification and

crossmodal retrieval can be posed as a nearest neighbor search in

the embedding space.

has (i) worked with images, and (ii) used only visual repre-

sentations along with text embeddings of the classes. When

dealing with images, this is optimal. However, for the task

of video ZSL, the audio modality, if available, may help

with the task by providing complementary information. Ig-

noring the audio modality completely might even render

an otherwise easy classification task difficult, eg. if we are

looking to classify an example from the ‘dog’ class, the dog

might be highly occluded and not properly visible in the

video, but the barking sound might be prominent.

In this work, we study the problem of ZSL for videos

with general classes like, ‘dog’, ‘sewing machine’, ‘ambu-

lance’, ‘camera’, ‘rain’, and propose to use audio modality

in addition to the visual modality. ZSL for videos is rela-

tively less studied, cf. ZSL for images. There are several

works on video ZSL for the specific task of human action

recognition [11–13] but they ignored the audio modality as

well. Our focus here is on leveraging both audio and video

modalities to learn a joint projection space for audio, video

and text (class labels). In such an embedding space, ZSL

tasks can be formulated as nearest neighbor searches (Fig. 1
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illustrates the point). When doing classification, a new test

video is embedded into the space and the nearest class em-

bedding is predicted to be its class. Similarly, when doing

retrieval, the nearest video or audio embeddings are pre-

dicted to be its semantic retrieval outputs.

We propose cross-modal extensions of the embedding-

based ZSL approach based on triplet loss for learning such

a joint embedding space. We optimize an objective based

on (i) two cross-modal triplet losses, one each for ensuring

compatibility between the text (class labels) and the video,

and the text and the audio, and (ii) another loss based on

crossmodal compatibility of the audio and visual embed-

dings. While the triplet losses encourage the audio and

video embeddings to come closer to respective class em-

beddings in the common space, the audio-visual crossmodal

loss encourages the audio and video embeddings from the

same sample to be similar. These losses together ensure

that the three embeddings of the same class are closer to

each other relative to their distance from those of differ-

ent classes. The crossmodal loss term is an ℓ2 loss, and

uses paired audio-video data, the annotation being trivially

available from the videos. While the text-audio and text-

video triplet losses use class annotations available for the

seen classes during training, the crossmodal term uses the

trivial constraint that audio and video from the same exam-

ple are similar.

As another contribution, we also propose a modality at-

tention based extension, which first seeks to identify the

‘dominant’ modality and then makes a decision based on

that modality only if possible. To clarify our intuition of

‘dominant’, we refer back to the dog video example above,

where the dog may be occluded but barking is prominent. In

this case, we would like the audio modality to be predicted

as dominant, and subsequently be used to make the class

prediction. In case the attention network is not able to de-

cide a clear dominant modality the inference then continues

using both the modalities. This leads to a more interpretable

model which can also indicate which modality it is basing

its decision on. Furthermore, we show empirically that us-

ing such attention learning improves the performance, and

brings it to be competitive to model trained on a concatena-

tion of both modality features.

A suitable dataset was not available for the task of audio-

visual ZSL. Hence, we construct a multimodal dataset with

class level annotations. The dataset is a subset of a recently

published large scale dataset, called Audioset [14], which

was primarily created for audio event detection and main-

tains a comprehensive sound vocabulary. We subsample the

dataset to allow studying the task of audiovisual ZSL in a

controlled setup. In particular, the subsampling ensures that

(i) the classes have relatively high number of examples, with

the minimum number of examples in any class being 292,

(ii) the classes belong to diverse groups, eg. animals, vehi-

cles, weather events, (ii) the set of unseen classes is such

that the pre-trained video networks could be used without

violating the zero-shot condition, ie. the pre-training did not

involve classes close to the unseen classes in our dataset.

We provide more details in Sec. 4.

In summary, our contributions are as follows. (i) We in-

troduce the problem of audiovisual ZSL for videos, (ii) we

construct a suitable dataset to study the task, (iii) we pro-

pose a multimodal embedding based ZSL method for classi-

fication and crossmodal retrieval, (iv) we propose a modal-

ity attention based method, which indicates which modality

is dominant and was used to make the decision. We thor-

oughly evaluate our method on the dataset and show that

considering audio modality, whenever appropriate, helps

video ZSL tasks. We also show our method on standard

ZSL datasets and results for some existing ZSL approaches

for single-modality in our dataset as well. We also present

qualitative results highlighting the improved cases using the

proposed methods.

2. Related Work

Zero-shot learning (ZSL). ZSL has been quite popular for

image classification [1–9, 15–18], and recently has been

used for object detection in images as well [19–21]. The

problem has been often addressed as a task of embedding

learning, where the images and their class labels are em-

bedded in a common space. The two types of class em-

beddings commonly used in the literature are based on (i)

attributes like shape, color, and pose [2, 5, 6, 9], and (ii)

semantic word embeddings [2, 4, 7, 9]. Few works have

also used both the embeddings together [1, 8, 16]. Different

from embedding learning, few recent works [2, 9, 22, 23]

have proposed to generate the data for the unseen class us-

ing a generative approach conditioned on the attribute vec-

tors. The classifiers are then learned using the original data

for the seen classes and the generated data for the unseen

classes. This line of work follows the recent success of im-

age generation methods [24, 25]. The initially-studied set-

ting in ZSL refers to the one where the test examples were

classified into unseen test classes only [6]. However, more

recently the generalized version was proposed where they

are classified into both seen and unseen classes [3]. We ad-

dress this later more practical setting1.

Work on ZSL involving audio modality is scarce. We are

aware of only one very recent work, where the idea of ZSL

has been used to recognize unseen phonemes for multilin-

gual speech recognition [26].

Audiovisual learning. In the last few years, there has been

a significant growth in research efforts that leverage infor-

mation from audio modality to aid visual learning tasks and

1Some earlier video retrieval works were called zero-shot, however,

they are not strictly zero-shot in the current sense. Kindly see Supplemen-

tary material for a detailed discussion
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vice-versa. Audio modality has been exploited for applica-

tions such as, audiovisual correspondence learning [27–30],

audiovisual source separation [31, 32] and source localiza-

tion [33–35]. Among the representative works, Owens et

al. [28] used CNNs to predict, in a self-supervised way, if a

given pair of audio and video clip is temporally aligned or

not. The learned representations are subsequently used to

perform sound source localization, and audio-visual action

recognition. In a task of crossmodal biometric matching,

Nagrani et al. [36] proposed to match a given voice sam-

ple against two or more faces. Arandjelovic et al. [33] in-

troduced the task of audio-visual correspondence learning,

where a network comprising visual and audio subnetworks

was trained to learn semantic correspondence between au-

dio and visual data. Along the similar lines, Arandjelovic

et al. [29] and Sencoak et al. [35] investigated the prob-

lem of localizing objects in an image corresponding to a

sound input. Gao et al. [32] proposed a multi-instance

multilabel learning framework to address the audiovisual

source separation problem, where they extract different au-

dio components and associate them with the visual objects

in a video. Ephrat et al. [37] proposed a joint audiovisual

model to address the classical cocktail party problem (blind

speech source separation). Zhao et al. [31] proposed a self-

supervised learning framework to address the problem of

pixel-level (audio) source localization [38].

3. Coordinated Joint Multimodal Embeddings

We now present our method in detail. Fig. 1 illustrates

the basic idea and Fig. 2 gives the high level block diagram

of the proposed method. Our method works by projecting

all three inputs, audio, video and text, onto a common em-

bedding space such that class constraints and crossmodal

similarity constraints are satisfied. The class constraints

are enforced using bimodal triplet losses between audio and

text, and video and text embeddings. Denoting ai , v i , t i

as the audio, video and text embedding (we explain how we

obtain them shortly) for an example i, we define the bimodal

triplet losses as follows

L T A (ap, t p, aq, t q) = [d(ap, t p) � d(aq, t p) + δ]
+

(1)

L T V (vp, t p, vq, t q) = [d(vp, t p) � d(vq, t p) + δ]
+

(2)

where, (ap, vp, t p) and (aq, vq, t q) are two example videos

with t p 6= t q and both t p, t q belong to a seen class each.

These losses force the audio and video embeddings to be

closer to the correct class embedding by a margin δ > 0 cf.

the incorrect class embeddings.

We also use a third loss to ensure the crossmodal simi-

larity between the audio-video streams that come from the

same video in the common embedding space. This loss is

simply a ℓ2 loss given by

L AV (ap, vp) = kap � vpk22. (3)

�µ�G�R�J�¶�����O�D�E�H�O���I�R�U���V�H�F�R�Q�G���H�[�D�P�S�O�H

�V�H�F�R�Q�G���F�O�D�V�V���H�[�D�P�S�O�H���Y�L�G�H�R���D�Q�G���D�X�G�L�R

�I�L�U�V�W���F�O�D�V�V���H�[�D�P�S�O�H���Y�L�G�H�R���D�Q�G���D�X�G�L�R

�µ�F�D�W�¶�����O�D�E�H�O���I�R�U���I�L�U�V�W���H�[�D�P�S�O�H

�V�S�H�F�W�U�R�J�U�D�P

�V�S�H�F�W�U�R�J�U�D�P

Figure 2. Block diagram of the proposed approach. Pairs of video,

audio and text networks share weights.

The full loss function is thus a weighted average of these

three losses.

L = λ
X

p2T

L AV + γ
X

p;q2T
yp 6=yq

f αv L T V + αaL T A g , (4)

where, λ, γ, αv , αa are the hyperparameters that control the

contributions of the different terms, and T is the index set

over the training examples f (ai , v i , yi )ji = 1, . . . , Ng with

yi being the class label. With these three losses over all pair-

wise combinations of the modalities, ie. L T V , L T A , L AV ,

we force the embeddings from all the three modalities to re-

spect the class memberships and similarities.

Representations and parameters. We now need to specify

the parameters over which these losses are optimized. We

represent each of the three types of inputs, ie. audio, video,

and text, using the corresponding state-of-the-art neural net-

works outputs which we denote as fa(�), fv (�), ft (�). We

project each representation with corresponding neural net-

works which are small MLPs, denoted as ga(�), gv (�), gt (�)
with parameters θa , θv , θt (we give details about all these

networks in the implementation details Sec. 5). Finally,

the representations are obtained by passing the input au-

dio/video/text through the corresponding networks sequen-

tially, ie. x = gx � fx (X) where x 2 a, v , t and X is the

corresponding raw audio/video/text input. We keep the ini-

tial network parameters fixed to be that of the pretrained

networks and optimize over the parameters of the projec-

tion networks. Hence, the full optimization is given as,

θ�
a , θ

�
v , θ

�
t = argmin

� a ;� v ;� t

L (T ). (5)

We train for the parameters using standard backpropagation

for neural networks.
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