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Abstract

Visual-semantic embedding enables various tasks such

as image-text retrieval, image captioning, and visual ques-

tion answering. The key to successful visual-semantic em-

bedding is to express visual and textual data properly by

accounting for their intricate relationship. While previous

studies have achieved much advance by encoding the visual

and textual data into a joint space where similar concepts

are closely located, they often represent data by a single

vector ignoring the presence of multiple important compo-

nents in an image or text. Thus, in addition to the joint em-

bedding space, we propose a novel multi-head self-attention

network to capture various components of visual and tex-

tual data by attending to important parts in data. Our ap-

proach achieves the new state-of-the-art results in image-

text retrieval tasks on MS-COCO and Flicker30K datasets.

Through the visualization of the attention maps that cap-

ture distinct semantic components at multiple positions in

the image and the text, we demonstrate that our method

achieves an effective and interpretable visual-semantic joint

space.

1. Introduction

Various computer vision applications such as image cap-

tioning, visual question answering (VQA), and image-text

retrieval rely on multi-modal information from images and

natural languages. Visual-semantic embedding is to map

high-dimensionally represented visual and textual features

in the common space where their complex relationship is

captured, and it is generally assessed by image-text re-

trieval. The key to visual-semantic embedding is how ac-

curately input data from each modality are expressed. One

popular approach for learning the visual-semantic embed-

ding is to employ a two-path network, which represents vi-

sual and textual data separately, using the mono-modal en-

coders [12, 4, 3].

Recent works on two-path networks collapse the visual

features into a single vector by fully connected layer [12, 4]

or selective spatial pooling [3] and the textual features using

the last hidden state of the recurrent neural network. How-

ever, since an image or a sentence consists of a set of sub-

components, there can be various descriptions for a single

image depending on where the focus is placed within the

image, and it is important to propagate information about

each component separately when embedding the respective

semantics. Previous methods can easily identify the deci-

sive features, but rarely consider the relative importance of

each feature and complex semantics.

Motivated by this observation, we propose a multi-head

self-attention network for visual-semantic embedding that

captures various aspects and components in images and

texts. Departing from previous methods, our proposed

model generates multiple attention weights focusing on

different visuospatial features of the image and semantic

features of the sentence in each encoder. Features with

a stronger focus are considered more important and have

more influence toward the final representation. By explic-

itly learning ‘on what point in the image’ and ‘on which

word in the sentence’ to focus from various perspectives,

our model provides more abundant information about vi-

sual and textual data for joint embedding. In other words,

our model encodes important regions and words separately

and weighs the relative importance between them, which is

simply collapsed by selective spatial pooling or even single

attention.

We evaluate visual-semantic embedding generated by

our proposed model on image-text retrieval tasks using the

benchmark MS-COCO [16] and Flickr30K [31] datasets.

The results show that our multi-head attention network es-

tablishes the new state-of-the-art record on the two bench-

mark datasets. Most notably, on Flickr30K [31], our em-

bedding network achieves the relative improvement com-

pared to the current state-of-the-art method [10] by 25.4%

in sentence retrieval, and 27.5% in image retrieval. On MS-

COCO [16], our model also outperforms the current state-

of-the-art methods by a large margin. In addition, we per-

form ablation studies and visualization of the resulting at-

tention maps to demonstrate that the proposed methods of

self-attention, multi-head, and diversity regularization each

meaningfully contribute to the improved performance.
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Contribution. Overall, our main contributions are as

follows:

1. We propose a new visual-semantic embedding network

based on the multi-head self-attention module that ex-

tracts multiple aspects of semantics in visual and tex-

tual data.

2. We demonstrate that our model successfully learns

semantically meaningful joint embedding by setting

new state-of-the-art records in the image-text retrieval

on standard benchmark datasets: MS-COCO and

Flickr30K.

3. From the advantage of the interpretability of our

model, we validate the effectiveness of multi-head

self-attention and diversity regularization.

4. While the method of generating multiple attention is

used in the natural language process [17] [23] [25], to

the best of our knowledge, this is the first work that

generates multiple self-attention maps for image en-

coding as well as visual-semantic embedding.

2. Related Work

Visual-Semantic Embedding. Learning visual-semantic

embedding aims to map natural images and texts in a com-

mon space which captures the complex relations between

them and is evaluated by performing image-text retrieval

tasks. Recent deep learning based approaches [12, 4, 3,

28] proposed two-path architectures for learning visual-

semantic embedding, which generates image and text rep-

resentations separately through each mono-modal encoder

and connects the two-path with fully connected layers.

Kiros et al. [12] first attempted to create a multi-modal joint

embedding space learned using a two-path network with

triplet ranking loss. Faghri et al. [4] suggested advanced

triplet ranking loss incorporating hard negative mining and

showed a significant improvement in image-text retrieval

tasks while keeping the two-path architecture. The afore-

mentioned works used the fully connected layer of the con-

volutional network trained on the classification task [22]

as the image encoder and recurrent neural network [9] as

the text encoder. For further improvements, Engilberge et

al. [3] extracted one-dimensional image representation by

applying selective spatial pooling to image features to en-

hance the visual feature encoder. Huang et al. [10] proposed

learning semantic concepts and order method to enhance the

image representation, which is the current state-of-the-art

performance in the image-text retrieval tasks. Wehrmann et

al. [28] proposed a character-level convolution text encoder

using a modified Inception Module [24] to improve the tex-

tual encoder. Wu et al. [30] improved robustness of visual

semantic embedding through structured semantic represen-

tations of textual data.

With a promising improvement of performance gained by

integrating the attention network on many tasks, several

works [20, 14] have tried to perform image-text retrieval

tasks with the attention mechanism. DAN [20] applies a

cross-attention network, which focuses on the relevant parts

of the features between images and texts through multiple

step process. Lee et al. [14] proposed the cross-attention

network considering relative importance between localized

regions of an image and the words that requires the bound-

ing box ground truth which are expensive to pre-train object

proposals as used in Fast-RCNN [6]. In this study, while

maintaining two-path, we utilize the self-attention mecha-

nism to focus on important regions and words without ob-

ject proposals for visual-semantic embedding.

Self-Attention. Self-attention networks [21], also called

intra-attention networks, are trainable end-to-end, that is,

simultaneously train feature extraction and attention gener-

ation. There have been several approaches utilizing self-

attention to focus on the important parts in order to com-

pute a representation of image and text data [21, 29, 1, 19].

From the motivation to focus on various aspects of the data,

several previous works generated attention weights of the

same input. Vaswani et al. [25] improved machine transla-

tion by attending to multiple positions of encoded features.

Sukhbaatar et al. [23] represented the question sentence into

a continuous vector by generating attention sequentially for

question and answering task. Lin et al. [17] have proposed a

structured self-attention sentence embedding that represents

the sentences with multiple points of attention. MCB [5]

achieved a core improvement for visual question answering

by their own fusion method and attention mechanism that

computes one attention weight from multiple image fea-

tures and the text feature. In contrast with previous studies,

we propose a multi-head self-attention network which gen-

erates multiple attention weights that encode the varying lo-

calized regions from various perspectives for an image. In

our proposed model, self-attention apprehends the various

semantics in the image and text for learning visual-semantic

embedding.

3. Approach

In order to reflect various semantics of visual and textual

data in the joint embedding space, we propose multi-head

self-attention model generating multiple attention weights,

where each weight focuses on the different regions in the

image and on the different words in the sentence. Basi-

cally, the proposed model follows the two-path network that

consists of separate image and text encoders, shown in Fig-

ure 1. We describe the proposed model in four components:

(1) visual feature extractor, (2) textual feature extractor, (3)

multi-head self-attention, and (4) contrastive triplet ranking

loss with diversity regularization.
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Figure 1: Details of the proposed architecture for learning semantic-visual embedding with multi-head self-attention. For each encoder,

features of image(V ) and sentence(H) are extracted by ResNet and SRU. On top of the feature extractor, multi-head self-attention network

generates attention weight vectors. The final embedding of the image and text is a 2-dimensional matrix.

3.1. Visual Feature Extractor

Similar to [3], we use a ResNet-152 [8] pre-trained on

the ImageNet classification task to extract visual features

in the images. In accordance with our purpose, we elim-

inated all of the fully-connected layers and global aver-

age pooling and only used the convolutional layers to ex-

tract 3-dimensional feature maps preserving the spatial in-

formation of the images. We then superinduce an addi-

tional 1×1 convolutional layer to perform linear adaptation

and to make features in the desired dimension of d. Given

an image X ∈ (0,255)W×H×3 where W, H are the width

and height of the image, the transformed ResNet-152 out-

puts the 3-dimensional visual feature of size V ∈ Rw×h×d

where (w,h) = (W
32
, H
32
). Then, we flatten the 3-D feature

map into a 2-D feature map as Vf = (v1, v2, . . . , vl), where

l = w × h and v1,2,...,l ∈ R
d are features containing spatial

information in the images.

3.2. Textual Feature Extractor

Before extracting feature of the sentences, each sentence

is divided into a word unit through the tokenizer and each

word is expressed as a vector representation. Given a sen-

tence S with length of n tokens, S = (w1, w2, . . . , wn),
S ∈ Rk×n. Here, wi is a k-dimensional word vector of a

i-th word in the sentence and S is a set of word vectors

that are independent of each other. In this study, we em-

ploy k = 620 word embedding used in [13] for the word

representation. To extract sentence features containing the

dependency between each word in a sentence, we use the

4-layer simple recurrent units (SRU) [15] with a dropout:

hi =
ÐÐ→
SRU(wi, hi−1) where hi is a i-th hidden state of

SRU. In contrast to other works which use only the last hid-

den state hn from recurrent neural networks as a sentence

feature, we use all the hidden states as a sentence feature

where each hidden state represents the context-aware word

in the sentence. Thus, we define the final sentence feature

as H = (h1, h2, . . . , hn), h1,2,...,n ∈ R
d where d is the di-

mension of the hidden states.

3.3. Multi­Head Self­Attention

We apply the self-attention module on the image and text

encoders separately to focus on important spatial regions for

image representation and words for sentence representation.

Moreover, due to the complex relationship between images

and texts, it is difficult to contain the semantic meanings of

the image and text within a single vector calculated by a sin-

gle attention weight. To solve this problem, we propose the

multi-head self-attention mechanism on the image and text

encoder to capture the diverse aspects of semantic mean-

ing in the visual and textual data. Another advantage of the

multi-head attention architecture is that the representation

vectors of an image and sentence retain the important infor-

mation that could be missed out on single attention which

captures globally important information in the whole image

scene or sentence. On top of the feature extractor of each

modality, the multi-head self-attention module is applied.

In case of the image encoder, our goal is to learn a set of

attention weight vectors used for refining important spatial

features, where each attention weight vector focuses on dif-

ferent subsets of spatial feature. To infer the multiple at-
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tention weight vectors, the multi-head self-attention module

takes the flattened image features as an input and outputs 2-

dimensional attention weight matrix (M ), as illustrated in

Figure 1. In particular, the flattened features pass through a

multi-layer perceptron (MLP) with one hidden state and one

activation function. Then, we apply the softmax along the

second dimension of output from MLP to ensure the com-

puted each attention weights sum up to 1. Therefore, each

row of the attention weight matrix attends to a different part

in the image. In short, the multi-head attention weight ma-

trix is computed as follows:

M = softmax(WaReLU(WbV
T
f )) (1)

where V T
f ∈ R

d×l, Wb ∈ R
da×d ,Wa ∈ R

r×da , M ∈

(0,1)r×l, and da is a hidden state dimension and r is the

number of attention weight. In the case of r = 1, we denote

it as single-head self-attention where the model calculates

only one attention weight for each image spatial feature.

With a set of attention weight vectors, the model gener-

ates 2-dimensional image embedding matrix through a lin-

ear combination of the flattened image feature,

F =MVf (2)

where F ∈ R
r×d is an image embedding matrix which

consists of r-vectors. More specifically, given the F =
(f1, f2, . . . , fr), each row vector of F is calculated as fr =
l

∑
l=1

Mr,l ∗ vl where fr ∈ R
d and l = w × h.

The same attention module is applied in the text encoder re-

placing image features with sentence features. As a result

of the text encoder, the sentence embedding matrix (G) is

generated with a set of attention weight vectors (Q).

To map image and text embedding matrix into a joint em-

bedding space, we concatenate r-vectors and project into a

single vector using additional projection layer with normal-

ization.

Further, to visualize the attention maps in Section 4.3, we

reshape each attention weight vector into a feature size of

(w,h) and resize into the same size as the input image us-

ing bi-linear interpolation. For multi-head self-attention, r-

attention heatmaps where each heatmap focuses on a differ-

ent local region in an image are provided.

3.4. Contrastive Triplet Ranking Loss with Diver­
sity Regularization

We basically use the triplet ranking loss with hard neg-

ative (LossT ), which has shown a significant improve-

ment on image-text retrieval tasks in the previous stud-

ies [4, 3, 14]. Since the multi-head attention mechanism

can suffer from the redundancy problem where each atten-

tion vector focuses on the very similar region, we use the

diversity regularization loss (LossD) with a coefficient(λ)

employed in [17]:

Losstotal = LossT + λLossD (3)

Given a sampled training set of image and text pairs in a

batch: B = {(Xn, Yn)}
N

n=1 where Xn is the n-th image

and Yn is the n-th sentence in a batch, the image vector xn

denote the image Xn and sentence vector yn denote the sen-

tence Yn in the joint embedding space. Then, triplet ranking

loss with hard negative is defined as:

LossT =
1

N

N

∑
n=1

( max
m∈N,m≠n

[α − cos(xn, yn) + cos(xn, y
−

m)]+

+ max
m∈N,m≠n

[α − cos(yn, xn) + cos(yn, x−m)]+)

(4)

where y−m , x−m are negative instances, (xn, yn) is a posi-

tive pair in a batch, α is the margin and [t]+ = max(0, t).
The contrastive triplet ranking loss encourages the matched

embedding pairs to be closer at least margin α apart than

mismatched embedding pairs in the joint embedding space.

Following the hard negatives mining strategy, the loss func-

tion focuses only on a single contrastive example that has

the highest similarity score for image and text in the batch

while not similar in meaning.

To ensure the diversity of multiple attention weight vectors

in each encoder, we add the diversity regularization loss de-

fined as:

LossD = ∥(MMT − I)∥2F + ∥(QQT − I)∥2F (5)

where M and Q is the R-multiple attention weight matrix

from the each image and text encoder, I ∈ Rr×r is the iden-

tity matrix and ∥ ⋅ ∥F denotes the squared frobenius norm.

Minimizing the regularization term with triplet ranking loss,

the matrices M and Q become sparse so that each of the

attention vector focuses on the different region and word in

each encoder. We show the effect of the diversity regular-

ization in Section 4.4.

3.5. Implementation Details

Image Encoder First, we take a random rectangular crop

from an image and resize the image into a fixed size of (256

× 256) for training images. Then, we use ResNet-152 and

1×1 convolution where the output dimension (d) is set to

2400. We set a hidden state of MLP, da, to 350 and the joint

embedding dimension, d′ to 2400. We use 0.5 probability

of dropout on the MLP of self-attention mechanism and the

projection layer for the joint embedding.

Text Encoder We use tanh and 0.25 dropout in the SRU

text encoder. The self-attention mechanism and the projec-

tion layer is set the same as the image encoder. Unlike the

self-attention mechanism in the image encoder, we use tanh

instead of relu between MLP.
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Method Sentence Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10

1K Test Images

Order-embeddings [26] 46.7 - 88.9 37.9 - 85.9

Embedding network [27] 50.4 79.3 89.4 39.8 75.3 86.6

2-Way Net [2] 55.8 75.2 - 39.7 63.3 -

CHAIN-VSE [28] 61.2 89.5 95.8 46.6 81.9 90.92

NAN [10] 61.3 87.9 95.4 47.0 80.8 90.1

UniVSE [30] 64.3 89.2 94.8 48.3 81.7 91.2

VSE++ [4] 64.6 90.0 95.7 52.0 84.3 92.0

DPC [32] 65.6 89.8 95.5 47.1 79.9 90.0

GXN [7] 68.5 - 97.9 56.6 - 94.5

Engilberg et al. [3] 69.8 91.9 96.6 55.9 86.9 94.0

SCO [10] 69.9 92.9 97.5 56.7 87.5 94.8

Ours (1-head) 72.4 93.7 97.5 57.5 88.0 94.4

Ours (5-head) 72.6 93.7 97.6 58.5 88.0 94.5

Ours (10-head) 73.5 94.2 98.1 59.1 88.5 94.8

5K Test Images

Order-embeddings [26] 23.3 - 84.7 31.7 - 74.6

VSE++ [4] 41.3 71.1 81.2 30.3 59.4 72.4

GXN [7] 42.0 - 84.7 31.7 - 74.6

SCO [10] 42.8 72.3 83.0 33.1 62.9 75.5

Ours (10-head) 49.3 78.3 87.1 36.2 67.2 78.7

Table 1: Results of experiments on MS-COCO, the best in bold.

Training Process We set the margin of triplet ranking loss,

α, to 0.2 and the coefficient of diversity regularization to

0.1. We use the Adam optimizer for the whole training.

We first update only the last projection layer of the image

encoder for the 4 epochs with 0.005 initial learning rate.

Then, we update the SRU for the 15 epochs with 0.1 de-

cayed learning rate. Finally we train the rest of the param-

eters in the image encoder together for the 40 epochs with

0.1 decayed learning rate.

4. Experiment

We first evaluate the quantitative result of our cross-

modal retrieval model on the standard image-text aligned

datasets, MS-COCO and Flickr30K, and compare our mod-

els with recent other methods. Then, we perform addi-

tional experiments to demonstrate that the self-attention,

multi-head, diversity regularization on each encoder con-

tribute to respective performance improvement. Addition-

ally, through visualization of the attention maps, we quali-

tatively show how our model works and what our model has

propagated into the joint embedding space. Our pytorch im-

plementation is available as open source.1

Dataset and Evaluation Metric. MS-COCO and

Flicker30K datasets consist of 123,287, 31,783 images re-

spectively and 5 captions are annotated for each image. We

follow training/validation/test splits used in [11]: 1)MS-

COCO, 113,287 training, 5,000 validation, 5,000 test im-

ages. 2)Flickr30K, 29,783 training, 1,000 validation, 1,000

test images. For comparing the performance of our model

1Github: https://github.com/GeondoPark/MHSAN
2We use the bidirectional SRU in the text extractor for this results.

Method Sentence Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10

2-Way Net [2] 49.8 67.5 - 36.0 55.6 -

VSE++ [4] 52.9 80.5 87.2 39.6 70.1 79.5

DAN [20] 55.0 81.8 89.0 39.4 69.2 79.1

NAN [18] 55.1 80.3 89.6 39.4 68.8 79.9

DPC [32] 55.6 81.9 89.5 39.1 69.2 80.9

SCO [10] 55.5 82.0 89.3 41.1 70.5 80.1

Ours (1-head) 66.2 89.8 93.9 49.0 79.0 86.5

Ours (5-head) 67.5 89.6 94.8 51.8 80.0 87.8

Ours (10-head)2 69.6 92.2 95.8 52.4 80.7 88.6

Table 2: Results of experiments on Flickr30K, the best in bold.

with state-of-the-art methods in image-text retrieval, we re-

port the same evaluation metric with previous works [4, 3,

14, 28, 10]. Recall@K of the text retrieval is the percentage

of the correct text being ranked within the top-K retrieved

results, and vice versa. For MS-COCO dataset, we addition-

ally report averaging R@K results, which are performed 5

times on 1,000-image subsets of the test set and testing on

the full 5,000 test images.

4.1. Comparison with the state­of­the­art

MS-COCO Retrieval Task. Table 1 shows the quantita-

tive results of our model on MS-COCO dataset. We de-

note our models with the number of attention weight vec-

tors (#-head), which is the same in the image and text en-

coders. Comparing with recently proposed methods, our

model with 10-head attention network achieves the new

state-of-the-art performance on MS-COCO datasets. On the

1K test set experiment, our models outperform SCO [10],

the current state-of-the-art based on the visual-semantic em-

bedding method, by 5.2% in sentence retrieval (R@1) and

by 4.2% in image retrieval (R@1). Also, our best results

on 5k test set experiment show 15.2% and 9.4% relative

improvement in sentence retrieval (R@1) and in image re-

trieval (R@1), respectively.

Flickr30K Retrieval Task. We also report the experimen-

tal results on Flickr30K, which is a relatively smaller dataset

in Table 2. The network architecture and dimension of the

joint embedding are the same as those used for MS-COCO.

Compared to the recently proposed methods, our model

achieves the best performance across all measures with a

large gap. Our model with 10-head relatively improves

25.4% on sentence retrieval (R@1) and 27.5% on image

retrieval (R@1) compared with the current state-of-the-art

score from SCO [10]. This result also demonstrates that our

model works well for small dataset, which can cause overfit-

ting emerged in the previous two-path architectures [3, 28].
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Input data

Figure 2: Comparison of single-head (self-attention) with spatial pooling (without attention)

Image Encoder Text Encoder Sentence Retrieval(R@1) Image Retrieval(R@1)

W/O attention [3] W/O attention [3] 69.8 55.9

Our image encoder(1-head) W/O attention [3] 70.1 55.8

W/O attention [3] Our text encoder(1-head) 69.9 56.2

Table 3: Effect of self-attention (1-head) in each encoder. We denote the image encoder using selective spatial pooling and the text encoder

using the last hidden state which are used in Engilberg et al. [3] as W/O attention. We report only R@1 for effective comparison.

4.2. Comparison of Self­Attention and Spatial Pool­
ing

In this subsection, we show that the single-head self-

attention improved the performance of retrieval tasks com-

pared to the selective spatial pooling [3] that did not use the

attention mechanism. For this experiment, we use the MS-

COCO dataset. To see the effect of the single-head self-

attention mechanism at each encoder, we apply the single-

head attention to each encoder separately. Table 3 shows

that our model with a single-head attention at each en-

coder slightly improves the performance in the image-text

retrieval task.

Visualization. We validate qualitatively why the self-

attention performs better than the network using selective

spatial pooling [3] through visualization of the attention

heatmaps. In Figure 2, we present a comparison of atten-

tion heatmap computed by our model with the single-head

and the selective spatial pooling heatmaps. For visualizing

which region is considered for embedding in the selective

spatial pooling, we employ the segmentation method pro-

posed in [3] substituting a phrase with a full sentence. We

observe that self-attention with a single-head captures the

missing parts on the selective spatial pooling, e.g. the train

contained in descriptions of the image as shown in Figure 2.

Through the visualization, we demonstrate that our model

is more suitable for visual semantic embedding, where the

encoding of rich details is necessary.

4.3. Comparison of Multi­Head Self­Attention and
Single­Head Self­Attention

We improve the performance of image-text retrieval

tasks by extending our model to multi-head self-attention

as shown in Table 1 and Table 2. To observe the effect of

the number of attention weight vectors in each encoder, we

experiment by fixing one encoder without self-attention and

changing the number of attention maps in the other. Table 4

shows that more attention maps result in better performance

and we achieve the state-of-the-art results on image-text

retrieval by using 10-head self-attention in both encoders.

Also, we observe that applying the multi-head self-attention

Image Encoder Text Encoder Sentence Retrieval(R@1) Image Retrieval(R@1)

Our image encoder(1-head) W/O attention 70.1 55.8

Our image encoder(5-head) W/O attention 70.9 56.2

Our image encoder(10-head) W/O attention 71.1 57.1

W/O attention Our text encoder(1-head) 69.9 56.2

W/O attention Our text encoder(5-head) 71.2 57.4

W/O attention Our text encoder(10-head) 71.7 58.0

Our image encoder(1-head) Our text encoder(1-head) 72.4 57.5

Our image encoder(10-head) Our text encoder(10-head) 73.5 59.1

Table 4: Effect of the number of heads in each encoder. We denote the image encoder using selective spatial pooling and the text encoder

using the last hidden state which are used in Engilberg et al. [3] as W/O attention. We report only R@1 for effective comparison.
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(b) Ours (5-head)

(c) Ours (10-head)

(a) Ours (1-head)

Figure 3: An example of image attention heatmaps shows the comparison of ours with varying numbers of attention (multi-head). While

self-attention with single-head (a) is globally collapsing the street, the crowd, and the person riding the bike in one attention map, the

multi-head self-attention (b),(c) show that the,they are attended to separately in multiple attention maps.

(b) Ours (5-head)

(c) Ours (10-head)

(a) Ours (1-head)

Figure 4: An example of image attention heatmaps show the comparison of ours with varying numbers of attention (multi-head). While

self-attention with single-head (a) is globally collapsing the green field with other objects such as the cow in one attention map, the

multi-head self-attention (b),(c) show that the they are attended to separately in multiple attention maps.

only to the text encoder is more effective than the image en-

coder only.

Visualization. To observe how the image is encoded into

the joint space with our proposed model, we visualize the

attention heatmaps learned by the model by varying the

number of heads in Figure 3, 4. Although self-attention

with a single-head captures the globally important region

of the image, the attention weights are distributed over all

important region of the image as shown in Figure 3, 4 (a).

On the other hand, the model with 5-head separately pro-

vide the information of different semantic regions by gen-

erating five attention weight vectors as shown in Figure 3, 4

(b). Comparing ours (10-head) to ours (5-head), we show

clearly that the object-level regions in the image are concen-

trated in each attention heatmap as visualized in Figure 3, 4

(c). This result verifies that our model with the multi-head

self-attention provides the diverse aspects of semantics in

the image to visual-semantic embedding, resulting in bet-

ter performance than the single-head self-attention. More-

over, we are able to interpret the meaning of each vector

in the image embedding using attention heatmaps. For ex-

ample, as shown in the first attention map in Figure 3 (c),

the first row of the embedding matrix (F ) in 10-head means

the semantics of the bike in the image and the fourth row of
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Figure 5: Effect of diversity regularization term. We train our model (10-head) (a) with diverse regularization term in loss (coefficient=0.1)

and (b) without diverse regularization term in the loss.

Diversity Regularization Sentence Retrieval Image Retrieval Diversity Loss

W/ 73.5 59.1 5.59

W/O 72.3 58.4 7.36

Table 5: Impact of diversity regularization on performance of retrieval. The lower the diversity loss, the more diverse the local regions

focused by the multiple attention maps.

embedding matrix (F ) means the person riding the bike as

shown in the fourth attention map.

4.4. Effect of Diversity Regularization in Loss

In this subsection, we experiment to observe the effect of

diversity regularization in the loss. For comparison, we re-

port the average diversity loss value described in equation 5

on the 5k test set and performance of image-text retrieval

tasks come from our model (10-head) trained with and with-

out diverse regularization term in Table 5. These results in

Table 5 show that diversity regularization has a great ef-

fect on image-text retrieval performance. We conjecture

that diversity regularization encourages encoded vectors to

contain various semantic meanings in an image, reducing

the redundancy of the encoded vectors and attention weight

vectors.

Visualization. We qualitatively present the multiple atten-

tion maps focusing on more distinct local regions by intro-

ducing the diversity regularization. As shown in Figure 5,

the diversity regularization term in the loss function makes

attention matrix sparse, which encourages different regions

to be captured by each attention map. Therefore, the image

embedding encodes more distinct components in an image,

resulting in an improvement of performance on the image-

text retrieval tasks.

5. Conclusion

We presented an interpretable and powerful multi-head

self-attention network for visual-semantic embedding. Dif-

ferent from existing visual semantic embedding models, our

proposed network represents visual and textual data in mul-

tiple vectors generating multiple attention weights where

each weight encodes a different part in the data. Further-

more, we enhance the model with diversity regularization

loss to address the redundancy problem where the multi-

ple attention mechanism provides similar representations

for the data. Experiments on two benchmark datasets show

that our model outperforms state-of-the-art visual semantic

embedding models by a large margin. Through the visual-

ization of attention maps, we demonstrate that our proposed

method provides various aspects of visual and textual data

by encoding semantically distinct parts of the image and

the text separately. Notably, our model is able to achieve

superior performance without any other resources such as

bounding box or image segmentation datasets. Since we

achieve the significant improvement by applying the multi-

head attention module independently in a modality encoder,

we expect that our method can be widely applied for other

computer vision tasks such as image classification, visual

question answering ,and semantic segmentation.
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