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Abstract

Generating natural questions from an image is a seman-

tic task that requires using vision and language modalities

to learn multimodal representations. Images can have mul-

tiple visual and language cues such as places, captions, and

tags. In this paper, we propose a principled deep Bayesian

learning framework that combines these cues to produce

natural questions. We observe that with the addition of more

cues and by minimizing uncertainty in the among cues, the

Bayesian network becomes more confident. We propose a

Minimizing Uncertainty of Mixture of Cues (MUMC), that

minimizes uncertainty present in a mixture of cues experts

for generating probabilistic questions. This is a Bayesian

framework and the results show a remarkable similarity to

natural questions as validated by a human study. We ob-

serve that with the addition of more cues and by minimiz-

ing uncertainty among the cues, the Bayesian framework

becomes more confident. Ablation studies of our model

indicate that a subset of cues is inferior at this task and

hence the principled fusion of cues is preferred. Further,

we observe that the proposed approach substantially im-

proves over state-of-the-art benchmarks on the quantitative

metrics (BLEU-n, METEOR, ROUGE, and CIDEr). Here

we provide project link for Deep Bayesian VQG https:

//delta-lab-iitk.github.io/BVQG/.

1. Introduction

The interaction of humans and automated systems is an

essential and increasingly active area of research. One such

aspect is based on vision and language-based interaction.

This area has seen many works related to visual question an-

swering [1] and visual dialog [11]. Current dialog systems

as evaluated in [9] show that when trained between bots,

AI-AI dialog systems show improved performance, but that

does not translate to actual improvement for Human-AI di-

alog. This is because, the questions generated by bots are

not natural and therefore do not translate to improved hu-

man dialog. Therefore it is imperative that improvement

in the quality of questions will enable dialog agents to per-

form well in human interactions. Further, in [20] the au-

Figure 1. Here we give an overview of our network. We have

three experts which provide us with information (advice) related to

different cues. These are shown as Place Expert, Caption Expert

and Tag Expert respectively. Then we have a moderator which

weighs these advices and passes the resultant embedding to the

decoder to generate natural question.

thors show that unanswered questions can be used for im-

proving VQA, Image captioning and Object Classification.

So the generation of natural questions will further improve

performance on these tasks. While not as well studied as

the other tasks of answering questions or carrying a con-

versation, there has been work aimed at generating natural

and engaging questions from an image [38, 23] which is the

VQG task. The underlying principle for all these methods

is an encoder-decoder formulation. We argue that there are

underlying cues that motivate a natural question about an

image. It is essential to incorporate these cues while gen-

erating questions. For each image, there may be a different

underlying cue that is most pertinent. For some images, the

place may be important (‘Is it a cowshed?’) whereas for

others the subject and verb may provide more context (‘Are

the horses running?’). Our work solves this problem by us-

ing a principled approach for multimodal fusion by using a

mixture of experts (MoE) model to combine these cues. We

hypothesize that the joint distribution posterior based on the

cues correlates with natural semantic questions.

To verify our hypothesis, we systematically consider ap-
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proaches to extract and combine descriptors from an image

and its caption. We argue that some of the critical descrip-

tors that could provide useful context are: a) Location de-

scription, b) Subject and Verb level description and c) Cap-

tion level description.

• Location description: For certain kinds of images that

involve locations such as train-stations or bus-stations,

the context is dominated by location. For instance, nat-

ural questions may relate to a bus or a train and hence

could be more related to the destination or time related

information. In such scenarios, other cues may be sec-

ondary cues. In our work, we obtain a posterior prob-

ability distribution that captures the probability of the

location cue by training a Bayesian deep CNN.

• Subject and Verb level description: In certain images,

the main context may relate to the subject and verb (for

instance, food and eating). In such cases, subject-verb

combinations dominate the context. Given an image

we obtain a posterior probability distribution over the

set of tags.

• Caption: For a set of natural questions, an important

context could be obtained from an image caption. We

can now use state-of-the-art image captioners to gen-

erate descriptive captions of an image, which is useful

information for generating questions pertinent to the

same image. We use this information by obtaining a

posterior distribution on the caption generator.

We show the GradCAM [46] visualisations for the ques-

tions generated on the basis of single and multiple cues in

Figure 2. We see that the model focuses on different re-

gions when provided single cues (Place and Caption in the

second and third image in Figure 2) and asks poor ques-

tions, but when we provide both the Place and Caption cues

to the model, it focuses on correct regions which results in

sensible question. So incorporating multiple cues through a

principled approach in our model should lead to more natu-

ral questions.

Figure 2. Here we visualize the GradCAM maps corresponding to

single and multiple cues for question generation.

We combine these distributions (cues) to estimate latent

distributions which are then mixed through a moderator net-

work and used by a decoder module to generate questions.

On obtaining these distributions, we then obtain the combi-

nation of the cues that provides us with a combined latent

distribution that is used by a decoder module that generates

the question. The approach is illustrated in figure 1. The

main aspect that we focus on this paper is to investigate a

number of cues that can provide us with the necessary se-

mantic correlation that can guide generation of natural ques-

tions and the ways in which these cues can be combined.

The contributions of this paper are as follows:

• We provide Bayesian methods for obtaining posterior

distributions by considering the advice of various ex-

perts that capture different cues embedding and aid in

generating more natural questions.

• We propose a method to capturing and minimizing un-

certainty (aleatoric and epistemic) in question genera-

tion task.

• We show that by Minimizing Uncertainty in Multi-

ple Cues (MUMC) method with the help of Gaussian

cross-entropy and variance minimizing loss, improves

the score.

• We also analyze the different ablations of our model

and show that while each of these cues does affect the

generation, a probabilistic combination of these im-

proves the generation in a statistically significant way.

2. Related Work

The task of automatically generating questions is well

studied in the NLP community, but it has been relatively

less explored for generating image related questions. On

the other hand, there has been extensive work done in the

Vision and Language domain for solving image caption-

ing [6, 15, 30, 48, 56, 25, 57, 14, 10, 24, 58], Visual Ques-

tion Answering (VQA) [37, 33, 1, 45, 34, 41, 16, 60, 28, 44]

and Visual Dialog [11, 2, 54, 55, 61]. However, Visual

Question Generation (VQG) is the task aimed at generat-

ing ‘natural and engaging’ questions for an image and was

proposed by Mostafazadeh et al. [38]. It focuses more on

questions which are interesting for a person to answer and

not on those which can be answered simply by looking at

the image and hence could be used to evaluate a computer

vision model. One of the works in this area is [59] where

the authors proposed a method for continuously generat-

ing questions from an image and subsequently answering

the questions being generated. In [38], the authors used

an encoder-decoder based framework that has been fur-

ther adopted in our work by considering various contexts.

In [23], the authors extend it by using a Variational Autoen-

coder based sequential routine to obtain natural questions

by performing sampling of the latent variable. In a very re-

cent work by [43], the authors use an exemplar based multi-

modal encoder-decoder approach to generate natural ques-

tions. Our work extends our previous work [43] by propos-

ing a deep Bayesian multimodal network that can generate

multiple questions for an image.
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Figure 3. Multi-Cue Bayesian Moderator Network. We first use a Bayesian CNN/LSTM to obtain the embeddings gi, gp, gc, gt and then

fuse those using the Fusion Module to get µp, µc, µt. These embeddings are then passed to the Moderator network. These are then fed to

the decoder to get the questions for each image.

It has been shown that for small datasets, Bayesian Neu-

ral Networks [17] are robust to overfitting and weights are

easily learned. The earliest works in Bayesian Neural net-

works by [39, 40, 35, 12, 13, 51, 8] focused on the idea that

model weights come from a random distribution and tried to

approximate the posterior distribution of the weights given

the data. To approximate the intractable posterior distribu-

tion, variational inference is one of the existing approaches

introduced by [22, 5, 21, 7]. Gaussian distribution is a pop-

ular choice for the variational distribution, but it is compu-

tationally expensive [7]. This can be overcome by using a

Bernoulli distribution which we also use in our work. There

has been some recent work which applies these concepts

to CNNs [17] (Bayesian CNN) and LSTMs [19] (Bayesian

LSTM) for obtaining probabilistic representations of im-

ages and sequential data respectively. These methods show

that using Dropout [49] training in deep neural networks

(DNN) can be interpreted as an approximate Bayesian in-

ference in deep Gaussian processes and can be used to rep-

resent uncertainty in DNNs. Recently Kurmi et al. [31] has

proposed a method to minimise uncertainty in source and

target domain and Patro et al. [44] has proposed an gradient

based method to minimise uncertainty in the attention re-

gions for solving VQA task. To the best of our knowledge,

the usage of Bayesian fusion of cues for end-to-end infer-

ence setting has not been considered previously for a deep

learning setting. Having a principled approach for fusing

multiple cues will be beneficial even in other settings such

as autonomous robots, cars, etc. We compare our work with

the some related works for question generation in the exper-

imental section and show that considering different contexts

and combining them using a product of experts setup can

improve the task of natural question generation.

3. Method

We adopt a generation framework that uses an image em-

bedding combined with various cues namely, place, caption

and tag embeddings to generate natural questions. We pro-

pose a Multi Cue Bayesian Moderator Network (MC-BMN)

to generate questions based on a given image.

3.1. Finding Cues

As location is one of an important cue, we used different

scene semantic categories present in the image as a place-

based cue to generate natural questions. We use pre-trained

PlaceCNN [64] which is modeled to classify 365 types of

scene categories. Captions also play a significant role in

providing semantic meaning for the questions for an im-

age. Tags provide information relevant to various topics in

an image. We are using parts-of-speech (POS) tagging for

captions to obtain these. The tags are clustered into three

categories namely, Noun tag, Verb tag and Question tags.

Noun tag consists of all the noun & pronouns present in

the caption, and similarly, the Verb tag includes verb & ad-

verbs present in the caption sentence whereas the Question

tags consist of (Why, How, What, When, Where, Who and

Which). Each tag token is represented as a one-hot vector

of the dimension of vocabulary size. For generalization, we

have considered five tokens from each category of the tags.

3.2. Representation module

Given an input image xi, we obtain its embedding gi
using a Bayesian CNN [17] that we parameterize through

a function G(xi,Wi) where Wi are the weights of the

Bayesian CNN. We have used a pretrained VGG-19 [47]

CNN trained on ImageNet for image classification task as

the base CNN which was also used by the previous state-
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of-the-art methods like [38] and [23]. To make Bayesian

CNN [17], We use pretrained CNN layers and put Dropout

layer with dropout rate p, before each CNN layer to cap-

ture Epistemic Uncertainty. Then, we extracted gi, a d-

dimensional image feature from the Bayesian CNN network

as shown in figure 3. Similarly we obtain place embeddings

gp using a Bayesian PlaceCNN G(xp,Wp) for place input

xp. The Bayesian PlaceCNN is the pretrained PlaceCNN

with similar placement of dropout layer as the VGG-19

CNN.

To generate caption and tag embeddings, we use a V (size

of vocabulary) dimensional one-hot vector representation

for every word in the Caption & Tags and transform them

into a real valued word embedding Xwe for each word us-

ing a matrix WC ∈ REC×V . Then the EC dimensional

word embeddings are fed to the Bayesian LSTM to obtain

the required representations for the caption and tag inputs.

Bayesian LSTM is designed by adding dropout layer into

each gate of the LSTM and output layer of the LSTM as

done in [19]. So we obtain gc, gt using a Bayesian LSTMs

F (xc,Wc) and F (xt,Wt) for caption input xc, and tag in-

put xt respectively.

3.3. Bayesian Fusion Module
There have been some works for VQA which use a pro-

jection of multiple modalities to a common space with the

help of a fusion network to obtain better results [1, 65]. We

use a similar fusion network to combine multiple modal-

ities, namely caption, tag and place with the image. The

fusion network can be represented by the following equa-

tions:

µp = Wpp ∗ tanh(Wigi ⊗Wpgp + bp)

µc = Wcc ∗ tanh(Wigi ⊗Wcgc + bc)

µt = Wcc ∗ tanh(Wigi ⊗Wtgt + bt)

where, g⋆ is the embedding for corresponding cues,

W⋆ and b⋆ are the weights and the biases for different

cues(⋆ represent{p, c, t}). Here ⊗ represent element-wise

multiplication operation. We use a dropout layer before

the last linear layer for the fusion network. We also ex-

perimented with other fusion techniques like addition, at-

tention, and concatenation but element-wise multiplication

performed the best for all the metrics.

3.4. Bayesian Moderator Module
We propose a Moderator Module to combine the fused

embeddings. The proposed model is similar to the work

of [52, 3, 62]. The Moderator module receives input image

xi and obtains a gating embedding ggat using a Bayesian

CNN that we parametrize through a function G(xi,Wg).
Then, a correlation network finds the correlation between

gating embedding ggat and µB to obtain scaling factors πB ,

where B ∈ {p, c, t}. Finally, Moderator combines the fused

embeddings µB with the scaling factors πB to obtain the

final embedding genc.

ggat = BayesianCNN(xi;Wg)

πB = softmax(gB ∗ ggat)∀B ∈ {p, c, t}

genc =
∑

B∈{p,c,t}

πB ∗ µB

3.5. Decoder: Question Generator
The decoder’s task is to predict the whole question sen-

tence given an image I and its cues (C). The probability

for a question word depends on the previously generated

words. This conditional probability P (qt+1|I, C, q0, ..., qt)
is modeled with a LSTM for sequential tasks such as ma-

chine translation [50]. We use a Bayesian LSTM similar to

the one used in our Representation Module for this question

generation task. At t =−1, we feed the moderator advice

genc to the LSTM. The output of the word with maximum

probability in the distribution P (qt|genc, ht) in the LSTM

cell at time step t is fed as input to the LSTM cell at step

t+1 as mentioned in the decoder in figure 3. At time steps

t = 0 : (T − 1), the softmax probability is given by:

x−1 = genc

xt = WC ∗ qt, ∀t ∈ {0, 1, 2, ...T − 1}
ht+1 = LSTM(xt, ht), ∀t ∈ {0, 1, 2, ...N − 1}
ot+1 = Wo ∗ ht+1

ŷt+1 = P (qt+1|genc, ht) = softmax(ot+1)

Losst+1 = loss(ŷt+1, yt+1)

(1)

where ht is the hidden state and ot is the output state for

LSTM.

3.5.1 Uncertainty in Generator Module
The decoder module is generating diverse words which

lead to uncertainty in the generated sentences. The un-

certainty present in the model can be captured by estimat-

ing Epistemic uncertainty [26], and the uncertainty present

in the data can be captured by estimating Aleatoric uncer-

tainty [18]. The predictive uncertainty [36] is the total un-

certainty which is the combination of both uncertainties.

The predictive uncertainty measures the model’s capability

for generating question word token by focusing on various

cues (caption, tag, and place) networks. We use the similar

Bayesian decoder network to capture predictive uncertainty

by approximating the posterior over the weights of Bayesian

decoder using MC-dropout as described in [27, 31, 44]. The

uncertainty in these cues moderators occurs mainly due to

either noise or lack of data to learn mixture of cues. We

proposed a method Minimising Uncertainty for mixture of

Cue (MUMC), which enhances model performance by min-

imizing uncertainty.
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(a) MC-BMN (b) MC-BMN-2 (c) MC-SMix

Figure 4. Variance plots for Bayesian and Non-Bayesian networks for a toy example of 20 images. We have drawn 5 samples of each

image using Monte-Carlo sampling from a distribution (this is predictive posterior distribution for the Bayesian case) and then plot the

mean features of these 5 samples along with the ground truth features. MC-BMN (3 cues) reduces normalized variance (difference in mean

feature value & ground truth feature value) as compared to two cues(MC-BMN-2). Whereas for MC-SMix(Non-Bayesian network), the

variance is too high as compared to MC-BMN.

Minimizing Uncertainty for Mixture of Cues (MUMC)
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Figure 5. Model architecture for minimizing uncertainty for mix-

ture of Cues

MUMC: The decoder generates a logit out yi,g and vari-

ance network predict variance in each generated word to-

ken.

yi,g = Gy(Go(fi)), vi,g = Gv(Go(fi)) (2)

where fi = ggen is the output feature of the Bayesian Mod-

erator Module. Go is the decoder network, Gy is the final

word token classifier and Gv is the variance predictor net-

work. In order to capture uncertainty in the data, we learn

observational noise parameter σi,g for each input point xi

and its cues. This can be achieved by corrupting the logit

value (yi,g) with the Gaussian noise with variance σi,g (di-

agonal matrix with one element for each logits value) be-

fore the softmax layer. We defined a Logits Reparameteri-

zation Trick (LRT), which combines two outputs yi,g, σi,g

and then we obtain a loss with respect to the ground truth.

That is, after combining we get N (yi,g, (σi,g)
2) which is

expressed as:

ŷi,t,g = yi,g + ǫt,g ⊙ σi,g, where ǫt,g ∼ N (0, 1) (3)

Lu =
∑

i

log
1

T

∑

t

exp (ŷi,t,g − log
∑

M ‘

exp ŷi,t,M ‘) (4)

Where M is the total word tokens, Lu is minimized for true

word token M , and T is the number of Monte Carlo simu-

lations. M
′

is the element in the logit vector yi,t for all the

classes. σi,g is the standard deviation, ( σi,g =
√
vi,g).

We compute gradients of the predictive uncertainty σ2
g

of our generator with respect to the features fi. We first

compute gradient of the uncertainty loss Lv with respect to

cues moderator feature fi = ggen i.e. ∂Lv

∂fi
Now we pass

the uncertainty gradient through a gradient reversal layer to

reverse the gradient of the all the cues is given by

∇y = −γ ∗ ∂Lu

∂fi

We perform a weighted combination of forward cues mod-

erator feature maps µp, µc, µt with the reverse uncertainty

gradients i.e.

∇′

genc
=

∑

B∈{p,c,t}

−γ ∗ ∂Lu

∂fi
∗ µB

We use residual connection to obtain the final moderator cue

feature by combining original cue moderator feature with

the gradient certainty mask ∇′′

y and is given by:

g
′

enc = genc +
∑

B∈{p,c,t}

∇′

genc
∗ genc

From this moderator feature we are generating question

word tokens.

3.6. Cost Function

We estimate aleatoric uncertainty in logit space by dis-

torting each logit value by the variance obtained from data.

The uncertainty present in each logit value can be mini-

mized using cross-entropy loss on Gaussian distorted log-

its as shown in equation- 3. The distorted logits is obtained

using Gaussian multivariate function with positive diagonal

variance. The uncertainty distorted loss is the difference

between actual cross entropy loss and the uncertainty loss
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(a) COCO (b) BING (c) FLICKR

WHAT

WHAT'S

IS

HOW

AREWHERE WHY

WHO

KIND

IS

THE

THAT

THIS

ARE

IS

CITY

OLD

THE
ARE

BREED

OF

THE

A

A

IS

BATHROOM

IS

THAT

OF

THERE

THESE

THIS

NAME

OF

PLANE

THIS

PICTURE

CLEAN

FOOD

FLOWERS

HOTEL

PIZZA

THE

CAT'S

DOG
MOTORCYCLE

COMPUTER

MAN'S

COWS

PERSON

OF

OF

THE

THIS

NAME

ROOM

IS

NAME

DOING

BABY

IN

NAME

DOING

IS

WHAT'S

WHAT

HOW

IS

WHO

WHY

THE

KIND

THIS

CITY

MUCH

LONG

HE

THAT

MANY

COUNTRY
HAPPENED

OF

NAME

PURPOSE

IS

DOES

MAN'S

MAN

PEOPLE

TALKING
FOR

TO
WAS

OF

OF

FOOD

THIS

MUSIC

THIS

ABOUT MOTORCYCLE

DOING

FLOWERSNAME

THIS

THE

THIS

THE

IS

THIS

THAT

MOTORCYCLE

ARE

IN

HERE

TAKEN
WOMAN

THESE

WHAT'S

WHAT

IS

HOW
WHO

WHY

THE

ARE

KIND

CITY

THAT

HIS
IN

OF

NAME

THEY

MAN'S

IS

MAN

NAME

GIRL'S

THE

IMPORTANCE

PERSON

JOB

OF

NAME

FOOD

THAT

CELEBRATING

NAME

PRESENTING

OF

WEARING

POT

TITLE

LAUGHING

THE

IS

THIS

IN

AT

THAT

IS

Figure 6. Sunburst plot of generated questions for MC-BMN on VQG-COCO dataset,VQG-Bing dataset, VQG-Flickr dataset are shown

in Fig-a, Fig-b, Fig-c respectably : The ith ring captures the frequency distribution over words for the ith word of the generated question.

While some words have high frequency, the outer rings illustrate a fine blend of words.

mentioned in equation- 4. The difference is passed through

an activation function to enhance the difference in either di-

rection and is given by :

Lu =

{

α(exp[Lp−Ly ] −1), if [Lp − Ly] < 0.

[Lp − Ly], otherwise.
(5)

The final cost function for the network combines the loss

obtained through uncertainty (aleatoric or predictive) loss

Lv for the attention network with the cross-entropy.

In the question generator module, we use the cross en-

tropy loss function between the predicted and ground truth

question, which is given by:

Lgen =
−1

NM

N
∑

i=1

M
∑

t=1

yt log p(qt|(genc)i, q0, ..qt−1) (6)

where, N is the total number of training examples, M is

the total number of question tokens, P(qt|(genc)i, q0, ..qt)
is the predicted probability of the question token, yt is the

ground truth label. We have provided the pseudo-code for

our method in our project webpage.

4. Experiments
We evaluate the proposed method in the following ways:

First, we evaluate our proposed MC-BMN against other

variants described in section 4.2. Second, we further com-

pare our network with state-of-the-art methods such as Nat-

ural [38] and Creative [23]. Third, we have shown in fig-

ure 4, the variance plots for different samples drawn from

the posterior for Bayesian and Non-Bayesian methods. Fi-

nally, we perform a user study to gauge human opinion on

the naturalness of the generated question and analyze the

word statistics with the help of a Sunburst plot as shown

in Figure 6. We also consider the significance of the var-

ious methods for combining the cues as well as for the

state-of-the-art models. The quantitative evaluations are

performed using standard metrics namely BLEU [42], ME-

TEOR [4], ROUGE [32] and CIDEr [53]. BLEU metric

scores show strong correlations with human for the VQG

task and is recommended by Mostafazadeh et al. [38] for

further bench-marking. In the paper, we provide the com-

parison with respect to only BLEU-1 and METEOR metrics

and the full comparison with all metrics(BLEU-n, CIDER

and ROUGE) and further details are present in our project

webpage1.

Method BLEU1 METEOR ROUGE CIDEr

MC-SMix 31.1 19.1 32.6 42.8

MC-BMix 36.4 22.6 40.7 46.6

MC-SMN 33.1 21.1 37.6 47.8

MC-BMN +PC 24.6 11.1 24.0 45.2

MC-BMN 40.7 22.6 41.9 49.7

Table 1. Ablation Analysis on VQG-COCO Dataset.It has the

different variations of our model described in ‘Comparison with

State-of-the-Art and Ablation Analysis’ section of the paper. As

expected the performance with the generated captions is not as

good as with the ground truth captions. Note that these are the

max scores over all the epochs. PC tends for Predicted Caption

4.1. Dataset

We conduct our experiments on Visual Question Gen-

eration (VQG) dataset [38], which contains human anno-

tated questions based on images of MS-COCO dataset. This

dataset [38] was developed for generating natural and en-

gaging questions. It contains a total of 2500 training im-

ages, 1250 validation images, and 1250 testing images.

Each image in the dataset contains five natural questions

and five ground truth captions. It is worth noting that the

work of [23] also used the questions from VQA dataset [1]

1https://delta-lab-iitk.github.io/BVQG/
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Methods BLEU1 METEOR

Max Avg Max Avg

Natural [38] 19.2 - 19.7 -

Creative [23] 35.6 - 19.9 -

MDN [43] 36.0 - 23.4 -

Img Only (Bernoulli Dropout (BD)) 21.8 19.57 ±2.5 13.8 13.45±1.52
Place Only(BD) 26.5 25.36±1.14 14.5 13.60±0.40
Cap Only (BD) 27.8 26.40 ±1.52 18.4 17.60±0.65
Tag Only (BD) 20.3 18.13 ±2.09 12.1 12.10±0.61
Img+Place (BD) 27.7 26.96 ±0.65 16.5 16.00±0.41
Img+Cap (BD) 26.5 24.43 ±1.14 15.0 14.56 ±0.31
Img+Tag (BD) 31.4 29.96 ±1.47 20.1 18.96±1.08
Img+Place+Cap (BD) 28.7 27.86 ±0.74 18.1 15.56±1.77
Img+Place+Tag (BD) 30.6 28.46 ±1.58 18.5 17.60 ±0.73
Img+Cap+Tag (BD) 37.3 36.43 ±1.15 21.7 20.70±0.49
MC-SMN(Img+Place+Cap+Tag(w/o Dropout)) 33.3 33.33 ±0.00 21.1 21.10 ±0.00
MC-BMN (Img+Place+Cap+Tag (Gaussian Dropout)) 38.6 35.63 ±2.73 22.9 21.53 ±1.06
MC-BMN(Img+Place+Cap+Tag(BD)) (Ours) 40.7 38.73 ±1.67 22.6 22.03 ±0.80
Humans[38] 86.0 – 60.8 –

Table 2. Comparison with state-of-the-art and different combination of Cues. The first block consists of the SOTA methods, second block

depicts the models which uses only a single type of information such as Image or Place, third block has models which take one cue along

with the Image information, fourth block takes two cues along with the Image information. The second last block consists of variations of

our method. First is MC-SMN (Simple Moderator Network) in which there is no dropout (w/o Dropout) at inference time as explained in

section 4.3 and the second one uses Gaussian dropout instead of the Bernoulli dropout (BD) which we have used across all the models.

for training purpose, whereas the work by [38] uses only the

VQG-COCO dataset. We understand that the size of this

dataset is small and there are other datasets like VQA [1],

Visual7W [66] and Visual Genome [29] which have thou-

sands of images and questions. But, VQA questions are

mainly visually grounded and literal, Visual7w questions

are designed to be answerable by only the image, and ques-

tions in Visual Genome focus on cognitive tasks, making

them unnatural for asking a human [38] and hence not

suited for the VQG task.

4.2. Comparison with different cues

The first analysis is considering the various combina-

tions of cues such as caption and place. The comparison

is provided in table 2. The second block of table 2 depicts

the models which use only a single type of information such

as Image or Place. We use these models as our baseline and

compare other variations of our model with the best single

cue. The third block takes into consideration one cue along

with the Image information, and we see an improvement

of around 4% in BLEU1 and 2% in METEOR score. The

fourth block takes two cues along with the Image informa-

tion and obtains an improvement of around 10% in BLEU

and 3% in METEOR scores. The question tags performs

the best among all the 3 tags. This is reasonable as ques-

tion tag can guide the type of question. The second last

block consists of variations of our method. the first varia-

tion corresponds to the model in which there is no dropout

at inference time and the second one uses Gaussian dropout

instead of the Bernoulli dropout which we have used across

all the models. As we can see, the application of dropout

leads to a significant increase in the BLEU score and also

Bernoulli dropout works best. We also observe that our pro-

posed method MC-BMN gets an improvement of 13% in

BLEU and 5% in METEOR score over the single cue base-

lines. Tags work well in general along with other cues than

caption as it provides more precise information compared to

the caption, but the performance drops significantly if only

the tag information is provided as there is not much infor-

mation for generating sensible questions. While comparing

the various embedding, we also evaluated various ways of

integrating the different cues to obtain joint embedding.

4.3. Comparison with state­of­the­art methods and
Ablation Analysis

The comparison of our method with various state-of-the-

art methods and ablation analysis is provided in table 2. We

observe that in terms of METEOR score, obtain an improve-

ment of around 3% using our proposed method over previ-

ous work by Mostafazadeh et. al [38] and Jain et. al [23].

For BLEU score the improvement is around 20% over [38],

5% over [23]. But it’s still quite far from human perfor-

mance.

Ablation Analysis: We consider different variants of our

methods. These are use of Conventional CNN and a con-

catenation of the various embeddings (Multi Cue Simple

Mixture (MC-SMix)), a Bayesian CNN and concatenation

of the various embeddings (Multi Cue Bayesian Mixture

(MC-BMix)), and the final one uses a mixture of experts

1572



Figure 7. Examples of questions generated by our method for different images. First question in each image is generated by our method

and second one is the ground truth question. More results are present in the project webpage.

along with a conventional CNN (Multi Cue Simple Moder-

ator Network (MC-SMN)). MC-SMN actually corresponds

to our MC-BMN method without dropout. Our proposed

method improves upon these ablations.

Figure 8. Perceptual Realism Plot for human survey (section 4.4).

The blue and red dots represent the threshold and the number of

people fooled for each question respectively. Here every question

has different number of responses and hence the threshold for each

question is varying. Also, we are only providing the plot for 50 of

100 questions involved in the survey.

4.4. Perceptual Realism

A human is the best judge of the naturalness of any ques-

tion; we also evaluated our proposed MC-BMN method us-

ing a ‘Naturalness’ Turing test [63] on 175 people. People

were shown an image with two questions just as in figure 7

and were asked to rate the naturalness of both the questions

on a scale of 1 to 5 where one means ‘Least Natural’ and

5 is the ‘Most Natural.’ We provided them with 100 such

images from the VQG-COCO validation dataset which has

1250 images. Figure 8 indicates the number of people who

were fooled (rated the generated question more or equal to

the ground truth question). For the 100 images, on an av-

erage 61.8%, people were fooled. If we provide both ques-

tions as the ground truth ones then on an average 50 % peo-

ple were fooled, and this shows that our model can generate

natural questions.

5. Conclusion

In this paper, we have proposed a novel solution for
the problem of generating natural questions for an image.
The approach relies on obtaining the advice of different
Bayesian experts that are used for generating natural ques-
tions. We provide a detailed comparison with state of the art
baseline methods, perform a user study to evaluate the nat-
uralness of the questions and also ensure that the results are
statistically significant. Our work introduces a principled
framework to include cues for vision and language-based
interaction. We aim to further validate the generalization
of the approach by extending this approach to other vision
and language tasks. The resulting approach has been also
analysed in terms of Conventional CNN, Bayesian LSTM
with product of experts and we observe that the proposed
Bayesian Expert model improved over all the other vari-
ants.
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