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Abstract

This paper tackles the problem of real-time semantic seg-

mentation of high definition videos using a hybrid GPU-

CPU approach. We propose an Efficient Video Segmenta-

tion (EVS) pipeline that combines:

(i) On the CPU, a very fast optical flow method, that is

used to exploit the temporal aspect of the video and prop-

agate semantic information from one frame to the next. It

runs in parallel with the GPU.

(ii) On the GPU, two Convolutional Neural Networks:

A main segmentation network that is used to predict dense

semantic labels from scratch, and a Refiner that is designed

to improve predictions from previous frames with the help

of a fast Inconsistencies Attention Module (IAM). The latter

can identify regions that cannot be propagated accurately.

We suggest several operating points depending on the

desired frame rate and accuracy. Our pipeline achieves

accuracy levels competitive to the existing real-time meth-

ods for semantic image segmentation (mIoU above 60%),

while achieving much higher frame rates. On the popu-

lar Cityscapes dataset with high resolution frames (2048×
1024), the proposed operating points range from 80 to 1000

Hz on a single GPU and CPU.

Keywords: Real-Time, Video Semantic Segmentation,

Optical flow, Propagation, Refinement

1. Introduction

A lot of efforts have been made in semantic segmenta-

tion over the past years. Yet, while segmentation accuracy

reached astonishing levels, little focus has been put on mak-

ing it usable in real-time scenarios. Achieving very fast se-

mantic segmentation would have many advantages, espe-

cially when used as an additional building block for other

computer vision tasks related to real-time scene understand-

ing. Particularly in the context of real-world scenarios for

industrial or commercial cases such as augmented reality,

autonomous driving, autonomous flying, etc.

Video scene understanding is already a wide and active

research topic, especially in accurate object instances track-
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Figure 1: Comparison between our EVS pipeline and state

of the art methods on the Cityscapes [8] dataset with input

resolution 2048 × 1024. Table 2 provides more operating

points and comparisons, from 1 Hz to 1000 Hz.

ing and segmentation. However, in the context of real-time

video semantic segmentation, fewer efforts have been put

into exploiting the temporal information as a mean to de-

crease inference time. When used, this temporal aspect is in

most methods used as an additional information to improve

either the accuracy of the predictions or their consistency

over time, at the cost of additional runtime.

On the contrary, the focus of this paper is to use tem-

poral information as a way to minimize the inference time

for each frame as much as possible, while limiting the drop

in accuracy resulting from the reduced computations. The

baseline we use runs at around 40 Hz on a frame resolution

of 2048×1024. Our EVS pipeline defines several operating

points among which the speedup factor varies from ×2 to

×27 on the same resolution.

The proposed pipeline uses ICNet [42] as the main pre-

diction network, since it is the current state of the art in

terms of trade-off between accuracy and performance for

single frame processing. To compute the dense optical flow,
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we use Dense Inverse Search (DIS) [17] as it is the current

state of the art in terms of computational efficiency on the

CPU. Dense optical flow plays a key role in our pipeline, as

it can run on the CPU in parallel with the GPU at a much

higher frame rate than the prediction network. This infor-

mation is then used to:

- Warp the semantic information from one frame to the

next, both of high level predictions and low level con-

textual features. This warped semantics is used as in-

put for the Refiner that will improve the labels predic-

tion for the current frame.

- Feed the IAM to focus the refinement on regions

where the optical flow is unreliable (typically thin

and/or moving objects boundaries), by computing the

forward-backward consistency of the propagated la-

bels.

1.1. Contributions

Since semantic segmentation is crucial for video scene

understanding, we aim at pushing the limits of this field

through the following contributions, with a focus on effi-

ciency and frame rate.

First, our hybrid EVS pipeline balances the workload be-

tween GPU and CPU. They work in parallel, either comput-

ing semantic predictions or propagating them from frame

to frame using optical flow, instead of having one large

pipeline running fully on the GPU. Running the optical flow

directly on the CPU decreases the workload on the GPU and

leads to a massive reduction in computation time. Our goal

is to establish new standards in terms of speed for real-time

video semantic segmentation while preserving a sound seg-

mentation quality.

Furthermore, we introduce a fast IAM and a Refiner

that work together to refine the propagated predictions of

the main segmentation network to better match the current

frame. Our versatile design allows running our pipeline in

various operating modes, trading-off speed versus segmen-

tation quality.

2. Related Work

The most straightforward way to perform video seman-

tic segmentation is to simply run image semantic segmen-

tation on each frame. Although this approach is rather

slow, it leads to a natural baseline to assess the quality of

video segmentation methods. Furthermore, we review re-

cent trends and ideas in video segmentation. As our pro-

posed method combines semantic image segmentation with

optical flow, we review different methods extracting optical

flow between consecutive frames using traditional or deep

learning-based methods.

2.1. Image Semantic Segmentation

Semantic image segmentation aims at assigning a class

label to each pixel of a given image. The recent advances

in deep learning [16, 39] lead to fast progress in semantic

image segmentation [23, 22, 5]. Most of the state-of-the-art

methods [6, 43] are based on Fully Convolutional Networks

(FCNs) [23]. Among these methods are: DeepLabV3+ [6],

PSPNet [43] or more recently Panoptic FPN [15]. These

methods concentrate mainly on high quality segmentation

masks that require a large amount of parameters and are

computationally intensive, i.e. inference time of around one

second for a high resolution frame (2048× 1024).

Other methods that focus on reducing computing time

and memory footprint obtain more and more attention: Seg-

Net [1], SQ [38], ENet [29] and ESPNet [26].

Combining the best of both worlds, some methods aim

at finding good trade-offs between frame rate and accuracy,

either from their model (ERFNet [32] and ICNet [42]) or by

treating differently complex and simple parts of the image

(LC [20]). These methods achieve faster inference times

while preserving a decent segmentation quality.

2.2. Video Semantic Segmentation

Compared to semantic image segmentation, developing

dedicated video segmentation pipelines is a less explored re-

search track. Applying image segmentation algorithms that

operate on each video frame individually is possible. How-

ever, specialized methods for videos can exploit temporal

information between consecutive frames to enable more re-

liable predictions or increase the frame rate.

Early methods tackling video segmentation were ex-

tending classical single image segmentation methods with

temporally-aware components: normalized cuts [35], track-

ing [19] or motion segmentation [28]. Recent methods

leverage dense optical flow in a more direct way by com-

bining it with Gated Recurrent Units (GRUs) to refine the

predictions and add temporal consistency [37, 27].

In particular, some methods aim at reducing inference

times by embedding the temporal aspect in their structure

by using LSTM [25], or by selecting key frames to fully

segment. Clockwork [34] authors observe that intermedi-

ate representations within a network change only slowly in

most videos. Therefore, they propose to schedule features

computation for key frames only and share features in be-

tween. LLVS [21] and DVSN [41] try to further optimize

scheduling depending on frame content.

Another family of methods uses the geometrical struc-

ture of the 3D scene to improve the segmentation quality.

There, 3D point clouds obtained from visual odometry or

stereo-vision approaches add additional information that al-

lows more reliable predictions [3, 11, 33, 18].

One of the major challenges in video segmentation re-

mains the massive amount of data that deep Convolutional
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Figure 2: Full pipeline overview with an input video stream (I0, I1, ...) and the corresponding output labels (L0, L1, ...).
The predicted probabilities Pi, labels Li and deep features Fi are propagated with the corresponding dense optical flow.

Neural Networks (CNNs) require for training. Already,

producing annotations for semantic image segmentation is

costly. In this case, ensuring diversity in a video segmen-

tation data set demands many different video sequences

each consisting of hundreds of frames even for very short

movies, leading to thousands of frames that should be an-

notated. Thus, existing data sets for video segmentation are

either sparsely annotated [2, 13, 8], i.e. not every frame is

labelled, or the segmentation task is simplified such that an-

notation is cheaper, i.e. single object segmentation [30]. In

our case, we avoid this pitfall by relying on a network which

is trained on single images. Only synthetic data sets such as

GTA5 [31] or Sintel [4] overcome that annotation limita-

tion.

2.3. Optical Flow

Traditional optical flow methods such as Lucas-

Kanade [24] or Gunnar-Farneback [10], recently started to

compete with new deep learning approaches: FlowNet [9,

14], MPNet [36] and SegFlow [7] produce very accu-

rate flow estimates, but are rather expensive and slow and

run on the GPU. As a result, deep video semantic seg-

mentation pipelines using optical flow usually improve

marginally their accuracy or temporal consistency, while in-

creasing substantially their inference time: NetWarp [12],

GRFP [27] or DFF [40]. In contrast, when aiming at fast

and efficient video segmentation, DIS [17] is among the

most suitable candidates. DIS achieves much higher frame

rates than deep optical flow methods and runs on CPU,

which gives more flexibility to choose between speed and

accuracy by selecting different operating points.

3. Efficient Video Segmentation Pipeline

3.1. Full Pipeline Overview

Our pipeline consists of five main components that pro-

cess the video stream jointly, see Figure 2. The GPU holds

a segmentation network and a Refiner with IAM, while the

CPU is responsible for computing in parallel the optical

flow and for warping the CNN features and predictions.

The dense optical flow is computed for each pair of the

consecutive frames. It enables the forward and backward

remapping of semantic information extracted by the deep

networks. The IAM is responsible for computing the in-

consistencies that remapping reveals. It provides this infor-

mation to the Refiner, which then corrects mistakes caused

by warping around inconsistent areas, i.e. where the optical

flow is not reliable.

In the best case, the flow will be consistent and the pre-

diction of the next frame will simply be the previous predic-

tion warped by using optical flow. In most cases, the lack

of flow consistency in some regions of the image (sudden

changes in brightness, occlusions, multiple fast motions,

etc.) will be recovered by the Refiner, while the other pre-

diction of other regions will still be derived from the previ-

ous prediction to increase temporal consistency.

3.2. Semantic Segmentation Network

The segmentation network in our pipeline is responsible

for providing a full frame semantic segmentation. We want

to emphasize that any deep framework can be used within

our framework, leaving space for improvements when bet-

ter networks are developed. For this work, we choose to
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use ICNet [42] because of its excellent trade-off between

accuracy and speed: 67% mIoU at ∼ 40 Hz on the popular

Cityscapes [8] dataset.

3.3. Optical Flow and Semantics Propagation

The advent of deep learning brought many optical flow

methods to impressive quality levels while focusing less on

the computational efficiency. However, we require a fast

but still accurate dense optical flow. DIS Flow [17] matches

perfectly this requirement and has the advantage of produc-

ing a reasonable dense flow at a very high frame rate while

running on the CPU. Thus, it allows to save the GPU re-

sources for other tasks.

Dense optical flow provides for each pixel (x, y) of the

image a flow in each dimension F 1→2

xy (x, y), between two

consecutive frames I1 and I2. The mapping between I1 and

I2 can be written for each dimension as follows:

Mx(x, y) = I2(x, y)− F 1→2

x (x, y)

My(x, y) = I2(x, y)− F 1→2

y (x, y)
(1)

Using Eq. (1) then allows to produce image I2 solely by

remapping the pixels from image I1. For non-integer val-

ued coordinates, using the nearest neighbours interpolation

results in a valid remapped image:

I2(x, y) = I1(Mx(x, y),My(x, y)) (2)

We want to emphasize that such a mapping is fast to

perform because it is highly parallelizable on CPU. In our

pipeline, it is used to quickly remap both the predictions

and the low level CNN features from one frame to the next.

These features represent the slow changing contextual infor-

mation of the scene. The predictions can also be remapped

backward such that the IAM is able to compute the incon-

sistencies (Figure 3).

3.4. Inconsistencies Attention Module

The IAM is working together with the Refiner. It is de-

signed such that it is lightweight and able to focus the atten-

tion of the refinement on regions where the optical flow is

inconsistent. The inputs are:

- LF: the labels predicted for the current frame, obtained

by warping the previous frame labels forward.

- LBF: the labels predicted for the current frame, ob-

tained by warping the labels backward and then for-

ward LF .

- Prefiner: the predicted probabilities for each class by the

Refiner.

- Pwarped: the predicted probabilities warped using the

optical flow.
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Figure 3: Inconsistencies Attention Module.

As a first step, the module computes a probability map

Mi that represents the forward-backward inconsistencies of

the optical flow for the given input frames. For every pixel

(m,n) where LF and LBF are different, the probability is

considered to be maximal because the flow is unreliable.

All other pixels are considered to be reliable:

Mi(m,n) =

{

1.0 if LF(m,n) 6= LBF(m,n)

0.0 otherwise
(3)

As a second step, this binary mask is dilated and

smoothed to engulf the surrounding areas of the inconsis-

tencies and to let the Refiner act on them, as the predictions

in these regions are more likely to be wrongly propagated

by the optical flow.

Finally, the predicted probabilities for each pixel are

weighted differently between the warped prediction and the

prediction of the Refiner. If Prefiner is the prediction of the

Refiner and Pwarped is the previous prediction warped to the

current frame using the optical flow, the final refined predic-

tion Prefined is defined as the sum of the Hadamard products:

Prefined = Mi ◦ Prefiner + (1−Mi) ◦ Pwarped (4)

As shown in Figure 3, the module only consists of

lightweight operations for a GPU, especially since the in-

puts and outputs are processed at a resolution of 512× 256.

3.5. Refiner

A carefully performed benchmark of the branches in the

ICNet architecture shows that even though the network is

designed to limit the heavy computations on the lowest res-

olution to limit the inference time per frame, almost half of

that time is spent only on building low level features (see
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Figure 4: Refiner architecture. For a given input image In
and warped semantics from the previous frames (green), it

generates refined probabilities Prefined and labels Ln. CFF

stands for ”Cascade Feature Fusion”, as in ICNet [42].

Figure 5). The Refiner is built on the idea that these low

level features do not need to be recomputed every frame in

the context of a continuous video stream: due to their reso-

lution, they are changing at the slowest rate over time.

Its task is different from the segmentation network:

given pre-aligned low level features from past frames, the

Refiner should only compute the higher level features for

the new frame, making it shallower. This allows sparing

half of the computations that would then otherwise be car-

ried out to extract low level features.

Besides, with the help of the IAM, this refinement is fo-

cused only on some areas of the image (see Figure 4). Using

the dense optical flow is reliable for large portions of the im-

age but it causes errors next to object boundaries especially

when these objects are thin, moving or new. Thus, using the

IAM leads to a better temporal consistency overall, as most

of the predicted labels were propagated from one frame to

the next.

4. Experimental evaluation

4.1. Setup and Benchmarking Method

All the benchmarks are done using a single Nvidia Ti-

tan Xp GPU, and a Intel Core i7-5930K CPU @ 3.50GHz.

The implementation is different from the original ICNet

implementation which is written in Caffe and uses a pro-

prietary version of ResNet50. Instead, we use an equiva-

lent implementation in Tensorflow 1.8 and CUDNN 7.1 as

the baseline for this paper. The Tensorflow implementation

yields almost the same performance and accuracy (67.3%

vs. 67.7%). All the benchmarks and comparisons in this

paper use this Tensorflow implementation. It is worth not-

ing that this is not problematic because the segmentation

network of our pipeline can be replaced by any other imple-

mentation.

All the following benchmarks and results are produced

on Cityscapes [8], which contains short video snippets of 30

frames at a high resolution (2048× 1024) among which the

20th frame contains a fully annotated ground truth mask. All

the experiments and results presented are evaluated on the

20th frame with different starting points before it depending

on the operating points.

For us, it is important to measure the computation times

on the GPU as accurately as possible. Thus, we build a spe-

cific probe class based on the publicly available Tensorflow

Profiler, which provides the detailed timestamps for each

operation on the GPU in JSON format. This data allows us

to establish very accurate timings for each part of the net-

work.

Each measurement contains 300 samples from the ex-

tracted profiler data. In order to avoid border effects, we

measure each sample in middle of the execution of the net-

work. The measurements show that the timings are more

varied at the startup time and the initialization of the mod-

els. Nonetheless, following the aforementioned strategy

leads to reliable and accurate GPU computation times: the

average and median measurements are matching with a

small standard deviation, see Figure 5.

4.2. Runtime of the different components

On the CPU side, warping pixels from one frame to the

next using optical flow can be easily parallelized on the

CPU. Once split in a 3× 3 or 4× 4 grid, all the pixels from

a full frame are remapped within a marginal time period

(∼ 0.15 ms on a Intel Core i7-5930K CPU @ 3.50GHz).

On the GPU side, we have two models: one for the full

CNN and the other for the Refiner. ICNet [42] is struc-

tured around 3 branches: Branch1 with very few convo-

lutions operating at full resolution, Branch2 that computes

deep features starting from half the resolution, and Branch4

that goes much deeper at even lower resolution. Figure 5

shows a speedup of almost two times for the inference time

of the Refiner.

4.3. Optical Flow and Labels Propagation

4.3.1 Optical Flow Benchmark

Several operating points are suggested for DIS [17], with a

set of parameters that trade off accuracy and runtime. For

our experiments, we choose a set of parameters to achieve a

small runtime: no variational refinement, finest scale θf =
2, patch size θps = 8, gradient descent iterations θit = 12.

This allows us to run the optical flow computation on one

of the cores of the CPU, on the full frame resolution 2048×
1024 in less than 5 ms. The goal is to compute the optical

flow for five frames on one core, while the segmentation

network is working (∼ 25 ms, see Figure 5).
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Figure 5: Runtime of the Refiner with IAM compared to

ICNet on a single Nvidia Titan Xp.

4.3.2 Influence of the Optical Flow Algorithm

The dense optical flow computation is of paramount im-

portance to propagate the semantic information correctly.

Figure 6 shows the comparison between DIS [17] at a fast

operating point and Gunnar-Farneback [10] with a 2 layers

pyramid, an averaging window of 9 pixels and 15 iterations.

There is a substantial difference in the mIoU already after

the first propagation.

Experiments with higher quality settings for DIS [17]

showed marginal improvements (below 0.2%) on the mIoU

even at high resolution, which motivated our choice for a

faster operating point. With the ultra fast setting, the drop

per propagation on the highest resolution is between 1.0%

and 1.5% (1.2% on average). This drop also tends to de-

crease when the resolution decreases, which is particularly

interesting for the predictions and low level forward propa-

gation of the features, since they operate at a resolution of

512× 256 and 128× 64 respectively.

4.3.3 Uncertainties across the Evaluation Set

The inconsistencies detected by forward-backward warping

of the labels with the optical flow vary depending on the

frame content and increase globally after each propagation.

Figure 7 shows on the evaluation set of CityScapes [8] how

the uncertainties are distributed depending on the number

of propagations. This shows that even after 4 propagations,

less than 5% of the flow computed is detected as incon-

sistent on average. For frame-to-frame propagation, this

drops to less than 1%, which confirms that the optical flow

is highly consistent.
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Figure 6: Influence of a pure label propagation on the mIoU

for 2048× 1024, comparison Gunnar-Farnebäck vs. DIS.
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Figure 7: Re-partition of frames on the Cityscapes [8] eval-

uation set as a function of their percentage of forward-

backward inconsistent pixels from the optical flow, after 1,

2 and 4 propagations.

4.4. EVS Operating Points

4.4.1 Per Class Impact of Warping and Refinement

As discussed before, a simple forward mapping of the pre-

dictions made by the segmentation network can bring an

important speedup factor, at a cost of an overall marginally

degraded segmentation quality. Although the drop in mIoU

per propagation might seem marginal, it is directly corre-

lated to the mistakes of the optical flow (especially around

boundaries of moving objects, thin objects and occlusions

that may happen over time) and might have a big impact

locally.
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Method Total road swalk build. wall fence pole tlight sign veg. terrain sky person rider car truck bus train mbike bike

Baseline 67.3 97.4 79.5 89.4 49.1 51.7 46.1 47.9 61.1 90.3 58.6 93.4 69.9 43.3 91.4 64.8 75.8 59.9 43.9 65.4

EVS 03 66.2 97.3 78.9 89.1 51.1 52.1 41.5 46.6 60.4 89.8 59.2 93.1 66.9 41.7 90.5 64.1 75.2 52.1 44.5 64.2

EVS 02 66.8 97.3 79.1 89.3 51.0 52.3 44.5 47.1 61.4 90.2 59.5 93.2 69.0 42.5 90.9 63.9 75.5 52.5 45.0 64.9

Recovery +0.6△ = +0.2 +0.2 -0.1 +0.2 +3.0 +0.5 +1.0 +0.4 +0.3 +0.1 +2.1 +0.8 +0.4 -0.2 +0.3 +0.4 +0.5 +0.7

EVS 07 62.2 96.8 77.1 87.4 50.6 49.5 31.3 43.5 55.5 87.9 55.9 92.6 57.9 35.4 87.2 59.8 72.0 41.8 40.3 58.5

EVS 06 63.0 96.6 75.6 87.9 50.2 49.8 36.0 44.4 57.5 89.1 56.6 93.2 63.6 36.5 87.5 59.2 70.8 41.5 41.1 60.0

Recovery +0.8△ -0.2 -1.5 +0.5 -0.4 +0.3 +4.7 +0.9 +2.0 +1.2 +0.7 +0.6 +5.7 +1.1 +0.3 -0.6 -1.2 -0.3 +0.8 +1.5

Table 1: Per-class results on Cityscapes after propagating 1 or 4 times the labels with refinement (EVS 02 and EVS 06) or

without (EVS 03 and EVS 07). The corresponding recovery achieved by the Refiner is explicitely mentioned for both cases.

A per class analysis (see Table 1) confirms that the er-

rors due to optical flow propagation affect most classes only

marginally (below 1% drop in IoU). Some of them are par-

ticularly affected by the wrong labeling: static thin objects

(poles, traffic signs, traffic lights) and humans/small moving

objects (person, rider, bike) are the most impacted classes

(between 1% and 5% drop in IoU).

The Refiner is able to recover a large portion of the drop

in IoU observed for those classes, especially after 1 frame

propagation for poles, street signs and persons, even though

the overall IoU gain is between 0.5% and 1%. Figure 8

shows these typical situations where the refinement has a

clear visible impact on these specific classes and shows that

our Refiner can recover missing parts:

- Thin objects such as poles, street signs or traffic lights

are not always captured or heavily distorted by the

camera motion.

- Pedestrians on a crossing or cyclists and bikes are

sometimes difficult to be fully captured with optical

flow.

- Missing parts due to occlusion and moving objects: a

cyclist and bike passing in front of vegetation or two

cars at a crossing.

Interestingly, the analysis also reveals that large static

classes benefit from propagation (wall, fence, terrain) such

that the IoU for these classes is higher than the IoU pro-

duced by the baseline, even without refinement (between

0.5% and 2% gain in IoU).

4.4.2 Operating Point Comparison

The structure of our EVS pipeline is defined by four pa-

rameters: the downscaling factor used by the segmentation

network (D), the rate (every nth frame) at which the full

segmentation is computed (S), warping (W) and refinement

(R). Table 2 summarizes these operating points and com-

pares them with state-of-the-art methods in terms of accu-

racy, frame rate and speedup factor compared to our base-

line ICNet [42].

Method Framerate Speedup D S W R mIoU

V
id

eo
p

ip
el

in
e

EVS 14 (Ours) 1045 Hz ×27.1 0.5 17 ✓ ✗ 46.0%

EVS 13 (Ours) 677 Hz ×17.6 0.5 10 ✗ ✗ 35.3%

EVS 12 (Ours) 634 Hz ×16.5 0.5 10 ✓ ✗ 50.7%

EVS 11 (Ours) 387 Hz ×10.1 1.0 10 ✗ ✗ 36.7%

EVS 10 (Ours) 372 Hz ×9.7 1.0 10 ✓ ✗ 56.2%

EVS 09 (Ours) 339 Hz ×8.8 0.5 5 ✗ ✗ 42.8%

EVS 08 (Ours) 192 Hz ×5.0 1.0 5 ✗ ✗ 46.4%

EVS 07 (Ours) 190 Hz ×4.9 1.0 5 ✓ ✗ 62.2%

EVS 06 (Ours) 122 Hz ×3.2 1.0 5 ✓ ✓ 63.0%

EVS 05 (Ours) 115 Hz ×3.0 1.0 3 ✓ ✗ 64.7%

EVS 04 (Ours) 74 Hz ×1.9 1.0 3 ✓ ✓ 65.6%

EVS 03 (Ours) 77 Hz ×2.0 1.0 2 ✓ ✗ 66.2%

EVS 02 (Ours) 49 Hz ×1.2 1.0 2 ✓ ✓ 66.8%

EVS 01 (Ours) 37 Hz ×0.95 1.0 1 ✓ ✓ 67.6%

DVSN [41] 30 Hz ×0.8 - - - - 62.6%

Clockwork [34] 12 Hz ×0.3 - - - - 64.4%

LLVS [21] 6.6 Hz ×0.2 - - - - 75.3%

DFF [40] 5.6 Hz ×0.1 - - - - 69.2%

GRFP [27] 0.6 Hz ×0.02 - - - - 81.3%

NetWarp [12] 0.3 Hz ×0.01 - - - - 80.6%

S
in

g
le

fr
am

e

ENet [29] 77 Hz ×1.9 - - - - 58.3%

ERFNet [32] 42 Hz ×1.1 - - - - 69.7%

ICNet[42] 39 Hz Ref.– - - - - 67.3%

SQ [38] 17 Hz ×0.4 - - - - 59.8%

SegNet [1] 15 Hz ×0.4 - - - - 57.0%

PSPNet [43] 0.8 Hz ×0.02 - - - - 81.2%

Table 2: Comparison of different EVS pipeline operating

points. Numbers are reported on a Nvidia Titan Xp GPU

and Intel Core i7-5930K CPU @3.50GHz for our pipeline

and the reproduced ICNet [42]. Numbers for other methods

are reported from their respective papers on various hard-

ware.

5. Conclusion

In this work, we introduce an Efficient Video Segmenta-

tion pipeline that pushes the boundaries of real-time video

semantic segmentation in terms of computational efficiency

by combining the benefits of deep CNNs running on the

GPU and a very fast optical flow running in parallel with

the CPU. We propose different operating modes in order to

focus either on frame rate or accuracy, from 67% mIoU at

∼ 40 Hz to 46% mIoU at ∼ 1000 Hz for 2048× 1024 input

images.
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(a) Ground truth (b) ICNet (c) EVS Propagated (d) EVS Propagated + Refined

Figure 8: Benefits of the Refiner on the propagated predictions in three problematic situations for the optical flow: a person

riding a bike, thin poles on the side walk and occlusions from cars.

To compensate for the introduced errors in the predic-

tions by the optical flow propagation around thin and/or

moving objects (poles, persons or bikes), we propose a Re-

finer network to correct some errors and to generate a vi-

sually more appealing segmentation. The Refiner works

with a dedicated Inconsistencies Attention Module which

focuses the prediction refinement on the relevant regions of

the image.

One of the strengths of our pipeline is that the segmen-

tation network can be used as a black box method and can

be replaced with any other segmentation network, bringing

potentially more accuracy for the same speedups in the fu-

ture. Moreover, our pipeline could benefit from a higher

input frame rate because two consecutive frames are more

similar and lead to a more accurate and reliable optical flow

prediction (Cityscapes has a rather small frame rate of 17

Hz). Furthermore, the IAM introduced in this paper could

be used in a future work as a way to dynamically adapt the

behaviour of our pipeline depending to the input frames. In

simple situations, the segmentation network and the Refiner

could run less often such that the whole pipeline relies more

on the optical flow when it is reliable. In more complex

situations, the pipeline would then be able to force the re-

segmentation more often to preserve a reasonable accuracy

at the price of a lower frame rate.
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