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Abstract

Recognition of human actions and associated interac-

tions with objects and the environment is an important prob-

lem in computer vision due to its potential applications in a

variety of domains. Recently, graph convolutional networks

that extract features from the skeleton have demonstrated

promising performance. In this paper, we propose a novel

Spatio-Temporal Pyramid Graph Convolutional Network

(ST-PGN) for online action recognition for ergonomics risk

assessment that enables the use of features from all levels of

the skeleton feature hierarchy. The proposed algorithm out-

performs state-of-art action recognition algorithms tested

on two public benchmark datasets typically used for postu-

ral assessment (TUM and UW-IOM). We also introduce a

pipeline to enhance postural assessment methods with on-

line action recognition techniques. Finally, the proposed

algorithm is integrated with a traditional ergonomics risk

index (REBA) to demonstrate the potential value for assess-

ment of musculoskeletal disorders in occupational safety.

1. Introduction

Human action recognition has been a widely studied re-

search topic in computer vision for several decades. The

task is to infer the human action and activity from still

images or video frames. Solutions to this important and

challenging problem have traditionally been applied to do-

mains such as surveillance, entertainment, robotics, video

retrieval, and intelligent driving assistance systems [38, 34,

64]. Recently, there are emerging applications that involve

assessment of human performance for virtual fitness, health

monitoring, training, and ergonomics risk assessment for

occupational safety [35, 10, 40]. These applications have

unique requirements that may involve simultaneous associ-

ation of time varying pose with action and object interac-

tion, and relating such information for computational mod-
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Figure 1: Our model (ST-PGN) takes a sequence of skele-

ton input produced by a pose extraction unit (like LCR-Net

[42]) and does early action recognition. The skeleton se-

quence along with the activity labels go to the REBA com-

putation unit to assess the ergonomics risk while testing.

eling and prediction of various biomechanical indicators.

Vision only systems are non-invasive and less expensive al-

ternatives to study these problems as opposed to expensive

drift prone motion capture systems and wearable sensors

[33, 5]. Depending on the application, human action recog-

nition can be formulated in an online or off-line setting. In

most applications, processing is performed off-line, making

use of the entire video sequence without strict limitations on

computational resources. In such cases, the typical assump-

tion is that the start and end points of the action is known

[9, 32] and the training video is pre-segmented into vari-

ous action classes. Recent advances in hardware and GPU

performance has led to the emergence of many online appli-

cations, where the requirement is to process video streams

in real-time and without a priori knowledge of the transi-

tions between actions [28, 29, 50]. Generalization of action

recognition algorithms is a challenging and unsolved prob-

lem. Ideally, the method should generalize to various envi-

ronments and deal with cluttered backgrounds, occlusions,

and viewpoint variations. While end to end video to action
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Figure 2: The Feature Pyramid Convolutional Graph Network pipeline.

classification have shown great promise, generalization is

achieved through domain adaptation [11, 2] or using inter-

mediate skeletal representations that are robust to these vari-

ations [60, 41]. In particular, skeleton-based features appear

to produce favorable results since human pose is typically

a consistent representation of action across people and con-

text. Among them, recent work based on graph convolu-

tional networks that extract meaningful features from the

skeleton have achieved good performance [60, 24].

The work in this paper is inspired by emerging applica-

tions involving human performance assessment in various

domains including health, fitness, rehabilitation, and occu-

pational safety. In particular, we consider specific chal-

lenges for real-time ergonomics risk assessment in com-

plex environments such as manufacturing assembly. The re-

quirements include correlation of action with the time vary-

ing posture and associated ergonomics and biomechanical

risk. The ultimate goal is to produce reliable estimates of

pose, action, and associated ergonomics indicators in order

to identify the risk of musculoskeletal disorders associated

with acute and repetitive tasks.

Contributions of this work. We propose a novel real-

time Spatio-Temporal Pyramid Graph Convolutional Net-

work (ST-PGN) for action recognition that enables the use

of features from all levels of the skeleton feature hierarchy

(Figure 2). ST-PGN, designed with a feature pyramid ar-

chitecture enables the model to capture the correlation be-

tween body parts, rather than hand-coding body-part rela-

tions. We test the performance of the model on two public

benchmark datasets typically used for postural assessment

(TUM and UW-IOM) as well as Kinetics and NTU-RGBD

datasets. We show that the algorithm is also able to learn the

transitions between actions and is suitable for real-time ap-

plications. As compared to the state-of-the-art algorithms

such as ST-GCN [60], our model has fewer graph con-

volution kernels without sacrificing performance. Finally,

we enhance the pipeline with postural assessment methods

(REBA [13]) that use the online action recognition output

of our model to produce ergonomics risk estimates. We

propose, this combined action-risk architectural design as

a first step towards automated assessment of musculoskele-

tal disorders in occupational safety.

2. Related Work

Given the recent advances in obtaining accurate pose

through depth sensing or vision based pose estimation al-

gorithms, skeleton based action recognition methods have

become vital for achieving generalization across a variety of

environments [42]. Skeleton based methods also offer op-

portunity to study down stream applications that involve hu-

man performance analysis and require postural assessment.

We summarize work related to the proposed ST-PGN al-

gorithm for association of action, posture, and ergonomics

risk. To the best of our knowledge this is the first work that

combines the three separately studied problems jointly and

in an online fashion.

2.1. Action Classification

Video action segmentation tasks focus on localizing ac-

tion labels in untrimmed videos or classifying entire video

clips with one label [46, 52, 63, 55, 4, 54, 60]. For further

literature on action recognition please refer to [57]. Usu-

ally large datasets are used for evaluating algorithms devel-

oped for these tasks [51, 20, 16, 4]. Variations of temporal
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convolutions outperform conventional recurrent networks in

these tasks due to its ability of aggregating long-term mo-

tion changes [1, 21]. Extending these models to an ongo-

ing, partially observed, and multi-action sequence, such as

online ergonomics risk assessment task, is unclear. Hence,

we focus on models and datasets (TUM [53] and UW-IOM

[35]) that translate to ergonomics risk assessment settings

that contain repetitive actions that are closely tied to activi-

ties such as manufacturing assembly.

With advances in reliable pose estimation models [62,

42, 3], skeleton only action recognition has gained popu-

larity [61, 60, 22, 48]. Those methods have shown to be

robust to variations in illumination and scene, and are typi-

cally context agnostic. One limitation of previous methods

is that they do not use the necessary features from scene

context or object handling which give more meaning to the

actions (e.g. walking on crosswalk means crossing verses

walking indoors, lifting box vs lifting rod). Using scene

only cues limits models from capturing complex pose dy-

namics and relative pose structure changes (e.g. hand mov-

ing in relation to torso means reaching for object). In this

regard [60] is, to our knowledge, the first method to operate

on a local pose structure graph. Our work addresses the sub-

problem of online action classification for ergonomics risk

assessment by exploiting hierarchical spatio-temporal struc-

ture. To avoid comparison to plethora of action recognition

work, we compare our models to spatio-temporal models

that use GCN.

Most similar to our work are [28, 29, 50], which address

online early action recognition for indoor datasets such as

[25, 27]. However, the focus of those works is on modelling

the temporal evolution of poses and early prediction of fu-

ture actions. Rather than predicting future pose streams, our

aim is to instead classify incoming pose streams. It is imper-

ative to capture local label transitions (reaching to pickup)

by exploiting subtle pose cues and temporal sequence un-

derstating. Moreover, as evidenced by our ST-GCN [60]

experiments, offline models do not translate well to online

settings. Hence, we design a hierarchical architecture that

can do these tasks jointly in an online manner.

2.2. Graph Convolution Networks

Graph convolution network (GCN) is a powerful method

for processing non-Euclidean spaces [58]. Since the skele-

ton structure is inherently represented as a graph with nodes

and connections, GCN is increasingly being used for an-

alyzing human motion for different applications. Spatio-

temporal graph convolutions add another dimension to

GCN by applying convolutions over spatial domain, and

temporal convolutions (TCN) over the time domain in a se-

quential manner. Most related work in skeleton based action

recognition include [60, 17, 24, 48]. The first three papers

focus on graph convolution on temporal skeleton sequences.

However, they do not model the hierarchical parts structure

in graphs.

Recently, Kim et al. [17] introduced a two-stream

method for human action recognition. They used a human

pose stream based on ST-GCN and an object-related pose

stream which is achieved by training an object detector on

the set of objects of their interest. Similarly, our work at-

tempt to fuse the object/context features along with pose

dynamics. However, we focus on enhancing the skeleton

features and treat objects as features from VGG16. We pro-

pose an alternative strategy for fusion inspired by GRU. The

focus is to avoid confusion between objects handled in the

labels (pose configuration for rod-pickup and box-pickup

look similar).

2.3. Ergonomics Risk Assessment

Work-related musculoskeletal disorders (MSDs) are

costly, affect all age groups, and are common in many oc-

cupations. MSDs are a major contributing factor to disabil-

ity, loss of independence, and early retirement. Therefore,

many studies analyze the ergonomics risk for workers, par-

ticularly in manufacturing assembly [37, 49, 6, 43, 39, 30].

Rapid Entire Body Assessment (REBA) [14] and the Euro-

pean Assembly Worksheet (EAWS) [44] are two common

ergonomics risk measures used in the industry. REBA is a

tabular method created by experts in ergonomics by eval-

uating over 600 postural examples. REBA is a less quali-

tative measure for ergonomics risk assessment which takes

the human joint angles and computes a risk score. EAWS,

however, is focused at the type of activity that is done during

an assembly task. Both metrics are traditionally determined

visually, by an expert observing the action.

One line of research is focused on using body-mounted

motion sensors for automation of ergonomics risk assess-

ment [23, 30]. Recently, [31] introduces a dataset which

is very useful for studying ergonomics for collaborative

robotics application. Another track focuses on using only

a camera sensor for evaluating the safety of an activity. For

instance, in [45] an RGB-D camera is used to find a safe

range for arm movements and give feedback on the sub-

jects’ performance during welding. In [18] a camera is

used to monitor and adjust the ergonomics risks of working

with power tools in real-time. Moreover, in [35], an offline

method is introduced to segment a video into semantically

meaningful actions and report an ergonomics risk level for

each action.

Improved ergonomics risk assessment can be attained by

considering not only the posture, but also the action and

object interaction. In this work, we compute REBA frame-

wise and use the recognition predictions to adjust the scores.

Our activity recognition predicts the postures and actions,

and identifies object interactions and the height at which the

activity is being performed, which are important for REBA
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calculation. For additional details on REBA computation,

refer to [14].

3. Spatio-Temporal Feature Pyramid Graph

Convolution

In this work we introduce Saptio-Temporal Pyramid

Graph Convolutional Network (ST-PGN). ST-PGN models

the spatio temporal features of the skeletal structure using

combinations of Pyramidal GCNs (PGNs) and Long-Short-

Term-Memory Units (LSTMs). PGN is a novel way to

process non-Euclidean skeletal data in a hierarchical form.

Each feature representation in PGN hierarchy is used as an

input to an LSTM unit to learn the temporal aspect of the

input sequence (shown in Figure 2 and described in Sec-

tion 3.4).

3.1. Graph Convolutional Network

Graph convolutional networks (GCN) [65] learn the

layer-wise propagation operation that can be applied on

structured data represented by a graph. To briefly intro-

duce how GCNs work, assume we have an undirected graph

with N nodes, a set of edges between nodes, an adjacency

matrix A ∈ R
N×N , and a degree matrix Dii =

∑
j Aij .

If x ∈ R
F×N represents the feature matrix of the graph

(xi ∈ R
F is the feature vector of node i with size F ), a

linear formulation of graph convolution is,

f = D̂
−

1

2 ÂD̂
−

1

2xi
⊤
W, (1)

where Â = A+ I, I is the identity matrix and W ∈ R
F×C

is the weight matrix. So, if the input to a GCN layer is

F ×N the output feature f is N×C, where C is the chosen

output size. As with any other convolution layer we can

have a stack of GCNs each followed by a nonlinear function

(such as ReLU) [19].

In this work, we are following the spatial configuration

partitioning introduced in ST-GCN [60], therefore, Â =∑
a Aa and Equation 1 is written in a summation form.

f =
∑

a

D̂
−

1

2

a AaD̂
−

1

2

a x
⊤
Wa, (2)

Equation 2 is represented for kth level of the pyramidal hi-

erarchy in line 4 of Algorithm 1. We hypothesize that a hi-

erarchical graph convolution that operates on human joints,

body parts and global structure would enrich the input rep-

resentation.

3.2. Pyramidal Graph Architecture

Pyramidal Graph Convolutional Network (PGN) is a hi-

erarchical GCN that produces different spatial features with

semantic meaning at different levels. The input to the PGN

is the skeleton with N joints represented by a tensor (X)

of dimension F × N × T , where T indicates time. Each

GCN aggregates features along the spatial dimension us-

ing a specific adjacency matrix Âk using Equation 2. Our

PGN has three graph levels (Â1, Â2, Â3). The initial GCN

works on the skeleton with Â1, which is constructed based

on the skeleton connections and accompanied with an edge-

importance matrix 1. The subsequent graph levels represent

the body parts and global structure respectively. Since the

correlation between the nodes for higher level graphs is un-

known, Â2 and Â3 represent fully connected graphs and

we let the edge-importance learn the correlations. Thus our

model has a hierarchy of graphs with the base as the input

skeleton and the top level a graph with three nodes repre-

senting arms, legs and middle part of the body. We refer to

this hierarchical graph structure as a pyramidal graph archi-

tecture because it is large at the base and becomes smaller

as we move to the top levels.

Symbol Legend

N Number of 3D Skeleton joints,(x, y, z) tuples

T Time history of 80 samples

ck Graph convolution(GCN) at each hierarchy k

Âk Adjacency matrix at each hierarchy k

X0 Input Skeleton feature to first GCN ( 3×N × T )

gk Group Average Pool at each hierarchy k

Jk Pooling kernel at each hierarchy k

fk Output of each GCN ( 3×N × F )

wk 1× 1 convolution operation

uk Upsample and Add

pk Output of 1× 1 convolution

zk Final features sent to LSTMs

Table 1: Description of the symbols used in Algorithms

3.3. Group Average Pool

A Group Average Pool (GAP) layer average-pools the

features in a selected group of nodes or joints using a spe-

cific kernel (Jk) for each level (line 5 of Algorithm 1). The

resulting graph has nodes that represent a higher level body

part (as shown in Figure 2). Therefore, every layer of the

pyramid has a semantic meaning, from low to high level. In

the bottom left corner of Figure 2, we show how the groups

are defined in TUM and UW-IOM datasets.

More specifically, feature masking is inspired by [7]

which is generally used in foreground background separa-

tion. Here, kernels are pre-determined matrices with ones

or zeros. These kernels are element-wise multiplied by the

features to group only certain body parts one at a time. For

example, the kernel has ones in the particular rows corre-

sponding to those joints representing left arm (7, 9, 11) and

zero everywhere else. Hence, the masked features (fea-

tures multiplied by the mask) all belong to the left arm.

1Edge-importance is a learnable mask on every layer of the spatio-

temporal graph convolution. It has the same dimension as the adjacency

matrix and learns to scale the contribution of a nodes feature to its neigh-

boring nodes based on the learned importance weight of each spatial graph

edge.
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These features are average pooled as they belong to the

same group. Multiple such combinations are used to group

the joints into different parts. Similarly , parts are combined

into global structure using another set of kernels. Such suc-

cessive GCN-GAP combinations allows us to model the en-

tire local and global motions jointly. We refer to this as the

feature update rule (Algorithm 1), and later in Section 3.4,

it is referred to as a bottom-up pathway.

3.4. Feature Pyramid Graph Convolutional Net
work

Feature pyramids have been an important component of

object recognition algorithms [26, 47, 12]. The advantage

of using pyramids is that it produces a multi-scale feature

representation in which all feature levels are semantically

strong. Especially in skeleton-based action recognition the

correlation of body-parts can be very informative in recog-

nizing actions. However, a pre-defined graph might not be

sufficient to represent every sample. For example, in ST-

GCN graph, there is no connection between hand and head,

which is important in actions such as eating. Therefore, here

we are generalizing the feature pyramid network to a GCN

pyramidal feature hierarchy, and we believe that learning

the correlations at different levels of the hierarchy enhances

the performance of our model. Here feature pyramids are

still valid in skeleton structure as global motion is a com-

bination of local motion of parts and part motion is a com-

bination of local motion of joints. Hence our feature pyra-

mids aggregate joints, parts and global features jointly [59].

The feature pyramid networks consist of two pathways, a

Algorithm 1 Feature Update Rule

1: X0 ← X ⊲ input skeleton distributed over time

2: k ← 1 ⊲ iterator

3: while k ≤ 3 do

4: fk = ck(Xk−1; Âk) ⊲ GCN operation

5: Xk =

{

gk(fk;Jk) if k < 3,

None otherwise.
⊲ GAP operation

6: k=k+1

⊲ The fk∀k ∈ (1, 2, 3) are used as input features for the feature

pyramid operations in Algorithm 2.

Algorithm 2 Pyramid Update Rule

1: k ← 1 ⊲ iterator

2: while k ≤ 3 do

3: pk =

{

wk ⊗ fk if k < 3,

fk otherwise.
⊲ 1× 1 convolution

4: zk =

{

pk ⊕ uk(pk−1) if k < 3,

pk otherwise.

5: ⊲ Upsample & Add

6: k=k+1

⊲ The Following zk∀k ∈ (1, 2, 3) are used as input features for the

temporal modelling using three separate LSTMs.

bottom-up and a top-down pathway. The bottom-up path-

way is the feed-forward computation of the backbone GCN,

which computes a feature hierarchy consisting of feature

maps at different scales. The top-down pathway produces

higher resolution features by up-sampling spatially larger,

but semantically stronger, feature maps from higher pyra-

mid levels. The top-down path is enhanced by the features

produced in the bottom-up pathway through lateral connec-

tions. The features from the bottom-up pathway undergo

a 1 × 1 conv layer to reduce channel dimensions and then

are merged into the top-down pathway features by element-

wise addition. The purple connections in Figure 2 shows

this process, and it is described as the pyramid update rule.

3.5. SpatioTemporal Modelling

Now we briefly summarize ST-PGN steps that are de-

scribed in Algorithm 1-2 and Figure 2, and also describe

major differences with respect to ST-GCN. The input skele-

ton (X0) goes through three levels of GCN and GAP, and

the output of each level (fk) is aggregated with the upsample

features through lateral connection and forms the final fea-

tures (zk). Each pyramidal feature is passed through sepa-

rate LSTMs to create three frame-wise activity predictions.

As an ablation study we either 1) average these three pre-

dictions and compute one loss or 2) compute three losses

separately and average the predictions while testing. The

latter gives us better performance. As a comparison, in ST-

GCN, the input goes through a sequence of multiple GCN

and TCN units so that the final feature embodies spatial and

temporal properties of the input. A final feature that sum-

marizes spatial and temporal properties is the key for video

clip classification. However, when we need to recognize ac-

tivities frame-wise, that strategy fails as it is shown in Sec-

tion 5.2. Therefore, we extract the spatial features through

PGN and send these features to individual LSTM units so

that the temporal aspect is learned at different spatially se-

mantic layers.

3.6. Optional Fusion Unit

To study the benefit of image features, we also perform

experiments with image features concatenated along with

skeleton pose features. We hope to avoid confusion in situ-

ations with object handling. Hence we extract VGG16 fea-

tures from a crop image region around the human and fuse

them with the final skeleton feature pyramid. Our fusion

unit is inspired by GRU [8], that learns to weight the fea-

tures before LSTM. We freeze the weights of the pre-trained

network and only train the fusion unit along with the final

LSTM layer. While the benefit of the image features are

very minimal, for completeness, we will describe the fusion

unit below.

At time t, let the image features and the final feature

pyramid layer features be denoted by it and z1t, respec-

tively. Since the dimensions of these features do not match,
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we apply linear weights (Ui, Uz) to transform them into

the same dimension and arrive at the transformed image and

skeleton features It and S(t) as shown in Equation 3. The

terms Wi and Wz are learnt weights that are used to learn

a gauging value (pt) between the two features similar to the

GRU. The weight pt is squished to take on values ∈ [0, 1]
using a sigmoid operation. Finally this weights are multi-

plied to the incoming features.

It = relu(Ui ∗ it), St = relu(Uz ∗ z1t) (3)

pt = σ(Wi ∗ It +Ws ∗ St), (4)

Ot = ptIt + (1− pt)St (5)

Where, Ot is the weighted feature that is sent as input into

one LSTM unit. For Example, If pt is 0.6 then the im-

age features (It) is weighted higher and the skeletal features

(St) are weighted lower (1− 0.6 = 0.4).

4. Experiments

4.1. Datasets

In skeleton-based action recognition the skeletal struc-

ture is represented as a graph. For our vision only sys-

tem, we use state of the art 3D skeleton estimation LCR-Net

[42] to estimate poses for the TUM Kitchen and UW-IOM

dataset. While the focus of our work is to evaluate our pro-

posed method on an online setting , we also run experiments

on Skeleton Kinetics and NTU-RGB datasets as shown in

Appendix Section I.

UW-IOM Dataset is a new dataset introduced in [35]

with the intention of capturing activities that are common in

warehouses. It consists of twenty videos (with average rate

of twelve frames per second) of a sequence of object manip-

ulation. The duration of every video is approximately three

minutes. This dataset represents seventeen action classes

and labels are of four-tier hierarchy indicating the object

(box/rod), human motion (walk, stand, and bend), type of

object manipulation if applicable (reach, pick-up, place, and

hold), and the relative height of the surface where manipu-

lation is taking place (low, medium, and high).

TUM Kitchen Dataset [53] consists of nineteen videos

of a sequence of kitchen activities from four monocular

cameras with the rate of twenty-five frames per second and

the average duration of two minutes (we used camera 2).

We use the provided two-tier labels by [35], which includes

a motion verb (place, reach, stand), and a location (cabi-

net, drawer) or object manipulation mode (both-hands, one-

hand) and creates a total of twenty-one activity classes.

4.2. Implementation Details

In our experiments, we sample a fixed length T=80

frames from each skeleton sequence as the input for on-

line experiments. For offline experiments (NTU dataset and

Skeleton Kinetics) we set the length T = 150 to cover the

entire sequence for one label. We set the batch size to 128
and 32 for online and offline experiments respectively. In

order to compare fairly with ST-GCN, the graph partition-

ing for the first adjacency matrix (Â1) is set to the same

spatial strategy and partitioned into 3 subsets: the root node

itself, centripetal group, and centrifugal group. However

for the subsequent graphs Â2 and Â3 we assume that fully

connected graph as initialization (all nodes are connected to

every other node) and learn the edge importance weighting.

It should be noted that we do not modify the original ST-

GCN model in terms of number of GCN or parameters. Our

final model has only three GCN layers as opposed to the ten

GCN-TCN components. More specifically the first GCN

layer has 64 channels, second GCN has 128 and third has

256 channels. During training, we use the Adam optimizer

[11] to optimize the network. We set the betas to 0.9 and

0.999 and set weight decay to zero. We split the training

and validation using a five fold split in both TUM and UW-

IOM. We report he mean and variance of all the splits in the

results Table 2. We also do a grid search for learning rate(lr)

from 0.1 to 0.001. On an average, lr of 0.05 performs best

on all the splits in both datasets.

4.3. Ergonomics Risk Assessment

Given the input skeleton (X) and the recognized activity

from PGN (Figure 1), we compute REBA. REBA assigns

human posture scores, in the range 1-15, based on joint an-

gles during an activity. First, a risk score is computed for

lower and upper extremities and those scores are added to

the task-related scores (coupling and load scores). In [35]

the score over all subjects are averaged offline and one score

is reported for each activity class. We are proposing a real-

time subject specific REBA evaluation using pose and ac-

tion information such as the weight of the object and the

type of manipulation.

5. Results and Discussion

5.1. Baseline Models

GCN vs Non-GCN Methods. To see the benefit of tem-

poral analysis we perform experiments that only take hu-

man skeleton or image as input. We use these features as

inputs of a TCN [1], ED-TCN [21] and LSTM [15] model.

Baselines are trained in an online fashion. We also perform

frame based experiments to determine the efficacy of tem-

poral modelling. It must be noted that no additional convo-

lution or linear layers are used to transform the input pose.

ST-GCN variants. We showcase the original ST-GCN

implementations modified to support online setting by re-

moving the final average pooling layer. Most ST-GCN vari-

ants used for spatio-temporal modelling, support recursive

GCN-TCN models that pool messages across the overall

graph of full skeleton. We also replace the 1x1 TCN convo-

lutions with LSTMs. We refer to this model as GCN+TCN.
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Modalities Backbones
UW-IOM TUM

mAP (%) Edit (%) F1-overlap (%) mAP (%) Edit (%) F1-overlap (%)

Skeleton (only)

Frame based 39.82 ± 1.45 29.26 ± 1.32 37.87 ± 1.82 29.79 ± 4.74 27.55 ± 2.89 32.63 ± 4.66

LSTM [15] 79.35 ± 4.55 77.82 ± 6.34 85.32 ± 5.37 44.24 ± 5.97 56.46 ± 5.92 57.13 ± 8.24

TCN [1] 57.72 ± 6.40 56.40 ± 5.36 64.78 ± 6.38 30.61 ± 5.40 51.07 ± 6.17 49.87 ± 11.01

ED-TCN [21] 60.05 ± 4.89 81.73 ± 2.44 84.60 ± 2.64 28.89 ± 5.77 56.75 ± 8.50 55.92 ± 11.11

ST-GCN [60] 66.94 ± 3.49 61.89 ± 3.56 71.08 ± 2.83 34.73 ± 5.98 53.88 ± 5.53 53.52 ± 7.09

ST-GCN+IMP [60] 73.28 ± 4.30 67.21 ± 6.05 76.58 ± 4.95 34.93 ± 4.75 52.27 ± 3.99 52.60 ± 5.72

GCN+LSTM+IMP 81.97 ± 7.34 72.25 ± 7.24 82.04 ± 6.08 45.92 ± 4.19 52.07 ± 4.01 55.26 ± 5.54

ST-PGN+LSTM (ours) 86.33 ± 2.71 77.92 ± 2.44 86.83 ± 1.74 48.02 ± 4.68 55.31 ± 5.09 57.58 ± 6.38

ST-PGN+LSTM+IMP (ours) 85.92 ± 1.62 77.75 ± 2.46 86.21 ± 1.91 42.74 ± 1.03 47.19 ± 6.39 51.14 ± 6.94

ST-PGN+LSTM+IMP+ML (ours) 87.03 ± 2.85 97.86 ± 2.15 87.95 ± 1.54 49.62 ± 6.10 56.10 ± 4.98 57.60 ± 6.03

Image (only)

Frame based 51.62 ± 4.12 25.60 ± 1.55 34.17 ± 3.08 35.33 ± 5.26 28.33 ± 1.94 35.34 ± 2.65

LSTM 66.50 ± 7.55 48.31 ± 5.90 57.81 ± 6.64 49.04 ± 7.03 52.64 ± 7.50 58.60 ± 7.53

Fusion

Frame based+ Concat 50.54 ± 1.55 27.57 ± 0.96 36.42 ± 2.09 41.70 ± 5.76 29.66 ± 1.25 36.04 ± 1.59

LSTM+ Concat 83.55 ± 5.74 72.98 ± 7.32 77.89 ± 11.70 48.71 ± 9.42 54.86 ± 6.83 57.11 ± 8.81

ST-PGN+LSTM+IMP+ML+GRU-Fusion (ours) 87.05 ± 3.47 80.90 ± 2.06 88.08 ± 1.89 57.79 ± 6.43 54.49 ± 5.59 58.35 ± 9.78

Table 2: mAP, edit, and F1-overlap score represented in mean and standard deviation over five splits in UW-IOM and TUM

datasets for different methods and modalities. The best results in skeleton and fusion modality are shown in bold.

Edge Importance, as in the original work, is trained and

is showcased as ST-GCN+IMP. LSTMs generally outper-

forms the TCNs to capture short transition changes in online

fashion. Hence for the following experiments we choose to

use LSTM as a primary temporal modelling source.

ST-PGN variants. Our models are showcased as

pyramid-GCN (PGN) models. Similar to the previous sec-

tion, we choose to train the edge importance for each of

the sub graphs. The predictions are averaged for ST-

PGN+LSTM and ST-PGN+LSTM+IMP and used to com-

pute a single loss. Alternatively, our final multi-loss (ML)

model has three losses, one for each of the pyramids. These

losses are averaged and propagated during training. During

testing the model’s predictions are averaged and used for

evaluation. The results for this model is shown in Table 2

under ST-PGN+LSTM+IMP+ML.

Fusion Models. To evaluate the impact of adding con-

textual features, we use a fusion mechanism that learns the

importance of each feature modalities through a gauging

mechanism (pt in top-left of Figure 2).

5.2. Performance Analysis

The UW-IOM dataset focus is on object manipulation

tasks that involve picking up, placing, and carrying objects,

as well as walking bending and standing. Therefore, when

we look at the edge importance demonstrations in the top

left of Figure 3, we see that left hand (L-hand), right hand

(R-hand) and right hip (R-hip) are the most important nodes

in the low-level edge importance heat-map. Also, at the

high-level, the importance of arms is higher than the legs

and spine. We achieve an overall +5% improvement in

mAP, +2% improvement in F1-overlap (ST-PGN+LSTM)

over the best baseline (GCN+LSTM and LSTM). However,

we see an overall performance boost of +16% in Edit score

and similar to our multi-loss model. Importantly, ST-PGN is

more powerful in distinguishing pick-up and place. These

activities are spatially very similar and differ primarily in

temporal aspects. We do not see a huge benefit in Edit score

using our image fusion. However, we see a minor improve-

ment of 1% in the mAP and F1-overlap.

TUM kitchen dataset also includes object manipulation

activities; however, it is focused on common daily activi-

ties in a kitchen. Looking at the low-level heat-map (top

right in Figure 3) we observe that the hand, elbow, shoul-

der, and the neck joints have more importance. Looking at

the high-level demonstration, we observe that the arms are

more important than the legs and spine. We observe an over-

all improvement in mAP and F1-overlap using our models.

However, a simple ED-TCN is slightly better at capturing

the sequence and hence the Edit score is higher. Since the

subjects move around in the scene, the significance of the

lower body (legs, hip) is visibly higher in the edge impor-

tance compared to UW-IOM.

The results reported in Table 2 show that using skeleton

is sufficient to get equal or better performance as compared

to image-only or the fusion of skeleton and image. In UW-

IOM, the human is facing the camera; thus, the detected

skeleton is accurate. However, since this is not the case in

the TUM dataset, the image-based models perform better

as compared to the skeleton only on TUM dataset. If the

skeleton is accurate, the addition of the image does not seem

to enhance the results significantly in these tasks.

5.3. Failure Cases

We showcase confusion matrices of our best ST-

PGN+LSTM+IMP+ML model in Figure 4 of the previous

section. While we see an overall performance increase on

both UW-IOM and TUM datasets, the model cannot deal

with confusion among similar classes. We showcase the

skeleton only model as adding image features do not help

significantly. We describe our insights in detail below.

UW-IOM Dataset Our models can differentiate between

box-handling actions and rod-handling actions without the

use of image features (The skeleton configuration differs
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Figure 3: Three level learned edge importance heat-map in

UW-IOM (shaded) and TUM datasets. Each row shows the

edge importance of each level of graph pyramid and it is

consistent with bottom-left of Figure 2. Every level of PGN

consists of the sum of three edge importance multiplied by

the adjacency matrix and node features.

and handling of these objects is distinct due to the ob-

ject size and location). However, Standing and walking

misclassifications occur especially when the subject’s back

faces the camera. Hence important hand motions that help

to infer these actions are missed. Better self-occlusion han-

dling is warranted. Confusion also occurs between bending

actions such as bending-place. This is predominantly due to

misclassifications in transitions between these actions since

bending is followed by pickup action or preceded by place

action. Since it is a challenge for human annotators to ac-

curately label transitions, the edit score should avoid penal-

izing such transitions.

TUM Dataset The camera view angle contributes to sig-

nificant confusion between related classes. We choose the

training-validation split with the lowest mAP score to ana-

lyze the results. The following observations are made:

1) The pickup-drawer and close-drawer are completely

misclassified in this split. Once the drawer is closed, the

pose estimation predicted the hand orientation and location

using LCR-Net occlusion strategy [42]. However, the pre-

dicted pose is not always reliable, resulting in poor per-

formance due to incorrect pose input during training. 2)

Walk-not holding is misclassified for the majority of the

(a) UW-IOM (b) TUM

Figure 4: Confusion Matrix of ST-PGN+LSTM+IMP+ML

model. Larger figures are added in the Appendix section.

classes such as reach-cabinet, reach-drawer, stand-hold-

both-hands, stand-not-hold. This is attributed to unbal-

anced class distribution, where most of the actions are walk-

ing. In future work, we plan to address biases introduced

by data imbalance by introducing sampling strategies. 3)

Twisting actions are very challenging to detect using vi-

sion only since we only measure poses in Cartesian coor-

dinates. Adding rotation information should help the model

detect twisting actions about certain body axes. 4) Pickup-

hold-both-hands gets confused with either Pickup-hold-

one-hand or stand-hold-both-hands. Confusion is primar-

ily due to one hand either being occluded by the object be-

ing handled, or the pose configuration being too similar in

pose configuration with standing. More key-points in the

pose prediction models could help resolve such issues.

6. Conclusion and Future Work

We proposed a novel Spatio-Temporal Pyramid Graph

Convolutional Network (ST-PGN) for online action recog-

nition. The method integrates the following: a) basic prior

knowledge about the skeletal structure, b) hierarchical joint

relationships and c) data-driven learning framework for on-

line action based ergonomics risk assessment. The pro-

posed approach addresses the simultaneous association of

time-varying pose with action and objects interaction to en-

able downstream applications that involve computational

modeling and prediction of various human performance

metrics for ergonomics risk assessment.

Some open issues remain. First, generalization concern-
ing other skeletal joint representations ( Lie [56], Quater-
nion [36] ) and camera viewpoint changes have not been
addressed. Furthermore, while we outperform state of the
art on online action recognition we are only comparable to
the state of the art in offline action datasets (NTU-RGBD
and Skeleton-Kinetics). The effect of the action label distri-
bution on our models need to be studied further. In future
work, we hope to address these issues with improved con-
text fusion, long-term temporal modeling, and biomechani-
cally consistent human pose representations [66].
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