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Abstract

Reasoning about complex visual scenes involves per-

ception of entities and their relations. Scene Graphs

(SGs) provide a natural representation for reasoning tasks,

by assigning labels to both entities (nodes) and relations

(edges). Reasoning systems based on SGs are typically

trained in a two-step procedure: first, a model is trained

to predict SGs from images, and next a separate model

is trained to reason based on the predicted SGs. How-

ever, it would seem preferable to train such systems in an

end-to-end manner. The challenge, which we address here

is that scene-graph representations are non-differentiable

and therefore it isn’t clear how to use them as interme-

diate components. Here we propose Differentiable Scene

Graphs (DSGs), an image representation that is amenable

to differentiable end-to-end optimization, and requires su-

pervision only from the downstream tasks. DSGs pro-

vide a dense representation for all regions and pairs of

regions, and do not spend modelling capacity on regions

of the image that do not contain objects or relations of

interest. We evaluate our model on the challenging task

of identifying referring relationships (RR) in three bench-

mark datasets: Visual Genome, VRD and CLEVR. Us-

ing DSGs as an intermediate representation leads to new

state-of-the-art performance. The full code is available at

https://github.com/shikorab/DSG.

1. Introduction

Understanding the full semantics of rich visual scenes is

a complex task that involves detecting individual entities, as

well as reasoning about the combination of entities and the

relations between them. To represent entities and their re-

lations jointly, it is natural to view them as a graph, where

nodes are entities and edges represent relations. Such rep-

resentations are often called Scene Graphs (SGs) [23]. Be-

cause SGs allow to explicitly reason about images, substan-

tial efforts have been made to infer them from raw images

[22, 23, 50, 33, 57, 17, 58].
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Figure 1. Differentiable Scene Graphs: An intermediate “graph-

like” representation that provides a distributed representation for

each entity and pair of entities in an image. Differentiable scene

graphs can be learned with gradient descent in an end-to-end man-

ner, only using supervision about a downstream visual reasoning

task (referring relationships here).

While scene graphs have been shown to be useful for

various tasks [22, 23, 20], using them as a component in a

visual reasoning system is challenging: (a) Because scene

graphs are discrete representations, it is difficult to learn

them in an end-to-end fashion from a downstream task. (b)

The alternative is to pre-train SG predictors separately from

supervised data, but this requires arduous and prohibitive

manual annotation. Moreover, pre-trained SG predictors

have low coverage, because the set of labels they are pre-

trained on rarely fits the needs of a downstream task. For

example, given an image of a parade and a question “point

to the officer on the black horse”, that horse might not be

a node in the graph, and the term “officer” might not be in

the vocabulary. Given these limitations, it is an open ques-

tion how to make scene graphs useful for visual reasoning

applications.

In this work, we describe Differentiable Scene-Graphs

(DSG), which address the above challenges (Figure 1).

DSGs are an intermediate representation trained end-to-

end from the supervision for a downstream reasoning

task. The key idea is to relax the discrete properties of scene

graphs such that each entity and relation is described with a

dense differentiable descriptor.

We demonstrate the benefits of DSGs in the task of re-

solving referring relationships (RR) [27] (see Figure 1).

Here, given an image and a triplet query 〈subject, relation,

object〉, a model has to find the bounding boxes of the sub-
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ject and object that participate in the relation.

We train an RR model with DSGs as an intermediate

component. As such, DSGs are not trained with direct

supervision about entities and relations, but using several

supervision signals about the downstream RR task. We

evaluate our approach on three standard RR datasets: Vi-

sual Genome [28], VRD [35] and CLEVR [21], and find

that DSGs substantially improve performance compared to

state-of-the-art approaches [35, 27].

To conclude, our novel contributions are: (1) A new

Differentiable Scene-Graph representation for visual rea-

soning, which captures information about multiple entities

in an image and their relations. We describe how DSGs

can be trained end-to-end with a downstream visual reason-

ing task without direct supervision of manually annotated

scene-graphs. (2) A new architecture for the task of refer-

ring relationships, using DSGs as its central component. (3)

New state-of-the-art results on the task of referring relation-

ships on the Visual Genome, VRD and CLEVR datasets.

2. Referring Relationship: The Learning Setup

In the referring relationship task [27] we are given an

image I and a subject-relation-object query q = 〈s, r, o〉.
The goal is to output a bounding box Bs for the subject, and

another bounding box Bo for the object. In practice there are

sometimes several boxes for each. See Fig. 1 for a sample

query and expected output.

Following [27], we focus on training a referring relation-

ship predictor from labeled data. Namely, we use a training

set consisting of images, queries and the correct boxes for

these queries. We denote these by {(Ij , qj , (B
s
j ,B

o
j )}

N
j=1

.

As in [27], we assume that the vocabulary of query compo-

nents (subject, object and relation) is fixed.

In our model, we break this task into two components

that we optimize in parallel. We fine-tune the position of

bounding boxes such that they cover entities tightly, and

we also label each box as one of the following four pos-

sible labels. The labels “Subject” and “Object” correspond

to the ’s’ and ’o’ entities in the query. The label “Other”

corresponds to boxes that contain entities (e.g., person or

any other category that can appear as a subject or object in

queries) that are not the subject or the object of the query.

Finally, the label “Background” corresponds to boxes that

do not contain an entity. We refer to the above two modules

as Box Refiner and Referring Relationships Classifier.

3. Differentiable Scene Graphs

We begin by discussing the motivation and potential ad-

vantages of using intermediate scene-graph-like representa-

tions, as compared to standard scene graphs. We then ex-

plain how DSGs fit into the full architecture of our model.

3.1. Why use intermediate DSG layers?

A “perfect” scene graph (representing all entities and re-

lations) captures most of the information needed for visual

reasoning, and thus should be useful as an intermediate rep-

resentation. Such a SG can then be used by downstream

reasoning algorithms, using the predicted SG as an input.

Unfortunately, learning to predict “perfect” scene graphs

for any downstream task is unlikely. First, there is rarely

enough data to train good SG predictors, and second, learn-

ing to predict SGs in a way that is independent of the down-

stream task, tends to yield less relevant SGs.

Instead, we propose an intermediate representation,

which we refer to as a “Differentiable Scene Graph” layer

(DSG). A DSG captures the relational information as in a

scene graph but can be trained end-to-end in a task-specific

manner (Fig. 2). Like SGs, a DSG keeps descriptors for vi-

sual entities and their relations. Unlike SGs, whose nodes

and edges are annotated by discrete values (labels), a DSG

contains a dense distributed representation vector for each

detected entity (referred to as a node descriptor) and each

pair of entities (referred to as an edge descriptor). These

representations are themselves learned functions of the in-

put image (see supplementary for more details). Like SGs, a

DSG only describes candidate boxes which cover entities of

interest and their relations. Unlike SGs, each DSG descrip-

tor captures not only the local information about a node,

but also information about its context. Most importantly,

because DSGs are differentiable, they are used as input to

downstream visual-reasoning modules (in our case, a refer-

ring relationships module).

DGSs provide several computational and modelling ad-

vantages:

Differentiability. Because node and edge descriptors are

differentiable functions of detected boxes, and are fed into

a differentiable reasoning module, the entire pipeline can be

trained with gradient descent.

Dense descriptors. By keeping dense descriptors for nodes

and edges, the DSG keeps more information about possible

semantics of nodes and edges, instead of committing too

early to hard sparse representations. This allows it to better

fit downstream tasks.

Supervision using downstream tasks. Collecting super-

vised labels for training scene graphs is hard and costly.

DGSs can be trained using training data that is available

for downstream tasks, saving costly labeling efforts. On

the other hand, when labeled scene graphs are available for

given images, that data can be used when training the DSG,

using an additional loss component.

Holistic representation. DSG descriptors are computed by

integrating global information from the entire image using

graph neural networks (see supplemental materials). Com-

bining information across the image increases the accuracy

of object and relation descriptors.
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Figure 2. The proposed architecture. The input consists of an image and a relationship query triplet 〈subject, relation, object〉. (1) A

detector produces a set of bounding box proposals. (2) An ROI-Align layer extracts object features from the backbone using the boxes.

In parallel, every pair of box proposals is used for computing a union box, and pairwise features are extracted in the same way as object

features. (3) These features are used as inputs to a Differentiable Scene-Graph Generator Module which outputs the Differential Scene

Graph, a set of node and edge features that result from applying a graph convolutional network to the input features. (4) The DSG is used

for both refining the original box proposals, as well as a Referring Relationships Classifier, which classifies each bounding box proposal as

either Subject, Object, Other or Background. The ground-truth label of a proposal box will be Other if this proposal appears in

another query relationship for this image. Otherwise the ground truth label will be Background.

3.2. The DSG Model for Referring relationships

We now describe how DSGs can be combined with other

modules to solve a visual reasoning task. The architecture

of the model is illustrated in Fig. 2. First, the model ex-

tracts bounding boxes for entities and relations in the im-

age. Next, it creates a differentiable scene-graph over these

bounding boxes. Then, DSG features are used by two out-

put modules, aimed at answering a referring-relationship

query: a Box Refiner module that refines the bounding

box of the relevant entities, and a Referring Relationships

Classifier module that classifies each box as Subject,

Object, Other or Background. We now describe

these components in more detail.

Object Detector. We detect candidate entities using a

standard region proposal network (RPN) [43], and denote

their bounding boxes by b1, . . . , bB (B may vary between

images). We also extract a feature vector f i for each box

and concatenate it with the box coordinates, yielding zi =
[f i; bi]. See details in the supplemental material

Relation Feature Extractor. Given any two bounding

boxes bi and bj we consider the smallest box that contains

the two boxes (their “union” box). We denote this “relation

box” by bi,j and its features by f i,j . Finally, we denote the

concatenation of the features f i,j and box coordinates bi,j
by zi,j = [f i,j ; bi,j ].

Differentiable Scene-Graph Generator. As discussed

above, the goal of the DSG Generator is to transform the

above features zi and zi,j into differentiable representa-

tions of the underlying scene graph. Namely, map these

features into a new set of dense vectors z‘i and z‘i,j rep-

resenting entities and relations. This mapping is intended

to incorporate the relevant context of each feature vector.

Namely, the representation z′i contains information about

the ith entity, together with its image-wide context.

There are various possible approaches to achieve this

mapping. Here we use the model proposed by [17], which

uses a graph neural network for this transformation (see

supplemental material).

Multi-task objective. In many domains, training

with multi-task objectives can improve the accuracy of in-

dividual tasks, because auxiliary tasks operate as regulariz-

ers, pushing internal representations away from overfitting

and towards capturing useful properties of the input. We

follow this idea here and define a multi-task objective that

has three components: (a) a Referring Relationships Classi-

fier matches boxes to subject and object query terms. (b) A

Box Refiner predicts accurate tight bounding boxes. (c) A

Box Labeler recognizes visual entities in boxes if relevant

ground truth is available.

Fig. 3 illustrates the effect of the first two components,

and how they operate together to refine the bounding boxes

and match them to the query terms. Specifically, Fig. 3c,

shows how box-refinement produces boxes that are tight

around objects and subjects, and Fig. 3d shows how RR

classification matches boxes to query terms.

(A) Referring Relationships Classifier. Given a DSG

representation, we use it for answering referring relation-

ship queries. Recall that the output of an RR query 〈subject,

relation, object〉 should be bounding boxes Bs,Bo contain-

ing subjects and objects that participate in the query rela-

tion. Our model has already computed B bounding boxes

1490



Figure 3. The effect of box refinement and RR classification. (a) The DSG network is applied to an input image. (b) The object detector

component generates box proposals for entities in the image. (c) The RR classifier component uses information from the DSG to label

candidate boxes as object or subject entities. Then, the box refinement component also uses DSG information, this time to improve

box locations for those boxes labeled as entities by RR classifier. Here, boxes are tuned to focus on the most relevant entities in the image:

the two “men”, the “surfboard”, the “sky” and the “ocean”. (d) Once the RR classifier labels entity boxes, it can correctly refer to the

entities in the query 〈cloud, in, sky〉 (sky in green, clouds in violet). (e) Examples of candidate boxes classified as background.

bi, as well as representations z′

i for each box. We next

use a prediction model FRRC(z
′

i, q) that takes as input

features describing the bounding box and the query, and

outputs one of four labels {Subject, Object, Other,

Background} (see Sec. 2). Denote the logits generated

by this classifier for the ith box by ri ∈ R
4. The output

set Bs (or Bo) is simply the set of bounding boxes classified

as Subject (or Object). See supplemental materials for

further implementation details.

(B) Box Refiner. The DSG is also used for further re-

finement of the bounding-boxes generated by the RPN net-

work. The idea is that additional knowledge about image

context can be used to improve the coordinates of a given

entity. This is done via a network FBR(bi, z
′

i) that takes as

input the RPN box coordinates and a differentiable repre-

sentation z′

i for box i, and outputs new bounding box coor-

dinates. See Fig. 3 for an illustration of box refinement, and

the supplemental material for further details.

(C) Optional auxiliary losses: Scene-Graph Labeling.

In addition to the Box Refiner and Referring Relationships

Classifier modules described above, one can also use su-

pervision about labels of entities and relations if these are

available at training time. Specifically, we train an object-

recognition classifier operating on boxes, which predicts the

label of every box for which a label is available. This clas-

sifier is trained as an auxiliary loss, in a multi-task fashion,

and is described in detail below.

4. Training with Multiple Losses

We next explain how our model is trained for the RR

task, and how we can also use the RR training data for su-

pervising the DSG component. We train with a weighted

sum of three losses: (1) Referring Relationships Classifier

(2) Box Refiner (3) Optional Scene-Graph Labeling loss.

We now describe each of these components. Additional de-

tails are provided in the supplemental material.

4.1. Referring Relationship Classification Loss

The Referring Relationships Classifier (Sec. 3.2) out-

puts logits ri for each box, corresponding to its prediction

(subject, object, etc.). To train these logits, we need

to extract their ground-truth values from the training data.

Recall that a given image in the training data may have mul-

tiple queries, and so may have multiple boxes that have been

tagged as subject or object for the corresponding queries. To

obtain the ground-truth for box i and query q = 〈s, r, o〉 we

take the following steps. First, we find the ground-truth box

that has maximal overlap with box i. If this box is either a

subject or object for the query q, we set r
gt
i to be Subject

or Object respectively. Otherwise, if the overlap with a

ground-truth box for a different image-query is greater than

0.5, we set r
gt
i = Other (since it means there is some

other entity in the box), and we set r
gt
i = Background

if the overlap is less than 0.3. If the overlap is in [0.3, 0.5]
we do not use the box for training. For instance, given a
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query 〈woman, feeding, giraffe〉 with ground-truth boxes

for “woman” and “giraffe”, consider the box in the RPN

that is closest to the ground-truth box for “woman”. As-

sume the index of this box is 7. Similarly, assume that the

box closest to the ground-truth for “giraffe’ has index 5. We

would have r
gt
7

= Subject, r
gt
5

= Object and the rest

of the r
gt
i values would be either Other or Background.

Given these ground-truth values, the Referring Relationship

Classifier Loss is simply the sum of cross entropies between

the logits ri and the one-hot vectors corresponding to r
gt
i .

4.2. Box Refiner Loss

To train the Box Refiner, we use a smooth L1 loss be-

tween the coordinates of the refined (predicted) boxes and

their ground truth ones.

4.3. Scene­Graph Labeling Loss

When ground-truth data about entity labels is available,

we can use it as an additional source of supervision to train

the DSG. Specifically, we train two classifiers. A classifier

from features of entity boxes z′

i to the set of entity labels,

and a classifier from features of relation boxes z′

i,j to rela-

tion labels. We then add a loss to maximize the accuracy of

these classifiers with respect to the ground truth box labels.

4.4. Tuning the Object Detector

In addition to training the DSG and its downstream

visual-reasoning predictors, the object detector RPN is also

trained. The output of the RPN is a set of bounding boxes.

The ground-truth contains boxes that are known to contain

entities. The goal of this loss is to encourage the RPN to

include these boxes as proposals. Concretely, we use a sum

of two losses: First, an RPN classification loss, which is

a cross entropy over RPN anchors where proposals of 0.8

overlap or higher with the ground truth boxes were consid-

ered as positive. Second, an RPN box regression loss which

is a smooth L1 loss between the ground-truth boxes and pro-

posal boxes.

5. Experiments

In the following sections we provide details about the

datasets, training, baselines models, evaluation metrics,

model ablations and results. Implementation details of the

model are provided in the supplemental material.

5.1. Datasets

We evaluate the model in the task of referring relation-

ships on three datasets, each exhibiting a unique set of char-

acteristics and challenges.

CLEVR [21]. A synthetic dataset generated from scene-

graphs with four spatial relations: “left”, “right”, “front”

Average IOU

Visual Genome VRD CLEVR

subject object subject object subject object

SS [29] 0.399 0.469 0.320 0.371 0.740 0.740

CO [10] 0.414 0.490 0.347 0.389 0.691 0.691

VRD [35] 0.417 0.480 0.345 0.387 0.734 0.732

SASS [27] 0.421 0.482 0.369 0.410 0.778 0.778

NO-DSG 0.412 0.47 0.333 0.366 0.937 0.937

DSG 0.489 0.539 0.4 0.435 0.963 0.963

Table 1. Comparison with baselines. Test-set mean IOU in the

referring relationship task for the baselines in Sec. 5.3 and the Dif-

ferentiable Scene Graph (DSG) model. Results are also reported

for a NO-DSG model (see Sec. 6.2) which classifies the referring

relationship directly from the RPN output.

Average IOU

subject object

TWO STEP 0.430± 0.0014 0.491± 0.0014
NO-DSG 0.405± 0.0013 0.461± 0.0013
DSG -SGL 0.455± 0.0014 0.511± 0.0013
DSG -BR 0.469± 0.0014 0.519± 0.0014
DSG 0.477 ± 0.0014 0.528 ± 0.0014

Table 2. Model ablations: Results (including standard errors) for

DSG variants on the validation set of the Visual Genome dataset.

DSG values slightly differ from Table 1 which reports IOU on the

test set. The various models are described in Sec. 6.2.

and “behind”, and 48 entity categories. It has over 5M rela-

tionships where 33% are ambiguous entities (multiple enti-

ties of the same type in an image).

VRD [35]. The Visual Relationship Detection dataset con-

tains 5,000 images with 100 entity categories and 70 rela-

tion categories. In total, VRD contains 37,993 relationship

annotations with 6,672 unique relationship types and 24.25

relations per entity category. 60.3% of these relationships

refer to ambiguous entities.

Visual Genome [28]. VG is the largest public corpus for

visual relationships in real images, with 108,077 images an-

notated with bounding boxes, entities and relations. On av-

erage, images have 12 entities and 7 relations per image. In

total, there are over 2.3M relationships where 61% of those

refer to ambiguous entities.

For a proper comparison with previous results [27], we

used the data from [27] including the same entity and rela-

tion categories, query relationships and data splits.

5.2. Evaluation Metrics

We compare our model to previous work using the aver-

age IOU for subjects and for objects. To compute the aver-

age subject IOU, we first generate two L × L binary atten-

tion maps: one that includes all the ground truth boxes la-

beled as Subject (recall that few entities might be labeled

as Subject) and the other includes all the box proposals
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𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑂𝑂𝑂𝑂ℎ𝑂𝑂𝑒𝑒

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑂𝑂𝑒𝑒𝑂𝑂𝑂𝑂ℎ𝑂𝑂𝑒𝑒

𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂2

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂1

b. Misclassified objects 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄, 𝑜𝑜𝑜𝑜, 𝒕𝒕𝒄𝒄𝒕𝒕𝒕𝒕𝒄𝒄 c. Misclassified objects 𝒎𝒎𝒄𝒄𝒎𝒎,𝑤𝑤𝑂𝑂𝑤𝑤𝑒𝑒𝑤𝑤𝑜𝑜𝑤𝑤, 𝒋𝒋𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒕𝒕a. Missed detections𝒈𝒈𝒕𝒕𝒄𝒄𝒈𝒈𝒈𝒈𝒄𝒄𝒈𝒈, 𝑜𝑜𝑜𝑜, 𝒕𝒕𝒄𝒄𝒕𝒕𝒕𝒕𝒄𝒄
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

𝐵𝐵𝑤𝑤𝑂𝑂𝐵𝐵𝑤𝑤𝑒𝑒𝑜𝑜𝑆𝑆𝑜𝑜𝐵𝐵
𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

f. Multiplicity 𝒕𝒕𝒃𝒃𝒃𝒃, 𝑠𝑠𝑂𝑂𝑤𝑤𝑜𝑜𝐵𝐵𝑤𝑤𝑜𝑜𝑤𝑤 𝑤𝑤𝑜𝑜,𝒈𝒈𝒈𝒈𝒄𝒄𝒈𝒈𝒈𝒈e. Multiplicity𝒑𝒑𝒕𝒕𝒄𝒄𝒃𝒃𝒄𝒄𝒈𝒈, 𝑜𝑜𝑜𝑜,𝒇𝒇𝒇𝒇𝒄𝒄𝒕𝒕𝒇𝒇d. Misclassified relations𝒎𝒎𝒄𝒄𝒎𝒎,𝑤𝑤𝑤𝑤𝑂𝑂ℎ, 𝒈𝒈𝒄𝒄𝒄𝒄𝒕𝒕𝒄𝒄

Figure 4. Qualitative examples demonstrating successful predictions of the DSG model (six left panels) and errors (six right panels). The

right panels illustrate common failure cases for each error type. a. Missed detection: the detector missed the glasses on the table. b,c.

Misclassified object:, the cake is detected but classified as a background. d. Misclassified relation: The box classified as Subject is indeed

a man but it is not the man that has the required relation with the skate. e,f. Multiplicity, Either too few or too many GT boxes are classified

as Subject or Object.

predicted as Subject. If no box is predicted as Subject,

the box with the highest score for the label Subject is in-

cluded in the predicted attention map. We then compute

the Intersection-Over-Union between the binary attention

maps. For a proper comparison with previous work [27],

we use L = 14. The object boxes are evaluated similarly.

5.3. Baselines

The Referring Relationship task was introduced recently

[27], and the SSAS model was proposed as a possible ap-

proach (see below). We report the results for the baseline

models in [27]. When evaluating our Differentiable Scene-

Graph model, we use exactly the evaluation setting as in

[27] (i.e., same data splits, entity and relation categories).

The baselines reported are:

1. SYMMETRIC STACKED ATTENTION SHIFTING

(SSAS): [27] An iterative model that localizes the

relationship entities using attention shift component

learned for each relation.

2. SPATIAL SHIFTS [29]: Same as SSAS, but with no

iterations and by replacing the shift attention mecha-

nism with a simple statistical spatial shift for each re-

lation label.

3. CO-OCCURRENCE [10]: Uses an embedding of the

subject and object pair for attending over the image

features.

4. VISUAL RELATIONSHIP DETECTION (VRD) [35]:

Similar to Co-Occurrences model, but with an addi-

tional relationship embedding.

Figure 5. A typical image from the CLEVR [21] dataset. The im-

age was trimmed to focus on areas with visual content.

6. Results

Table 1 provides average IOU for Subject and

Object over the three datasets described in Sec. 5.1. We

compare our model to four baselines described in Sec. 5.3.

Our Differentiable Scene-Graph approach outperforms all

baselines in terms of the average IOU.

Our results for the CLEVR dataset are significantly bet-

ter than those in [27]. Because CLEVR objects have a small

set of distinct colors (Fig 5), object detection in CLEVR

is much easier than in natural images, making it easier to

achieve high IOU. The baseline model without the DSG

layer (NO-DSG) is an end-to-end model with a two-stage

detector in contrast to [27] and already improves strongly

over prior work with 93.7%, and our novel DSG approach

further improves to 96.3% (reducing error by 50%).

6.1. Analysis of Success and Failure Cases.

Fig. 4 shows example of success cases and failure cases.

We further analyzed the types of common mistakes and
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their distribution. Since DSGs depend on box proposals,

they are sensitive to the quality of the object detectors. Man-

ual inspection of images revealed four main error types: (1)

30%: Detector failed: the relevant box is missing from the

box proposal list. (2) 23.3% Subject or Object detected

but classified as Other or as Background. (3) 16.6%: Re-

lation misclassified. The entities classified as Subject and

Object match the query, but without the required relation.

(4) 16.6%: Multiplicity. Either too few or too many of the

GT boxes are classified as Subject or Object. (5) 13.3%:

Other, including incorrect GT, and hard-to-decide cases.

6.2. Model Ablations

To gain further insight into the performance of the DSG

model we performed the following ablations. First, since

the model is trained with three loss components, we quan-

tify the contribution of the Box Refinement loss and the

Scene-Graph Labeling loss (it is not possible to omit the

Referring Relationships Classifier loss). We further evalu-

ate the contribution of the DSG compared with a two-step

approach which first predicts an SG, and then reasons over

it. We compare the following models:

1. DSG: The Differentiable Scene-Graph model de-

scribed in Sec. 3.2 and trained as described in Sec. 4.

2. TWO STEPS: Two-step model. We first predict a scene-

graph, and then match the query with the SG. The SG

predictor consists of the same components used in the

DSG: A box detector, DSG dense descriptors, and an

SG labeler. It is trained with the same set of SG labels

used for training the DSG. Details in the supplemental

material.

3. DSG -SGL: DSG without the Scene-Graph Labeling

component described in Sec. 4.3).

4. DSG -BR: DSG where the Box Refiner component of

Section 4.2 is replaced with fine tuning the coordinates

of the box proposal using the visual features f i ex-

tracted by the Object Detector. This variant allows us

to quantify the benefit of refining the box proposals

based on the differentiable representation of the scene.

5. NO-DSG: A baseline model that does not use the DSG

representations. Instead, the model includes only an

Object Detector and a RR classifier. The RR classifier

uses the f i features extracted by the Object Detector

instead of the z′

i features. This model allows us to

quantify the benefit of the differentiable scene repre-

sentation for RR classification.

Table 2 provides results of ablation experiments for the

Visual Genome dataset [28] on the validation set. All

model variants based on scene representation perform bet-

ter than the model that does not use the DSG representa-

tion (i.e., DSG -SG), demonstrating the power of contextu-

Figure 6. Inferring a Scene Graph from a DSG. Applying the RPN

to this image results in 28 boxes. In (a) we show five of these,

which received the largest weight in the attention model (details in

the supplemental material.) within the DSG generator (Sec. 3.2).

As mentioned in Sec. 4.3 in “Scene-Graph Labeling Loss” we can

use the DSG for generating a labeled scene graph, corresponding

to a fixed set of entities and relations. (b) shows this scene graph

(i.e., the output of the classifiers predicting entity labels and re-

lations), restricted to the largest confidence relations. It can be

seen that most relations are correct, despite not having trained this

model on complete scene graphs.

alized scene representation. The DSG model outperforms

all model ablations, illustrating the improvements achieved

by using partial supervision for training the differentiable

scene-graph. Fig. 7 illustrates the effect of ablating various

components of the model.

6.3. Inferring SGs from DSGs

The DSG is designed as a dense representation of objects

and relations in the scene. It is thus natural to use it to pre-

dict these. This is easy to do in our context, since in Sec. 4.3

we in fact train such classifiers as an auxiliary task. Thus,

for a given image we can construct a scene-graph out of the

outputs of these objects and relation classifiers.

Fig. 6 illustrates the result of this process, showing a

Scene-Graph inferred from the DSG. The predicted graph

is indeed largely correct, even though it was not directly

trained for this task (but rather from partial supervision).

We further analyzed the accuracy of predicted SGs by com-

paring to ground-truth SG on visual genome (complete SGs

were not used for training, only for analysis). SGs de-

coded from DSGs achieve accuracy of 76% for object la-

bels and 70% for relations (calculated for proposals with

IOU ≥ 0.8).

7. Related Work

Graph Neural Networks. Recently, major progress has

been made in constructing graph neural networks (GNN).

These refer to a class of neural networks that operate di-

rectly on graph-structured data by passing local messages

[11, 30]. Variants of GNNs have been shown to be highly

effective at relational reasoning tasks [46], classification

of graphs [3, 6, 39, 7] and classification of nodes in large
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Figure 7. Comparing failures of ablations models with DSG pre-

dictions. The top row shows DSG results, while the bottom

row shows results from different ablations models as specified in

Sec. 6.2. In the first column, TWO STEP model the SG did not

include the shirt of one of the the men, therefore this ”subject”

prediction was missed. In the second column, the DSG -SGL pre-

dicted failed to distinct between few entity classes ‘woman” and

“child”. In the third column, the DSG refine the box of “sky” to

cover all of the sky area. In the last column, the NO-DSG didn’t

classify the ”object” box correctly.

graphs [25, 14]. The expressive power of GNNs has also

been studied in [17, 56]. GNNs have also been applied to

visual understanding in [17, 51, 49, 16] and control [45, 2].

Similar aggregation schemes have also been applied to ob-

ject detection [18]. Our goal here is to generate DSG such

that each object descriptor encompasses not only the local

information about the object, but also information about its

context within the scene. To achieve this we use the GNN

proposed by [17].

Visual Relationships and Scene Graphs. Earlier work

aimed to leverage visual relationships for improving detec-

tion [44], action recognition [16], few shot [5, 9], pose esti-

mation [8], semantic image segmentation [13] or detection

of human-object interactions [52, 40, 31]. Lu et al. [35]

were the first to formulate detection of visual relationships

as a separate task. They learn a likelihood function that

uses a language prior based on word embeddings for scor-

ing visual relationships and constructing SGs. SGs provide

a compact representation of the semantics of an image. Pre-

vious SG prediction works used attention [41, 12] or neural

message passing [50]. [38] suggested to predict graphs di-

rectly from pixels in an end-to-end manner. [57] considers

global context using an RNN by reading sequentially the in-

dependent predictions for each entity and relation and then

refines those predictions. SGs have been shown to be use-

ful for semantic-level interpretation and reasoning about a

visual scene [20, 1, 15, 47]. Extracting SGs from images

provides a semantic representation that can later be used

for reasoning, question answering [54, 19, 32], and image

retrieval [22, 42]. Using SGs for reasoning tasks is chal-

lenging. Instead, we propose an intermediate representation

which captures the relational information as in SGs but can

be trained end-to-end in a task-specific manner.

Referring Relationships. The RR task is closely related

to the task of referring expressions, where an entity in an

image needs to be identified given a natural language ex-

pression. Several recent works considered using context for

this task [24, 26, 4, 48, 53, 34]. [36] described a model that

has two parts: one for generating expressions that point to

an entity in a discriminative fashion and a second for under-

standing these expressions and detecting the referred entity.

[55] explored the role of context and visual comparison with

other entities in referring expressions. Modelling context

was also the focus of [37], using a multi-instance-learning

objective. RR [27] as opposed to referring expression, fo-

cuses on the vision side rather than the language side by

forming a simple structured query that requires modeling

interactions between the image entities. [27] also introduce

an explicit iterative model that localizes the two entities in

the RR task, conditioned on one another. We use the RR

task to demonstrate the power of our semantic latent repre-

sentation, resulting in a new state of the art results on three

vision datasets that contains visual relationships.

8. Conclusion

This work is motivated by the assumption that accurate

reasoning about images may require access to a detailed

representation of the image. While scene graphs provide

a natural structure for representing relational information, it

is hard to train very dense SGs in a fully supervised man-

ner, and for any given image, the resulting SGs may not be

appropriate for downstream reasoning tasks. Here we ad-

vocate DSGs, an alternative representation that captures the

information in SGs, which is continuous and can be trained

jointly with downstream tasks. Our results, both qualitative

(Fig 4 ) and quantitative (Table 1,2), suggest that DSGs ef-

fectively capture scene structure, and that this can be used

for down-stream tasks such as referring relationships.

One natural next step is to study such representations
in additional downstream tasks that require integrating
information across the image. Some examples are caption
generation and visual question answering. DSGs can
be particularly useful for VQA, since many questions
are easily answerable by scene graphs (e.g., counting
questions and questions about relations). Another impor-
tant extension to DSGs would be a model that captures
high-order interactions, as in a hyper-graph. Finally, it will
be interesting to explore other approaches to training the
DSG, and in particular finding ways for using unlabeled
data for this task.
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