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Abstract

A method called inverse rectification, is proposed which

facilitates the establishment of correspondences across a

projected pattern and an acquired image. A pattern of fea-

tures comprising vertical dashes is warped by the inverse

of the rectifying homography of the projector-camera pair,

prior to projection. This warping imparts upon the sys-

tem the property that projected features will fall on distinct

conjugate epipolar lines of the rectified projector and ac-

quired camera images. This reduces the correspondence

search to a trivial constant-time table lookup once a feature

is found in the camera image, and leads to robust, accurate,

and extremely efficient disparity calculations. A projector-

camera range sensor is developed based on this method,

and is shown experimentally to be effective, with bandwidth

exceeding some existing consumer-level range sensors.

1. Introduction

There are a variety of techniques for sensing depth from

a scene, each of which have their unique characteristics

which make them best suited for a particular task, and some

of which have been successfully productized. The trinagu-

lation based Microsoft Kinect I was the first such sensor to

be successfully targetted at the consumer market, and pro-

duced dense point clouds in near realtime, albeit at only

moderate accuracies. The time-of-flight based Kinect II

improved on both bandwidth and accuracy, although it re-

mained best suited for human-interactive applications, such

as indoor gaming systems. Other commercial sensors have

targetted industrial applications such as industrial inspec-

tion and vision-guided robotics, and provide higher data ac-

curacy, with less emphasis on depth-of-field and bandwidth.

Effort is currently being directed toward the development

of commercial LiDAR systems which have characteristics

suitable for use in autonomous vehicle navigation.

The many uses of range data coupled with distinct re-

quirements for each application, result in a need for a va-

riety of different sensing methods. While it is not entirely

clear which method will ultimately be best suited for a given

application, it is clear that no single method will satisfy

all requirements. There remains an interest, therefore, in

the development of novel sensing approaches that have im-

proved characteristics for existing applications, as well as

novel characteristics to enable new applications.

A taxonomy of 3D sensing is proposed in Fig. 1, and

reviews are presented in [1, 14, 4]. The two broadest cat-

egories are: Passive techniques, which include stereovi-

sion, multiview stereo, and arguably depth from focus and

structure from motion, and; Active techniques, which add

light energy to the scene. Establishing correspondences be-

tween planar projections of scene elements is of central im-

portance to both passive stereo and all active triangulation

methods, and their ability to perform this robustly and effi-

ciently is at the essence of the various methods.

This paper proposes a technique called inverse rectifica-

tion, which facilitates the establishment of correspondences

across a projected pattern and an acquired image. Rectifica-

tion is a well-known method to align the two imaging planes

of a stereovision system. Inverse rectification exploits the

rectifying homographies differently, warping the pattern so

that projected features will fall on distinct conjugate epipo-

lar lines of the rectified projector and camera images. This

reduces the correspondence search to a trivial constant-time

table lookup once a feature has been found in the camera

image, and leads to the potential for both robust and ex-

tremely efficient disparity calculations. The technique is

presented here as the core of a projector-camera (procam)

range sensor, although it could also be applied beneficially

to other existing active triangulation-based methods.
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Figure 1. Taxonomy of 3D Sensing Techniques

2. Previous Work

Among the active techniques, the two broadest cate-

gories are time-of-flight sensors, which measure the time

(and therefore distance) that it takes for emitted light to re-

flect off of a surface and return to the sensor [5], and trian-

gulation sensors. Like passive stereovision, active triangu-

lation sensors measure the disparity between offset planar

projections of corresponding scene elements. In the case of

active triangulation sensors, typically only one of the planes

is an imaging sensor, whereas the other is a projected light

source, such as a laser [10] or data projector.

All active triangulation-based methods establish corre-

spondences across images by encoding the light that they

transmit, so that each pixel in the acquired image can be

decoded and associated with a specific projected pixel lo-

cation [1, 14]. In classical temporal encoding, a series of

patterns is transmitted which when stacked together iden-

tify each pixel distinctly [12]. A well-established temporal

encoding method projects a sequence of binary gray coded

patterns, which uniquely encode 2n pixels with n images.

Scharstein and Szeliski [15] exploited epipolar geometry to

rectify the projected and acquired images, thereby isolating

each row (or column) and reducing the number of required

projected patterns by half.

While temporal encoding can be robust and accurate, it

requires multiple (often 10 to 20) images to be projected per

frame, and so it is necessarily bandwidth limited. This lim-

itation has motivated the development of spatially-encoded

one-shot triangulation methods, which have demonstrated

the potential of being both accurate and efficient, as they

require only a single projected pattern. One-shot meth-

ods spatially encode the projected pixel locations, either

through the projection of continuous or discrete patterns.

Continuous methods project a single (or small number of)

intensity-varying waves, and uniquely recover the phase of

these signals at each acquired pixel [11, 9, 2]. These meth-

ods can be both fast and accurate, although they may be sen-

sitive to variations in reflectance and color properties of the

scene surfaces, which can confuse the interpretation of the

received light intensity. There are also periodic ambiguities

that can occur due to the wrapping of the projected waves,

which may be resolved through the projection of additional

continuous wave images of complementary frequencies.

Spatially-encoded discrete patterns form another cate-

gory of one-shot method, which include the use of color

coding. Zhang et al. [16] projected vertical stripes of dis-

tinct colors that followed a de Bruijn sequence, and facil-

itated the association of the recovered and projected se-

quences using a Dynamic Programming framework. Color

coding suffers from similar limitations as continuous meth-

ods, when non-cooperative surfaces are imaged. Alterna-

tives to color coding include the active stereovision ap-

proach of Scharstein and Szeliski [15], which projects color

stripe patterns to improve establishing correspondences

across images, which is especially beneficial for enhancing

stereovision of radiometrically textureless surfaces.

Recently a monochrome binary one-shot method was

proposed by Kawasaki et al. which makes use of a pro-

jected grid pattern [6]. This elegant method leverages the

intersection of vertical and horizontal projected grid-lines

to produce a system of linear equations from coplanarity

constraints. By searching the nearest grid-line through the

sum of squared differences, ambiguity is resolved and cor-

respondence is achieved. The computational load of this

method remains too great for realtime performance, as it

executes at ∼ 1 fps, with most of the time used for cal-

culating the solution of a large linear system of equations

that model the intersections of the grid lines. In subsequent

work, a number of clever modifications have been used to

improve the processing speed and resolution of this one shot

method [13].

There are a number commercially available range sen-

sors, which are based on variations of the above-described

methods, and which are targetted to different application

domains. Perhaps the most widely-used triangulation sen-

sor has been the Kinect I, Introduced by Microsoft in 2010

to enhance human interaction with video games. Mar-

keted as an RGB-D sensor due to its ability to acquire

co-registered color and depth information at each pixel,

works by projecting and capturing a random dot pattern

from IR procam system followed by triangulation for 3D

depth reconstruction. The Kinect II was introduced in 2014,

and was based on time-of-flight technology, and had supe-

rior accuracy, range, resolution and bandwidth characteris-

tics, with a similar interface. Other commercially available

range sensors include the Intel RealSense [7] and the En-

senso N35 [3], both of which use a form of active stereo,

and recently a set of sensors from Zivid labs [8] which use

time-multiplexed structured light projection.

The proposed approach falls under the category of dis-
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(a) Projector pattern (b) Pattern a) inverse rectified

(c) Camera image of pattern a) (d) Camera image of pattern b)

(e) Image c) rectified (f) Image d) rectified

Figure 2. Procam Pair, Without (left column) and With Inverse

Rectification.

crete monochrome one-shot triangulation methods. It

makes use of a property of the epipolar geometry of the

projector-camera pair to ease the correspondence calcula-

tion, by first inverse rectifying the binary pattern prior to

projection. This inverse rectification aligns the projected

features to the image epipolar lines, reducing correspon-

dence decoding to a trivial constant-time table lookup. The

method is scalable, able to produce a sparser (∼4K) point

cloud at a very high frame rate, or a denser point cloud at a

lower rate.

3. Inverse Rectification

The objective of inverse rectification is to design a pat-

tern to be projected onto a scene such that correspondences

between the projected pattern and acquired image points

can be easily and efficiently determined, with a simple table

lookup. The process of inverse rectification can be appre-

ciated through the example in Fig. 2, which shows a set of

projected patterns and acquired images, both without and

with inverse rectification. The baseline of the projector and

camera pair align vertically in this example, with the cam-

era positioned above the projector, rather than horizontally

as is more common in stereovision systems. The impact

of this vertical alignment is that the rectified epipolar lines

align by column.

Fig. 2a) is the original projector pattern, showing verti-

cal dashes. In c) the pattern from a) is projected onto the

(mostly planar) scene, and viewed from the camera after

radial distortion correction (but not rectification) has been

applied. It can be seen that the vertical dashes are no longer

perfectly parallel, as they fan out towards the top, which

is to be expected as the images have not been rectified. In

part e) the image from c) has been transformed through the

camera’s rectifying homography. The vertical dashes from

the original pattern in a) are clearly not aligned with the

rectified camera frame’s epipolar lines. This is also to be

expected, as the vertical dashes in the original pattern in

a) were not aligned with the epipolar lines of the projector

frame.

Fig. 2b) shows the projected pattern from a), now with

the inverse rectifying projector homography applied. Part d)

is the pattern from b), projected onto the scene and viewed

from the camera. Part f) is the image from d) with the cam-

era’s rectifying homography applied. It can be seen that the

effect of applying inverse rectification to the pattern prior

to projection has been to align the initial projected pattern

dashes in a) with the rectified camera’s vertical epipolar

lines. The vertical pattern dashes between initial pattern a)

and rectified image f) thereby uniquely correspond by hor-

izontal column. The vertical dash positions in image f) are

different than those in a) due to disparity resulting from the

scene’s depth.

Formally, let Q be an image acquired in the camera

frame of pattern P projected onto a scene. Assume that

the projector and camera are aligned so that their fields-of-

view substantially overlap, and that they both adhere to the

standard pinhole optical model.

Rectification is the process of transforming a pair of

camera frames, or a camera and a projector frame, so that

their epipolar lines are parallel and align. The two rectifying

transformations are homographies, and are calculated from

a combination of the intrinsic parameters of each optical

device, and the extrinsic parameters linking each device’s

frame. Following rectification, corresponding epipolar lines

between the camera and projector frames will align, in this

case by column.

Let HQ and HP be the rectifying homographies for the

camera and projector frames respectively. The rectified pro-

jector image P̂ and camera image Q̂ then have the property

that the (vertical) epipolar line that falls on the ith column

of P̂ , corresponds to the epipolar line on the ith column

of Q̂. This alignment does not mean that the correspond-

ing columns of P̂ and Q̂ contain identical information, but

rather that corresponding points between the rectified pro-

jector and image planes fall on the same column, with the

differences of their row positions (i.e. the disparities) vary-

ing linearly with depth.

Thus let projector frame point p be mapped through the

projector homography to rectified point p̂ = HP p. Points

are expressed in homogeneous coordinates, so that p̂ =
(ûp, v̂p, 1). Let p be projected onto a 3D point in the scene,

which is then in turn projected onto image point q and rec-
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(a) Vertically aligned projector

and camera

(b) Substantially overlapping

fields-of-view

Figure 3. Procam system setup

tified as q̂=HQq=(ûq, v̂q, 1). The column-alignment of the

two rectified frames then gives:

p ∝ q ⇒ ûp = ûq (1)

where ∝ indicates the correspondence of two points.

Inverse rectification exploits the property of Eq. 1

through the design of a pattern containing features that can

be indexed directly by epipolar line. Minimally, this pattern

can contain a single feature per epipolar line, although we

show that this can be extended to multiple features per line,

by applying some reasonable constraints and characteristics

of the pattern.

Let P̂ contain a single feature per epipolar line. As the

images are vertically rectified, this could be as simple as

designing a pattern that has a single unique white pixel for

each column, against an otherwise black background. This

quality must exist in the rectified pattern P̂ , rather than the

initial unrectified pattern P . It must therefore be generated

first in rectified space as P̂ , with inverse rectification then

applied to achieve the desired pattern P for projection:

P = H−1

P P̂ (2)

With P then projected, a feature q̂ extracted from rectified

camera image Q̂ will correspond uniquely to projector fea-

ture p̂, by their common column index ûq = ûp, with the

difference in their row values v̂q − v̂p serving as disparity.

4. Pattern Generation and Detection

The simplest pattern comprises a single feature per

epipolar line, which is a vertical dash as described in

Sec. 4.1. The pattern density can be increased by con-

straining the maximum disparity range (Sec. 4.2) and mak-

ing use of alternating inverse images (Sec. 4.3). Time per-

formance can be further improved by tracking disparities

across frames (Sec. 4.4).

4.1. Single Dash per Epipolar Line

The objective is to generate a projector pattern P̂ that

contains a single feature for each epipolar line. The fea-

tures are simply white vertical dashes on a black back-

ground, which can be robustly and efficiently extracted, es-

pecially when image subtraction methods are applied, as in

Sec. 4.3. The procam system is assumed to be vertically

(a) stride = 465 pixels (b) stride = 466 pixels

Figure 4. Pattern distributions (intensity inverted) for varying ver-

tical strides.

(a) Pattern P̂ with 1280 dashes (b) Inverse rectified pattern P ,

with 1167 dashes

(c) Unrectified camera image Q

of swan model

(d) Rectified camera image Q̂

with 998 extracted dashes

(e) P̂ in red, overlayed on Q̂ (f) Cropped area of e), with

epipolar lines (gray) and corre-

spondences (green).

Figure 5. Single dash per epipolar line pattern

aligned, with the camera above the projector, as shown in

Fig. 3a). As pattern P̂ lies in rectified space, the epipolar

lines are themselves vertically aligned and are simply the

pattern columns. This vertical alignment of the projector

and camera exploits widescreen aspect ratios, which more

columns than rows. This alignment therefore accommo-

dates a greater number of pattern points than would be pos-

sible if the projector and camera were horizontally aligned,

as is more typical in stereovision systems. The fields-of-

view of the projector and camera are oriented to substan-

tially overlap, as shown in Fig. 3b), where the striped pro-

jector pattern lies within the camera image, both of which

have a resolution of 1280x800.

The pattern is generated by inscribing white dashes on a
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black background, one per column. The dashes themselves

are 9x1 pixels in size, which were the smallest projected

vertical dash features that could be reliably extracted from

an acquired camera image of similar resolution, follow-

ing inverse rectification of the projected pattern and radial

undistortion and rectification of the acquired image. After

calibration, the average reprojection error between corre-

sponding projector and camera epipolar lines was slightly

less than one pixel, and so dashes were deposited with large

vertical offsets (i.e. strides) between adjacent columns,

to reduce the possibility of correspondence errors with a

neighboring dash during disparity calculation.

It is desirable for the dashes to be distributed as uni-

formly as possible across the pattern, which is impacted

by the vertical stride between horizontally adjacent dashes.

Examples of pattern sections (with inverted intensities for

easier visualization) for dash distributions over two strides

are illustrated in Fig. 4. It can be observed that stride 466

leads to a more linear pattern, whereas 465 results in a more

uniform dash distribution.

The complete projector pattern P̂ containing 1280

dashes and with a vertical stride of 456 pixels between

horizontally adjacent dashes, is illustrated (with intensities

inverted) in Fig. 5a), with inverse rectified version P in

Fig. 5b). Resizing of the image during inverse rectification

effectively reduces the image size, resulting in only 1167

dash features in P . Fig. 5c) shows the unrectified camera’s

view Q of P , and Fig. 5d) shows the 998 dash features ex-

tracted from rectified camera image Q̂ using simple thresh-

olding. Fig. 5e) shows the projected pattern P̂ overlayed on

the dashes extracted from Q̂. The dash positions of P̂ have

been rendered as red circles, and a rectangular area is high-

lighted in green. Finally, Fig. 5e) shows this highlighted

area, cropped and zoomed. Three epipolar lines are ren-

dered in gray, and corresponding features along these lines

are highlighted as a green segment, the length of which in-

dicates the disparity of these features.

Projector pattern P̂ and its inverse rectified version P
need to be generated only once, during preprocessing. The

resuling dash positions are extracted from P̂ and stored in

a simple list L, the size of which is equal to the column

rank of P̂ . Each entry of L is indexed by epipolar line (i.e.

column value u), and stores the row value v of the center

of the unique pattern dash p̂i(ûpi
, v̂pi

) that resides on that

epipolar line, i.e. L[ûpi
] = v̂pi

At runtime, camera image Q is acquired and rectified

into Q̂, and the set of N camera image dash positions{
q̂j(ûqj , v̂qj )

}N

1
extracted. As image Q̂ is binary, it is

straightforward to identify the position v̂qj of the single se-

quence of white pixels in each column ûqj by applying a

linear search. As the pattern dash is larger than a single

pixel, and the camera and projector resolutions are simi-

lar, the height v̂qj of any dash q̂j will be spread over a few

(a) Rectified pattern P̂ , N = 3390

dashes

(b) Inverse rectified P of P̂ , resized

and cropped, N=2163 dashes.

Figure 6. Disparity bound pattern with on average 5.3 dashes per

epipolar line, resolution =1280×800, Dm=151.

(typically h=9) pixels. In practice a two-phase sub-linear

search is therefore more efficient, wherein only every kth

pixel, k < h, is visited during the first phase to fall some-

where on the dash, and then the dash position is fine-tuned

in the second phase to find its center v̂qj . To further improve

efficiency, the first phase need only search along the direc-

tion of increasing disparity, and the search can start at the

row location stored in the pattern dash list, at which position

disparity will be zero.

Once extracted, the disparity dj of dash q̂j is determined

by simply indexing the list:

dj = L[ûqj ]− v̂qj (3)

This correspondence decoding is therefore constant time

and very efficient, requiring a visit of only ∼ H/k pixels

per column of height H , and a simple table lookup. The

disparities are then converted to 3D points in the usual way,

accessing the procam pair’s intrinsic and extrinsic parame-

ters, at the cost of a few floating point operations.

4.2. Disparity Bounding

The most direct way to increase the density of projected

dashes per frame is to simply allow P to contain more than

one dash per epipolar line. P is thus designed so that each

column contains a number of dashes, which are uniformly

spaced and separated by a maximum disparity of Dm pixels.

At runtime, the first phase of the correspondence search for

each rectified camera image dash q̂j is limited to a range

of Dm pixels. The value Dm therefore presents an upper

bound to the range of disparity that can be determined for

each dash.

The disparity dj of a point has an inverse relationship

dj = (B × f)/Zj to its depth Zj , where B is the baseline

and f is the effective focal length of the optical pair. The

maximum disparity bound Dm in this way corresponds to

the offset of the near sensing plane of the imaging frustum.

So long as sensed points fall beyond this near plane, there

can be no ambiguities among the correspondences estab-

lished from the multiple dashes that share an epipolar line.

An example of such a pattern is illustrated in Fig. 6,

which has a disparity bound of Dm = 151, yielding 5.3

dashes on average per epipolar line. This disparity bound
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(a) Projector image with 151

stride spacing

(b) Camera image of a big swan

(c) Extracted camera features us-

ing b) and its inverse, with back-

ground filtered and stripes re-

rendered for clarity

(d) 3D point cloud of swan, ro-

tated

Figure 7. Example of Dual Pattern Subtraction applied to a scene

translates to theoretical near sensing plane of 1.12 m, and a

far plane of 170.9 m, under the current configuration of the

calibrated optical system. Practically, the near was ∼2.3 m,

and the far plane ∼ 15 to 25 m, limited by the brightness

of the projector and the lighting and reflectance properties

of the scene. As the dashes are packed closer together, and

therefore the vertical stride between horizontally adjacent

dashes necessarily compressed, only every other column is

used to avoid potential errors with neighboring dashes when

establishing correspondences. This results in a total of 2163

dashes in pattern P̂ , a 185% increase in dash density per

frame, after resizing and cropping P following inverse rec-

tification.

4.3. Dual Pattern Subtraction

Feature density can be further increased by making use

of two dual patterns comprising three gray tone intensities.

Let P̂A be a pattern designed as previously described in

Sec. 4.2, except with white dashes (pixel intensity I=255)

spaced at disparity bound Dm against a gray (I=128) back-

ground, in place of the previous black (I =0) background.

Further, let P̂A contain an equal number of black dashes

spaced exactly at the midpoint of each white dash along

each column. Finally, let P̂B be the inverse of P̂A, such

that the white dashes of P̂A are the black dashes of P̂B ,

and vice-versa. P̂A and P̂B are thus considered to be dual

patterns: They contaon the same information, except with

intensities inverted. The dual patterns are calculated during

preprocessing, along with their respective inverse rectified

dual patterns PA and PB .

At runtime, the projected pattern alternates each frame

between PA and PB , and the current camera image Qt ac-

quired at frame t is subtracted from image Qt−1 acquired

at frame t− 1. Irrespective of whether the most recent pro-

jected pattern was PA or PB , the image subtraction results

in high peaks (∼ 255) where the white dashes of Qt overlap

with the black dashes of Qt−1, and low troughs (∼ −255)

where the black dashes of Qt overlap with the white dashes

of Qt−1. Gray regions between the dashes will subtract to

a value of zero. An example of this approach is shown in

Fig. 7.

This approach has the benefit of doubling the extractible

pattern dash resolution, without reducing the disparity

bound. As the locations of the white and black dashes pro-

duce peaks and troughs in the subtracted image, correspon-

dences with white dashes can be distinguished as either oc-

curing in P̂A or P̂B . In this way, each pattern is treated

simultaneously, as if they were independently acquired im-

ages, each with disparity bound Dm.

Another benefit of this approach is that the use of sub-

traction between consecutive image frames increases the

signal-to-noise ratio (SNR) of the image dash extraction.

It is unlikely for peaks or troughs in the subtracted image

to occur at the neutral gray pixels, which are common to

both images. The dash positions are therefore more ro-

bustly identified than if a simple threshold were applied,

which is especially important when the scene contains non-

cooperative colored surfaces of varying albedo. This in-

crease in SNR is the main advantage of the subtraction of

dual three-tone images, compared with simply shifting the

positions of white dashes on a black background over a con-

secutive image pair.

The use of dual images over two successive frames main-

taines the full frame rate of the method, as each new frame

produces a new full set of 2N dashes. It does, however,

change the interpretation of the instance in time that the sur-

face was sampled to produce the point set. As both Qt and

Qt−1 contribute to the extracted dash locations, any motion

of the scene surface will be integrated over this time step.

4.4. Disparity Caching

A further increase in efficiency can be realized by

caching the disparity values calculated for each dash in the

previous frame. These cached disparity values are then

used for the respective dashes as the starting positions of

the phase one search, rather than the corresponding projec-

tor dash position as previously described. In cases where

the disparity has changed little from the previous frame’s

value, this will cause early termination of the first phase of

the search, reducing the number of visited pixels and the

resulting computational expense of the search.

In addition to caching the disparity values, the 3D point

cloud generated from the previous frame is also cached. In

cases where the dispartity has not changed between frames,

this further increases efficiency, as there is no need to re-

calculate these 3D points from the disparity values.
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Sample images from (a-b) Swan Translate, (c-d) Swan

Rotate, and (e-f) Plane Forward datasets.

5. Experiments

A set of experiments were conducted to characterize the

performance of the proposed method. Unless otherwise

specified, all tests used dual pattern subtraction with 2 phase

search and disparity caching, and the imaged scenes con-

tained substantially Lambertian matte white surfaces. All

timing results are averaged over 1000 iterations for consis-

tency. The machine used for all the tests was an i9 7920X

CPU @2.90GHz with 16GB RAM, running Ubuntu 18.04.2

LTS, with OpenCV version 4.1.0. The code was written

using C++ in a parallelized multi-threaded implementation

using 24 threads.

We created three datasets of streams of images for our

experiments, namely Swan Translate, Swan Rotate, and

Plane Forward. Swan Translate is a set of 12 image pairs

where the swan is moving across the scene. Swan Rotate

contains 13 image pairs, with the swan rotated 360 degrees

about the y axis, while Plane Forward, has 5 image pairs,

in which the projector screen moves towards the camera in

40 cm intervals, from 3.9 m to 2.3 m. A few sample images

from these datasets are shown in Fig. 8.

The overall time taken by the method using Swan Trans-

late detaset is tabulated in Table 1. The majority (76%)

of the execution time is consumed by the OpenCV remap

function, which radially undistorts and applies the rectify-

ing homography to the camera image. The disparity and

depth calculations were comparatively efficient.

The times reported in the subsequent tables are only for

Time (µs)

Function avg max min std. dev

remap + threshold 1159 1530 1018 34.6

disparity + depth 368.8 1884 343.3 48.8

total time 1528 2984 1368 59.6

Table 1. Time taken per image for remapping and disparity extrac-

tion based on 4315 dashes with 60.1 average disparity

the disparity and depth calculations, and do not include the

time for the OpenCV remap and threshold functions. Ex-

ecution time with and without disparity caching are shown

in Table 2. It can be seen that the performance enhance-

ment due to caching is heavily dependent on the scene. In

general, disparity caching does in each instance produce a

faster average runtime, although in the case of the Swan Ro-

tate dataset, this performance improvement was minimal.

The execution times on Swan Translate dataset of the

various enhancements to improve time performance dis-

cussed in the paper are summarized in Table 3. It can

be seen that the single dash per epipolar line outperforms

the disparity bounding, and that the average disparity in the

disparity bounding test case was 50% larger than the single

dash test case. As expected, the greatest improvement in

speed was realized by using the 2 phase search and caching

method, resulting in a bandwidth of 11.7 M points per sec-

ond (pps).

5.1. Accuracy of Extracted Points

To access the effectiveness of inverse rectification ap-

plied on the projector pattern prior to projection, we per-

formed an experiment using plane fitting to calculate the

quantity and quality of extracted depth points with and with-

out inverse rectification using single dash per epipolar line.

The accuracy of the extracted points was measured by fit-

ting an imaged plane to the disparity values generated from

a large planar surface which was positioned at two different

intervals from the procam pair (3.3 and 3.9 m). The plane

of best fit was found by first estimating the plane equation

using 100 RANSAC iterations, and then calculating the best

fit plane to the inliers.

The metric we use for measuring depth accuracy is the

percentage of pixels whose disparity error is greater than

threshold t for t=1,2,3,4. Table 4 shows the results of plane

fitting averaged over the two scenes. The advantage of in-

verse rectification is evident from the results. Compared

with no prior rectification, the proposed method is able to

capture much higher percentage of points, the average dis-

parity is much closer to the ground truth disparity (39 pix-

els), and the percentage of bad pixels is much lower for all

thresholds.
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average average δ with cache runtime (µs) without cache runtime (µs)

dataset disparity (px) disparity (px) avg max min std. dev avg max min std. dev

Swan Rotate 59.6 1.1 367.2 585.1 344.2 11.4 415.5 513.6 397.2 7.9

Swan Translation 60.1 1.2 368.8 1884 343.3 48.8 370.1 415.9 347.4 7.8

Plane Forward 59.3 4.1 365.9 474.1 336.8 10.6 405.5 545.1 385.8 10.4

Table 2. Runtime with and without caching on different datasets.

avg point pps Total Time (µs)

method disparity count (Million) avg max min std. dev

single dash per epipolar line 44.0 1241 8.5 146.8 245.4 134.9 9.5

disparity bounding 63.3 2174 8.1 269.8 324.3 208.1 11.7

dual pattern subtraction 60.1 4315 9.2 469.6 2017 420.0 76.5

2 phase search + caching 60.1 4315 11.7 368.8 1884 343.3 48.8

Table 3. Comparison of performance for variations of proposed methods.

prior inverse no prior

rectification rectification

projected points 2225 2626

captured points 2212.5 (99.4%) 968.5 (36.9%)

bad

points

t=4 12 (0.5%) 693.5 (71.6%)

t=3 80.5 (3.6%) 720.5 (74.4%)

t=2 233 (10.5%) 748.5 (77.3%)

t=1 460 (20.8%) 792.5 (81.8%)

average disparity 38.9 54.9

std. dev. wrt. avg. 6.5 23.4

std. dev. wrt. GT 5.4 45

Table 4. Plane fit accuracy data

5.2. Comparison with ConsumerLevel Range Sen
sors

A comparison of the proposed sensor with existing

consumer-level range sensors is presented in Table 5. Once

again considering only the time to calculate disparities and

depth, the proposed method has a much higher potential

frame rate. This is an interesting feature, as there are many

applications (such as tracking) where a high frame rate is

desired with sparser data. Table 5 also shows that our band-

width, as measured in pps, is higher than the Kinect I and

Kinect II, but less than the Intel RealSense D435. It must

be noted, however, that RealSense D435 uses 3 cameras (2

IR + 1 visible) and 1 projector whereas our setup uses only

a single camera and projector. In addition, all 3 commercial

systems are optimized at the hardware-level, whereas we

are combining different out-of-shelf components, using a

general purpose computer and only high level coding. With

further hardware optimization, the bandwidth of the pro-

posed method would be expected to increase further.

6. Discussion and Conclusion

In this paper, we presented a novel technique to estab-

lish efficient, robust and accurate point correspondences be-

sensor technology resolution fps pps

Kinect V1 active 640×480 30 9.2M

IR stereo

Kinect V2 time of 512×424 30 6.5M

flight

Intel active 1280×720 90 83M

RealSense D435 IR stereo

Proposed active 1280×800 2720 11.7M

Sensor visible stereo

Table 5. Comparison of our proposed range sensor with existing

ones

tween a procam image pair. The core idea is to exploit

epipolar geometry to generate a pattern of small dashes in

the rectified procam image pair such that each dash lies on

a unique epipolar line. An inverse rectification transform

is applied on the projector image before projection in or-

der to reduce point correspondence search to a simple ta-

ble lookup. On top of this simple method, we introduced

multiple enhancements such as two-phase search, disparity

bounding, dual pattern subtraction, and disparity caching,

and showed experimentally that these enhancements indeed

increase the speed, resolution, and robustness of the result-

ing depth extraction.

The method was demonstrated as being very efficient.

Despite being implemented on a general purpose CPU sys-

tem, it had a higher bandwidth (at 11.7M pps) than the

Kinect I (2.3M pps) and Kinect II (6.5M pps), although not

the Intel RealSense (83M pps). In future work, we will fo-

cus on increasing resolution per frame, as well as increasing

computational efficiency through a highly parallel and opti-

mized implementation on an FPGA or GPU platform.
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