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Abstract

In this paper we consider the task of image-guided depth

completion where our system must infer the depth at ev-

ery pixel of an input image based on the image content

and a sparse set of depth measurements. We propose a

novel approach that builds upon the strengths of modern

deep learning techniques and classical optimization algo-

rithms and significantly improves performance. The pro-

posed method replaces the final 1 × 1 convolutional layer

employed in most depth completion networks with a least

squares fitting module which computes weights by fitting

the implicit depth bases to the given sparse depth measure-

ments. In addition, we show how our proposed method can

be naturally extended to a multi-scale formulation for im-

proved self-supervised training. We demonstrate through

extensive experiments on various datasets that our ap-

proach achieves consistent improvements over state-of-the-

art baseline methods with small computational overhead.

1. Introduction

Deep convolutional networks have proven to be effective

tools for solving deep regression problems like depth pre-

diction and depth completion [7]. Most networks proposed

for this regression task share a common structure where the

penultimate features are reduced to single channel by a final

convolutional layer. This final convolutional output is then

passed through a nonlinear function to map it onto the range

of acceptable depth values.

This observation motivates the main contribution of this

paper: Instead of using a fixed set of weights in the final

layer, we perform a least squares fit from the penultimate

features to the sparse depths to get a set of data-dependent

weights. The rest of the network parameters are still shared

across input data and learned using stochastic gradient de-

scent. From a regression point of view, the network that

produces the penultimate layer of features is an adaptive ba-

sis function [2] and we refer to the features before the final

layer as depth bases. We argue that explicitly carrying out a

regression from the depth bases to the sparse depths allows

the network to learn a different representation that better en-

force its predictions to be consistent with the measurements,

which manifests as significant performance gain.

To this end, we first demonstrate how one could circum-

vent the nonlinearity from the depth activation function by

solving a linear least squares problem with transformed tar-

get sparse depths. We then address the full robustified non-

linear least squares problem in order to deal with noisy mea-

surements and outliers in real-world data. Finally, to make

our module truly a drop-in replacement for the final convo-

lutional layer, we show how to adapt it to output predictions

at multiple scales with progressively increased detail, which

is a feature required by self-supervised training schemes.

2. Related Work

2.1. Depth Estimation

Supervised Learning. Estimating dense depths from a

single image is a fundamentally ill-posed problem. Re-

cent learning-based approaches try to solve this by leverag-

ing the predictive power of deep convolutional neural net-

works (CNN) with strong regularization [7, 24, 9]. These

works require dense or semi-dense ground truth annota-

tions, which are costly to obtain in large quantities in prac-

tice. Synthetic data [33, 10, 35], on the other hand, can be

generated more easily from current graphics systems. How-

ever, it is non-trivial to generate synthetic data that closely

matches the appearance and structure of the real-world, thus

the resulting networks may require an extra step of fine-

tuning or domain adaptation [1].

Self-Supervised Learning. When ground truth depths are

not available, one could instead seek to use view synthesis

as a supervisory signal [39]. This so-called self-supervised

training has gained popularity in recent years [27, 31, 44].

The network still takes a single image as input and predicts

depths, but the loss is computed on a set of images. This is

achieved by warping pixels from a set of source images to

the target image using the predicted depths, along with es-

timated camera poses and camera intrinsics. Under various

constancy assumptions [30], errors between target and syn-
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thesized images are computed and back-propagated through

the network for learning.

Another version of self-supervision utilizes synchro-

nized stereo pairs [12] during training. In this setting, the

network predicts the depth for the left view and uses the

known focal length and baseline to reconstruct the right

view, and vice versa. A more complex form utilizes the

motion in monocular videos [52]. In these approaches the

network also needs to predict the transformation between

frames. The biggest challenge faced by monocular self-

supervision is handling moving objects. Many authors try to

address this issue by predicting an explanability mask [52],

motion segmentation [43], and joint optical-flow estimation

[50]. We refer readers to [15] for a more detailed review.

2.2. Depth Completion

Depth completion is an extension to the depth estima-

tion task where sparse depths are available as input. Uhrig

et al. [42] propose a sparse convolution layer that explic-

itly handles missing data, which renders it invariant to dif-

ferent levels of sparsity. Ma et al. [26] adopt an early-

fusion strategy to combine color and sparse depths inputs

in a self-supervised training framework. On the other hand,

Jaritz et al. [22] and Shivakumar et al. [37] advocate a late-

fusion approach to transform both inputs into a common

feature space. Zhang et al. [51] and Qiu et al. [32] esti-

mate surface normals as a secondary task to help densify

the sparse depths. Irman et al. [20] identify the cause of

artifacts caused by convolution on sparse data and propose

a novel scheme, Depth Coefficients, to address this prob-

lem. Eldesokey et al. [8] and Gansbeke [11] propose to use

a confidence mask to handle noise and uncertainty in sparse

data. Yang et al. [49] infer the posterior distribution of depth

given an image and sparse depths by a Conditional Prior

Network. While most of the above works deal with data

from LiDARs or depth cameras, Wong et al. [48] design

a system that works with very sparse data from a visual-

inertial odometry system. Weeraskera et al. [47] attach a

fully-connected Conditional Random Field to the output of

a depth prediction network, which can also handle any input

sparsity pattern.

Cheng et al. [4] propose a convolutional spatial prop-

agation network that learns the affinity matrix to complete

sparse depths. This is similar to a diffusion process and uses

several iterations to update the depth map. Another iterative

approach is described by Wang et al. [45], in which they

design a module that can be integrated into many existing

methods to improve performance of a pre-trained network

without re-training. This is done by iteratively updating the

intermediate feature map to make the model output consis-

tent with the given sparse depths. Like [45], our approach

could be readily integrated into many of the previously pro-

posed depth completion networks.
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Figure 1: An overview of our proposed method. Solid lines

indicate the data flow of our module, while dotted lines indi-

cate that of the baseline method, which is simply a convolu-

tional layer. Our LSF module can replace the convolutional

layer with no change to the rest of the network.

In other related work Tang et al. [40]. propose to pa-

rameterize depth map with a set of basis depth maps and

optimize weights to minimize a feature-metric distance. In

contrast, our bases are multi-scale by construction and are

fit directly to the sparse depths.

3. Method

In this section, we describe our proposed method for the

task of monocular image-guided depth completion1. Given

an image X and a sparse depth map S, we wish to predict

a dense depth image D′ from a depth estimation function

f that minimizes some loss function L with respect to the

ground truth depth D. Typically, X is a color image, S the

sparse depth map where invalid pixels are encoded by 0, and

f a fully convolutional neural network whose parameters

are denoted by θ. When ground-truth depth D is available,

the learning problem is to determine θ∗ according to

θ∗ = argmin
θ
L(f(X,S; θ), D) (1)

For supervised training we choose L to be the L1 norm on

depth and for self-supervised training we use a combination

of L1+SSIM on the intensity values [46] coupled with an

edge-aware smoothness term [15].

3.1. Linear Least­Squares Fitting (LSF) Module

Existing depth prediction networks usually employ a fi-

nal convolutional layer to convert an M -channel set of basis

features, B, to a single-channel result, L, which is some-

times referred to as the logits layer. The inputs to this fi-

nal layer are allowed to range freely between −∞ and +∞
while the logit outputs are mapped to positive depth values

by a nonlinear activation function, g. Following common

practice in the depth completion literature [15] we choose g
as follows:

g(x) = a/σ(x) = a(1 + e−x) (2)

1From now on we will refer to this task as depth completion.
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where a is a scaling factor that controls the minimum depth

and σ(·) the sigmoid function. In this work, we set a = 1.

For simplicity we assume that the final convolution filter

that maps the basis features, B, onto the logits, L, has a

kernel size of 1×1 with bias w0, but one could easily extend

our result to arbitrary kernel size. L is, therefore, an affine

combination of channels in B and the predicted depth at

pixel i is

D′[i] = g (L[i]) = g





M
∑

j=0

wj ·Bj [i]



 = g(w⊤
bi) (3)

where w = (w0, · · · , wM )⊤ represents the combined filter

weights and bias, and bi the basis (feature) vector at pixel

i with B0[i] = 1, and [·] the pixel index operator. To sim-

plify notations, we use lower case letters, e.g. bi = B[i],
to denote values at a particular pixel location. The weights

w are updated via back-propagation [25] using stochastic

gradient descent [3]. Once learned they are typically fixed

at inference time.

When enough sparse depth measurements are avail-

able the weights w can instead be directly computed from

data. Specifically, our weights are obtained through a least

squares fit from the bases B to the sparse depths S at valid

pixels, which can then be used in place of the final convolu-

tional layer. An overview of our proposed method is shown

in Figure 1.

The objective function we wish to minimize for the least

squares problem is

min
w

1

2

N
∑

i=1

r2 (w,bi, si) (4)

with residual function

r(w,bi, si) = g





M
∑

j=0

wjbij



−si = g
(

w
⊤
bi

)

−si (5)

where si denotes an individual sparse depth measurement,

N is the number of valid pixels in S, M the number of

channels in B, and g(·) a nonlinear activation function.

The residual function r(·) is obviously nonlinear w.r.t.

the weights w due to the nonlinearity in g(·). A simple

workaround is to transform the target variable s by g−1(·)
to arrive at a new linear residual function

r̃(w,bi, si) = w
⊤
bi − g−1(si) = w

⊤
bi − ti (6)

We can then rewrite the new objective function (4) in matrix

form to obtain a linear least squares problem

min
w

1

2
‖Bw − t‖

2
(7)

where B denotes the N×(M+1) matrix of stacked features

bi at valid pixel locations and t the corresponding trans-

formed sparse depths vector. The solution to (7) is the well-

known Moore-Penrose pseudo-inverse which can be further

regularized with parameter λ [2].

w
∗ =

(

λI+B
⊤
B
)−1

B
⊤
t (8)

Notice here that our weights w∗ are calculated determinis-

tically as a function of the bases B and the sparse depth

S, while the original convolution filter is independent of

both. In practice, this problem is usually solved via LU

or Cholesky decomposition both of which are differentiable

[28]. Thus, the entire training process including our LSF

module is differentiable which means that it can be trained

in an end-to-end manner. This is an important point since

we have found that retraining the network with this fitting

module produces much better results than simply adding the

fitting procedure to a pretrained network without retraining.

Effectively the retraining allows the network to make best

use of the new adaptive fitting layer.

3.2. Robustified Nonlinear Fitting

The linear LSF module is readily usable as a replacement

for the final convolution layer in many depth prediction net-

works. One problem remains to be addressed, which is the

fact that the original objective function in Equation 5 is non-

linear w.r.t. the weights w. Although applying the inverse

transformation g−1(·) to the sparse depths is a simple yet ef-

fective solution, we show that performing a full robustified

nonlinear least squares fitting provides further performance

improvements and outlier rejection at the cost of extra com-

putation time.

Real-world data often contain noise and outliers that are

hard to model or eliminate. Cheng et al. [5] point out that

there exist many different types of noise in LiDAR data

from the well-known KITTI [13] dataset. They propose a

novel feedback loop that utilizes stereo matching from the

network to clean erroneous data points in the sparse depths.

Gansbeke et al. [11] let the network predict a confidence

map to weight information from different input branches.

To handle these cases, we employ M-estimators [18], which

fit well within our least squares framework.

Recall the objective function in equation (4), taking the

derivative with respect to w, setting it to zero and ignor-

ing higher-order terms yields the following linear equation

(Gauss-Newton approximation)

J
⊤
J∆w = −J⊤

r (9)

where J is the Jacobian matrix that is formed by stacking

Jacobians Ji(w,bi, si) = ∂r(w,bi, si)/∂w, and r is the

residual vector formed by stacking ri(w,bi, si). Follow-

ing standard practice in Triggs et al. [41], we minimize the
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effective squared error where the cost function is statisti-

cally weighted and robustified, which is equivalent to solv-

ing for ∆w in

J̄
⊤
WJ̄∆w = −J̄⊤

Wr̄ (10)

with J̄i =
√

ρ′iJi and r̄i =
√

ρ′iri (11)

where W = L
⊤
L a diagonal matrix with terms inverse-

proportional to the noise in each measurement, which we

assume to be Gaussian for LiDARs , ρ(x) is the Huber loss

[19] and ρ′ its first derivative

ρ(x) =

{

x2, |x| ≤ 1

2|x| − 1, |x| > 1
(12)

We iteratively calculate ∆w by solving (10) and update w

w← w +∆w (13)

with w initialized from the linear fitting in Section 3.1.

Theoretically, one should repeat this until convergence,

but to alleviate the problem of vanishing or exploding gradi-

ents [17], we adopt the fixed-iteration approach used in [40],

which is also known as an incomplete optimization [6]. De-

spite its limitations, it has the advantage of having a fixed

training/inference time and reduced memory consumption,

which is often desirable in robotic systems with limited

computational resources. As discussed in earlier Section

3.1, solving a linear system like equation (10) via Cholesky

decomposition is differentiable, thus optimizing this non-

linear objective function by performing a fixed number of

Gauss-Newton steps maintains the differentiability of the

entire system.

3.3. Multi­scale Prediction for Self­supervision

Self-supervised training formulates the learning prob-

lem as novel view synthesis, where the network predicted

depth is used to synthesize a target image from other view-

points. To overcome the gradient locality problem of the bi-

linear sampler [21] during image warping, previous works

[14, 52] adopt a multi-scale prediction and image recon-

struction scheme by predicting a depth map at each decoder

layer’s resolution. According to Godard et al. [15], this has

the side effect of creating artifacts in large texture-less re-

gions in the lower resolution depth maps due to ambigui-

ties in photometric errors. They later improved upon this

multi-scale formulation by upsampling all the lower resolu-

tion depth maps to the input image resolution.

This technique greatly reduces various artifacts in the fi-

nal depth prediction, but it still has one undesired property,

namely, depth maps predicted at each scale are largely in-

dependent. Lower resolution depth maps are used in train-

ing phase, but are discarded during inference, resulting in a

waste of parameters.

Multiscale

Bases

Multiscale

DepthsDecoder

g

Weights

D1

D2

D3

Figure 2: Our proposed multi-scale depth prediction. The

full resolution depth D3 is reconstructed using all bases pre-

diction.

Rather than predicting a depth map D′

k at each scale

k separately, we propose to predict a set of bases Bk, as

shown in Figure 2. Each of the basis vectors is obtained by

upsampling features from corresponding scales in the de-

coder as shown in Figure 2 so the resulting basis images

are band-limited by construction with coarser basis images

corresponding to earlier layers in the decoder. The depth

prediction at a particular scale s is then reconstructed using

bases up to that scale.

d′is = g

(

s
∑

k=0

w
⊤

k bik

)

(14)

The final depth prediction at highest scale K is

d′i := d′iK = g

(

K
∑

k=0

w
⊤

k bik

)

= g
(

w
⊤
bi

)

(15)

where bi = (b⊤

i0, . . . ,b
⊤

iK)⊤ and w = (w⊤

0
, . . . ,w⊤

K)⊤.

With this formulation, predictions at different scales will

work towards the same goal, which is to reconstruct the

full resolution depth map. This approach is analogous to

wavelet or Fourier encodings of an image where the basis

maps are organized into band-limited components to repre-

sent the signal at various scales.

Our LSF module handles this multi-scale approach quite

naturally since we can simply allocate the basis maps in B
amongst the desired scales, then upsample and group them

back together to perform the fitting step. Henceforth we

use this new multi-scale prediction scheme in all our ex-

periments, even for supervised training where only the full

resolution depth prediction is required.

4. Experiments

4.1. Implementation Details

Network Architecture. All networks and training are im-

plemented in PyTorch To investigate the effectiveness of the

proposed LSF module, we adopt the network used in Ma et

al. [26] as our main baseline. The network is a symmetric

encoder-decoder [34] with skip connections. We make the

following modifications for better training: 1) transposed
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Dataset Resolution # Train # Val Cap [m]

KITTI [13, 42] 375 × 1242 38412 3347 80

V-KITTI [10] 188 × 621 5156 837 130

Synthia [35] 304 × 512 3634 901 130

NYU-V2 [38] 480 × 640 1086 363 -

Table 1: A summary of all datasets used. Cap indicates the

maximum depth being used for sampling sparse depths as

well as in computing various error metrics. Resolution is

the image resolution that we use in our experiments, which

we downsample from the original one if necessary.

convolutions are replaced with resize convolutions [29] for

better upsampling, 2) the extra convolution layer between

the encoder and the decoder are removed, 3) the encoder

is based on ResNet18, as opposed to ResNet34 [16] and is

initialized with parameters pretrained on ImageNet [36].

We let the decoder output 4, 8, 16, and 32-dimensional

bases at each scale. These are then upsampled to the im-

age resolution and concatenated together to form a 60-

dimensional basis. For the baseline network, it is fed di-

rectly into a final convolution layer while for ours, it is

passed into the LSF module together with the sparse depths.

Therefore, these two methods are exactly the same in terms

of network parameters, up to the last convolution layer.

Training Parameters. Following [26], we use the Adam

optimizer [23] with an initial learning rate of 1e-4 and re-

duce it by half every 5 epochs. Training is carried out on a

single Tesla V100 GPU with 15 epochs and the best valida-

tion result is reported. Batch sizes may vary across datasets

due to GPU memory constraints, but are kept the same for

experiments of the same dataset. Only random horizontal

flips are used to augment the data for supervised training,

no data augmentation is performed for self-supervised train-

ing. The above settings are used across all experiments in

this work (unless explicitly stated) with the same random

seed to ensure controlled experiments with fair and mean-

ingful comparisons.

4.2. Datasets

A summary of all datasets we evaluate on is shown in

Table 1.

KITTI Depth Completion. We evaluate on the newly in-

troduced KITTI depth completion dataset [42] and follow

the official training/validation split. The ground truth depth

is generated by merging several consecutive LiDAR scans

around a given frame and refined using a stereo matching

algorithm. The sparse depth map is generated by projecting

LiDAR measurements onto the closest image, which occu-

pies on average 4% of the image resolution. We use all

categories from the KITTI raw dataset [13] except for Per-

son as it contains mostly static scenes with moving objects,

which is not suitable for self-supervised training.

Virtual KITTI. The Virtual KITTI (V-KITTI) dataset is

a synthetic video dataset [10], which contains 50 monoc-

ular videos generated with various simulated lighting and

weather conditions with dense ground truth annotations. We

adopt an out-of-distribution testing scheme for this dataset.

Specifically, we use sequences 1, 2, 6, 18 with variations

clone, morning, overcast and sunset for training, and se-

quence 20 with variation clone for validation. Thus the

testing sequence is never seen during training. The sparse

depths are generated by randomly sampling pixels that have

a depth value less than 130 meters. We intentionally in-

crease the depth cap to 130 meters for all synthetic datasets

since recent LiDAR units can easily achieve this range.

Synthia. Synthia [35] is another synthetic dataset in urban

settings with dense ground truth. We use the SYNTHIA-

Seqs version which simulates four video sequences ac-

quired from a virtual car across different seasons. Fol-

lowing the training protocol in V-KITTI, we use sequences

1,2,5,6 for training and sequence 4 for validation, all un-

der the summer variation. We include this dataset because

it has simulated stereo images, which serves as a comple-

ment to the monocular only V-KITTI. Again ground truth

and sparse depths are capped at 130 meters.

NYU Depth V2. In addition to all the outdoor datasets, we

also validate our approach on NYU Depth V2 (NYU-V2)

[38], which is an indoor dataset. We use the 1449 densely

labeled pairs of aligned RGB and depth images instead of

the full dataset which is comprised of raw image and depth

data as provided by the Kinect sensor. The dataset is split

into approximately 75% training and 25% validation. We

use the same strategy as above for sampling sparse depths

but put no cap on the maximum depth.

4.3. Results

We evaluate performance using standard metrics in the

depth estimation literature. Note that for accuracy (δ thresh-

old) [7] we only report δ1 < 1.25, due to space limitations

and the fact that the δ2 and δ3 are typically 99% for our

experiments and thus provide limited insights. Following

[45], we group results based on input modalities, where rgb

denotes a network that only takes a color image as input. In

contrast rgbd indicates a network that takes both the color

image and the sparse depths as inputs.

Performance of Linear Fitting. Table 2 shows quantita-

tive comparisons between our proposed linear LSF module

from Section 3.1 and the baseline under supervised training.

We see consistent improvements of our linear LSF module
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Supervised Training NYU-V2 V-KITTI Synthia KITTI

Input Method Sparse MAE RMSE δ1 MAE RMSE δ1 MAE RMSE δ1 MAE RMSE δ1

rgb conv - 0.6244 0.8693 58.44 6.9998 14.653 66.43 2.3911 6.3915 76.09 1.8915 4.1164 86.24

rgb pnp 0.2% 0.5517 0.7976 64.23 6.4701 13.990 70.18 2.1716 6.0084 81.37 1.6581 3.8019 88.67

rgb lsf- 0.2% 0.4081 0.6124 77.86 5.8379 12.712 71.62 2.4089 6.2520 78.49 1.7033 3.5986 91.80

rgb lsf 0.2% 0.1826 0.3165 96.11 4.5122 9.7933 77.18 2.0104 5.6285 84.37 0.7716 2.0808 97.69

(conv-lsf) / conv +71% +64% +36% +33% +16% +12% +59% +50%

rgbd conv 4% 0.1089 0.1679 99.20 1.5683 4.8982 94.71 0.7506 3.3322 96.50 0.3033 1.1392 99.57

rgbd pnp 4% 0.1008 0.1604 99.24 1.5301 4.8798 94.81 0.7311 3.3217 96.60 0.2993 1.1343 99.57

rgbd lsf- 4% 0.1127 0.1853 99.34 2.1049 6.1901 95.30 1.3220 4.6594 94.27 0.6319 2.2895 98.46

rgbd lsf 4% 0.0300 0.0735 99.83 1.2598 4.6227 97.43 0.5317 3.1146 97.85 0.2266 0.9988 99.67

(conv-lsf) / conv +72% +56% +20% +6% +29% +7% +25% +12%

Table 2: Quantitative results of supervised training on various datasets. conv denotes the baseline network, pnp denotes

running the PnP [45] module on the trained conv network without re-training, lsf- indicates adding a linear LSF module to

the pre-trained conv network without re-training for 5 iterations, and lsf is our linear fitting module (re-trained). Percentage

values listed under the Sparse column indicates sparse depths percentage of image resolution. Best results in each category

are in bold.

Noise and Outliers NYU-V2 V-KITTI Synthia KITTI

Input Method Sparse MAE RMSE δ1 MAE RMSE δ1 MAE RMSE δ1 MAE RMSE δ1

rgb pnp 0.2% 0.5587 0.8019 63.66 6.5099 14.018 69.86 2.2044 6.0268 80.89 1.6571 3.8019 88.67

rgb lsf 0.2% 0.2439 0.3815 92.93 5.2670 10.696 65.00 2.2197 5.9136 78.34 0.7716 2.0808 97.69

rgb lsf2 0.2% 0.2304 0.3519 92.70 6.0025 10.768 51.01 3.2160 7.2096 59.68 1.0111 2.4547 95.88

rgb lsf2+ 0.2% 0.1880 0.3217 94.97 4.6786 9.7402 70.16 2.1032 5.7685 79.00 0.6775 1.9651 98.28

(lsf - lsf2+) / lsf +23% +16% +11% +9% +5% +2% +12% +6%

rgbd conv 4% 0.1173 0.1788 99.07 1.8748 5.1880 94.17 0.8774 3.4660 96.03 0.3033 1.1392 99.57

rgbd pnp 4% 0.1061 0.1688 99.15 1.8067 5.1342 94.46 0.8452 3.4511 96.19 0.2993 1.1343 99.57

rgbd lsf 4% 0.0606 0.1102 99.73 1.8599 5.1987 95.90 0.7082 3.2426 97.41 0.2266 0.9988 99.67

rgbd lsf2 4% 0.0577 0.1080 99.72 1.8008 5.0008 94.58 0.7890 3.4142 96.78 0.2305 1.0417 99.67

rgbd lsf2+ 4% 0.0493 0.1003 99.73 1.7273 5.0422 95.50 0.7188 3.2579 97.31 0.2208 0.9758 99.71

(conv - lsf2+) / conv +58% +44% +8% +3% +18% +6% +27% +14%

Table 3: Quantitative results of supervised training with noisy data and outliers. For all datasets except KITTI, noise is

additive Gaussian with standard deviation of 0.05m. We randomly sample 30% of sparse depths to be outliers. conv denotes

the baseline network, pnp denotes running the PnP [45] module on the trained conv network without re-training, lsf is our

linear fitting module, lsf2 is our nonlinear fitting module with 2 iterations, and lsf2+ is lsf2 with robust norm (Huber). Best

results in each category are in bold.

Self-Supervised Training V-KITTI Mono Synthia Mono Synthia Stereo KITTI Stereo

Input Method Sparse MAE RMSE δ1 MAE RMSE δ1 MAE RMSE δ1 MAE RMSE δ1

rgbd conv-ms 4% 2.9904 7.4517 86.87 3.0191 9.1076 66.43 1.3498 5.8643 92.73 0.6295 2.0950 99.00

rgbd lsf 4% 2.3804 6.7326 93.76 1.4564 4.6260 91.76 0.8619 3.9523 96.30 0.5820 1.7370 98.79

(conv-ms - lsf) / conv-ms +20% +10% +52% +49% +36% +33% +8% +17%

Table 4: Quantitative results of self-supervised training on various datasets. The densely labeled NYU-V2 is random and

monocular, thus is excluded from this experiment. Here conv-ms is the baseline multi-scale prediction, lsf is the our proposed

method with linear fitting and multi-scale basis. Best results in each category are in bold.

over the baseline in all metrics across all datasets. Note that

for rgb input only, the baseline doesn’t use any sparse depth

information at all. Thus the large improvement achieved by

our fitting method using depth measurements for only 0.2%

of the pixels is quite significant. For the rgbd case, although

the sparse depth map is already used as the input to the base-

line network, adding our fitting module better constrains the

final prediction to be in accordance with the measurements

and improves the baseline network. Since we use the L1

norm as our loss function, the improvement in MAE is big-

ger than that in RMSE. Examples of depth prediction are

shown in Figure 3 for qualitative comparisons.
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Figure 3: Qualitative results of supervised learning on various datasets. Sparse depths are dilated for visualization purpose

(4% of image resolution). Artifacts in the upper part of depth prediction from outdoor datasets are due to lack of supervision.

We also perform experiments in which we take a pre-

trained baseline method, replace the final convolutional

layer with our LSF module and evaluate without re-training.

This is denoted by lsf-. Results show that re-training a base-

line network with the LSF module allows it to achieve sig-

nificantly better performance.

Additionally, we compare with PnP [45], which is a sim-

ilar method that can be used on many existing networks to

improve performance (see Table 2 and 3 ). The main dif-

ference is that PnP does not require re-training. We use the

author’s official implementation on our baseline network by

updating the output of the encoder and run for 5 iterations

with update rate 0.01 as suggested in the paper. We found

that although PnP has the advantage no re-training, it takes

much longer to run, uses a large amount of memory and

yields a smaller improvement compared to ours. Compar-

isons of runtime are provided in the supplementary material.

Table 5 compares our results to those achieved with

CSPN[4]. The numbers for the CSPN system are taken di-

rectly taken from their paper and the official KITTI depth

completion benchmark. For NYU-V2 we use the same data

split they used and sample 500 sparse depths. These results

show the improvement afforded by our method.

Dealing with Noise and Outliers. To verify the effective-

ness of our proposed robustified nonlinear fitting module,

we inject additive Gaussian noise with a standard deviation

NYU-V2 KITTI

Input Method RMSE δ1 MAE RMSE iRMSE

rgbd cspn 0.136 99.0 0.2795 1.0196 2.93

rgbd lsf2+ 0.134 99.3 0.2552 0.8850 3.40

Table 5: Comparison results on both NYU-V2 and KITTI

between CSPN[4] and our method. lsf2+ is our LSF module

with 2 iterations and Huber loss.

Figure 4: When using a robust norm, outliers from the in-

put sparse depths can be identified. For KITTI dataset, these

outliers usually occur at object boundaries, which we high-

light a few in rectangles. Best view when zoomed in.
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of 0.05 meters to sparse depths from NYU-V2, V-KITTI,

and Synthia. We then randomly select 30% of the available

sparse depths to be outliers and set them to random val-

ues drawn uniformly from a range between 0.5× to 1.5×
of the true depth value. We left KITTI untouched as it al-

ready contains noise and outliers [5]. All nonlinear variants

of LSF runs for 2 iterations, which we empirically found

to achieve a good balance between performance and effi-

ciency. We refer the reader to our supplementary material

for further discussion on the number of iterations. We then

train various models with different configurations using the

corrupted data, which are also grouped by input modalities.

Quantitative results are shown in Table 3.

For the rgb case, we ignore the baseline conv as it

doesn’t use sparse depths and is, therefore, unaffected by

noise. We again see consistent improvements in all met-

rics across all datasets. Notice that for our nonlinear fitting

without Huber loss (lsf2), we get worse numbers on some

datasets compared to our linear variant (lsf). This is because

least squares fitting is sensitive to outliers without a robust

norm. There are also some models in the rgbd case where

the robustified version (lsf2+) doesn’t outperform the linear

and nonlinear ones. We hypothesize this to be caused by

using the corrupted sparse depths as network input which

degrades the networks performance early on. We show in

Figure 4 that our proposed method is able to identify out-

liers in the sparse depths and downplay them during fitting.

These results can also be cross-compared with those in

Table 2, which are all trained on clean data. Clearly, models

trained with clean data outperforms those trained with cor-

rupted ones with the same configuration. But ours with non-

linear fitting and Huber loss (lsf2+) can sometimes reach

similar performance to those trained with clean data even

when significant noise and outliers are present.

Self-supervised Training with Multi-scale Prediction.

Table 4 shows quantitative comparisons between our linear

LSF module with multi-scale basis and the baseline network

under both monocular and stereo self-supervised training.

In this case, the baseline network has more parameters be-

cause it needs to predict depths at different scales indepen-

dently. We again witness consistent improvement in all met-

rics across all datasets except for δ1 in KITTI. Qualitative

results are shown in Figure 5. For all self-supervised train-

ing, we use the same hyper-parameters on photometric and

smoothness loss as in [15], where λp = 1.0 and λs = 0.001.

Note in monocular training, we use the ground truth poses

directly, as opposed to having a dedicated pose network.

5. Conclusions

In this paper we propose a novel approach to the depth

completion problem that augments deep convolutional net-

works with a least squares fitting procedure. This method

Figure 5: Qualitative results of our proposed multi-scale

prediction versus the baseline using stereo self-supervision

on KITTI dataset. All intermediate depth maps are upsam-

pled to the image resolution as suggested in [15]. Our multi-

scale bases are able to learn a much more detailed depth

map compared to the baseline method. Numbers at top left

corner of each image indicate the scale level, where 3 is the

full resolution depth map. Best view when zoomed in.

allows us to combine some of the best features of modern

deep networks and classical regression algorithms. This

scheme could be applied to a number of proposed depth

completion networks or other regression problems to im-

prove performance. Our proposed module is differentiable

which means the modified networks can still be trained

from end to end. This is important because retraining the

networks allows them to make better use of the new fit-

ting layer and allows them to produce better depth bases

from the input data. We then describe how a linear least

squares fitting scheme could be extended to incorporate ro-

bust estimation to improve resilience to noise and outliers

which are common in real world data. We also show the

method can be employed in self-supervised settings where

no ground truth is available. We validate our fitting module

on a state-of-the-art depth completion network with various

input modalities, training frameworks, and datasets. One

limitation of our approach is that it is unable to handle ex-

tremely sparse points, which creates an underdetermined

linear system and can only be solved by adding strong reg-

ularization. In future work, we propose to handle this case

by adopting a full bayesian approach.
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