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Abstract

Compressing images at extremely low bitrates (< 0.1
bpp) has always been a challenging task as the quality of
reconstruction significantly reduces due to the strongly im-
posing constraint on the number of bits allocated for the
compressed data. With the increasing need to transfer large
amounts of images with limited bandwidth, compressing im-
ages to very low sizes is a crucial task. However, the ex-
isting methods are not effective at extremely low bitrates.
To address this need we propose a novel network called
CompressNet which augments a Stacked Autoencoder with
a Switch Prediction Network (SAE-SPN). This helps in the
reconstruction of visually pleasing images at these low bi-
trates (< 0.1 bpp). We benchmark the performance of
our proposed method on the Cityscapes dataset, evaluating
over different metrics at very low bitrates showing that our
method outperforms the other state-of-the-art. In particu-
lar, at a bitrate of 0.07, CompressNet achieves 22% lower
Perceptual Loss and 55% lower Frechet Inception Distance
(FID) compared to the deep learning SOTA methods.

1. Introduction

With the exponential growth of visual data-transfer,
effective compression to extremely small scales is of
paramount significance. In the case of images, classical
image compression techniques such as JPEG [26], WebP
[1], BPG [6] fail to give good quality reconstructions at
low bitrates. However, lossy compression techniques using
generative compression [2], [18], and [19] show promise in
the reconstruction of aesthetically pleasing images at simi-
lar operating conditions.

Any lossy image compression scheme can be formulated
as a rate-distortion optimization problem. In this frame-
work, an analysis transform, f : RY — RM maps input
data z to a vector z in latent space, and a synthesis trans-
form, g : RM — RY | transforms z back into the image
space. An autoencoder setup is used to achieve these.

*equal contribution

Most of the existing compression systems are optimized
for distortion metrics such as peak signal-to-noise ratio
(PSNR) or different variants of structural similarity (SSIM)
(Wang et al., 2003). Traditionally emphasis has been put
on building hand-crafted codecs (encoder-decoder pairs for
compression tasks), by making strong assumptions such as
the codec applying linear transform, as has been done with
JPEG and JPEG2000. This assumption has an inherent
problem as it is inaccurate to assume that a linear codec can
generalize to compress a wide variety of natural images.

For very low bitrates, traditional metrics lose their rele-
vance as they favor pixel-wise preservation of local struc-
ture over preserving texture and global structure. Recent
works by Patel et.al in [17], [16] and Blau et.al in [7] in-
dicate the need for better perceptual metrics that evaluate
the visual quality of the images, rather than evaluating the
structural similarity as captured by the traditional metrics.
For a compression task, the reconstructions are required to
have high perceptual quality, and also resemble the original
image closely. Training a system with adversarial losses in
this scenario produces better results as it enables a better
understanding of the global structure of the image. We inte-
grate a Generative Adversarial Network (GAN) setup along
with the autoencoder for achieving this task.

The effectiveness of an autoencoder variant, stacked-
autoencoders that incorporate layer-wise loss for learning
latent dimensions for supervised tasks has been proven
to enhance reconstruction quality for image compression
tasks [29] over traditional autoencoders. We incorpo-
rate a similar idea in CompressNet for enhancing the re-
construction quality at extremely low bitrates. In addi-
tion to stacked-autoencoders, Stacked What-Where Au-
toencoder(SWWAE) [30] models suggest the use of pooling
switch information for improved data-reconstruction across
the encoder-decoder architectures. However, incorporat-
ing the pooling switch information increases data overhead
making it infeasible for image-compression tasks at very
low bitrates. To incorporate SWWAE models for com-
pression tasks with no additional data-overhead, we pro-
pose a network to predict pooling switches and use it along
with the SAE-all architecture. This allows us to operate
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Figure 1: Original Image, a) Original image patches, b) SAE-SPN (ours) image patches, ¢) BPG image patches [6]

at extremely low bitrates adding very little computational
overhead and shows comparable performance to SWWAE,
which has proven to perform appreciably well for compres-
sion tasks.

In this paper, we propose three novel variants for extreme
compression, summarized as:

e Stacked Autoencoder (SAE) based architecture with
layer-wise loss

e Stacked What-Where Autoencoder (SWWAE) based
architecture with layer-wise Loss

e Stacked Autoencoder with Switch Prediction Network
(SAE-SPN) with layer-wise Loss

2. Literature Review

The classical approach to compression theory, mathe-
matically formulated by Shannon’s theory of communica-
tion [20], provides the fundamental basis that the coding
theory is built on. Classical methods leverage explicit prob-
abilistic modeling and feature extractions, effectively engi-
neered for the task of image-compression [21], JPEG [26],
and BPG [6]. Application of deep learning for image com-
pression has emerged as an active area of research in the
recent past. Incorporating autoencoder models into com-
pression frameworks remains to be one of the most popular
approaches amongst the deep learning techniques. Theis et
al. [24], Balle et al.[5], Toderici et al.[25], Lee et al. [13]
and Minnen et al. [15] have employed DNN architectures
successfully for the task of image compression. Along with
the autoencoders, GANs [9] have also been looked at as an
alternative to the more traditional approaches such as JPEG
[26] and BPG [6]. They tend to produce more aesthetically

pleasing and accurate reconstructions. In this section, we
specifically review image-compression frameworks that in-
corporate autoencoders and GANS.

2.1. Autoencoder

An autoencoder is a neural network that learns to recon-
struct the input. It has a latent layer that describes a code
used to represent the input to help reconstruct it back. Au-
toencoders have a constraint of not being able to be opti-
mized directly due to the inherent non-differentiability of
the compression loss. Mean-squared loss is generally used
to measure the degree of distortion between the original and
reconstructed images and is used to optimize the encoder-
decoder network. Theis et al. [24] proposed a way to over-
come this problem and have shown that minimal changes
to the loss are sufficient to train deep autoencoders which
are at par with JPEG 2000 in terms of the degree of com-
pression making it suitable for compressing high-resolution
images. Alexendre et al. (2018) [4] proposed using au-
toencoders along with residual blocks and skip connections
to achieve lossy compression at low bitrates («~ 0.15bpp).
However this approach suffers at extremely low bitrates
(< 0.1bpp) because it optimizes for MS-SSIM, which em-
phasizes on pixel -level preservation of an image, leading to
blurry reconstructions.

2.2. Generative Adversarial Network

GANSs have been used for learning intractable distribu-
tions in an unsupervised manner. At very low bit-rates,
compression networks based on reconstruction losses prove
to be ineffective as they learn unimodal approximations of
the real distribution. Fingscheidt et al. [14] showed using
GAN architectures that traditional compression algorithms
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Figure 2: CompressNet Architecture

and techniques that use reconstruction loss to optimize for
image compression lead to high PSNR and MS-SSIM but
this does not necessarily translate to good perception func-
tions, in this case, semantic segmentation. This necessitates
the usage of GAN to capture the global structure and context
of the image, enabling extreme learned compression. Given
a data set X, GANSs are to approximate its (unknown) distri-
bution p,. through a generator G(z) that tries to map samples
z from a fixed prior distribution p, to the distribution p,.
This helps the generator to reconstruct the sharper images
The generator G is trained in parallel with a discriminator
D by searching for a saddle point of a mini-max objective.
We have to take into consideration the reconstruction error
and add the corresponding loss term E[d(x, g(D(G(z)))],
which refers to the Vanilla GAN loss proposed in [9] to the
total loss. The objective function now is

min max E[f(D(x))] + E[g(D(G(2)))]

D
+ AE[d(z, g(D(G(2)))]
which implies minimising L g 4n over G.
Lean := maxE[f(D(2)] + Elg(D(G(2)))
2

+ AE[d(z, g(D(G(2)))]

In this work, we use f(y) = log(y) and g(y) = log(1 — y)
used in Vanilla GAN proposed by Goodfellow et al.[9]
which implies that we are finding the G minimizing the JS
Divergence between the distribution of = and G(z).

The effectiveness of Generative Compression can be at-
tributed to the fact that the decoder is adversarially trained
with a “paired” discriminator, similar to how a GAN is
trained. It allows the decoder to learn the real distribution of
the data and helps it generate visually pleasing reconstruc-
tions from a compressed latent representation.

Of late the image and video compression research com-
munity have increasingly shown a strong penchant towards
the usage of GANs. The work by Santurkar ez al. [19] is one
of the early ones employing a GAN framework for image
compression. Although they efficiently justify the potential
of GANSs, the work is more oriented towards representation
learning on thumbnail images and not full resolution im-
ages. Rippel et al. in [18] proposed an adversarial frame-
work for compression. It was primarily intended towards
minimizing artifacts using an adversarial loss term, focus-
ing on generating visually pleasing reconstructions. Agusts-
son et al. in [2] propose two networks for general and selec-
tive compression using conditional GANs. This is the cur-
rent state of the art compression standard at extremely low
bitrates. It has been inferred in [2] that the usage of con-
ditional GANs is more pronounced in the case of selective
object-based compression over general compression which
is the current objective.

3. Method

The architecture for extreme learned compression (Fig-
ure 2) has been inspired by the recent work proposed by
Agustsson et al. in [2], specifically, the architecture of the
encoder E and the generator G proposed in Wang et al. [27].
The detailed explanation of both these architectures is ex-
plained below with the help of the diagrams.

The encoder takes in the image and converts it into a
compressed feature space which is then passed through the
Quantizer. Quantizer assigns a quantized value to each
value in the compressed feature space based on the nearest
quantization level, to obtain w a compressed and quantized
representation. This forms the latent dimension from which
the Decoder learns to reconstruct the original image back.
This latent representation is then passed into the Generator

2327



1 i
SR o
(SWWAE) 1 i

i
Conv - ReLU - BN Conv - ReLU - BN
i

PN
i [

(SWWAE)

ros
i

Conv - ReLU - BN
1

(a) SAE/SWWAE Architecture

/DT . .@._
=

Feature Map

Switch Predicted
=== Prediction Switch
Network Labels

Il Switch

/\\\ ] Labels
- . ;

<«

<

(b) SAE-SPN Architecture

Figure 3: Architecture Description

or Decoder, G which produces the reconstructed image 2.
The discriminator, D is used for adversarial training which
takes in this reconstructed image and the actual image. It
predicts whether the given image is real or reconstructed.
The discriminator follows the PatchGAN architecture [11].
A PatchGAN discriminator maps a 512 x 512toa N x N
array of outputs X, where each X;; signifies whether the
patch;; in the image is real or fake.

3.1. Approach

In order to improve the quality of reconstructions com-
pared to existing to generative compression methods, we
adopt three approaches as mentioned before. Each approach
aims to modify the autoencoder setup in our model. These
approaches are as follows:

3.1.1 Stacked Autoencoders

In this model, as shown in Figure 3a we compute layer-wise
loss and add it to the final objective function and then opti-
mize the entire network jointly. The layer-wise loss is cal-
culated by taking the L? norm between the layer responses
after every MaxPool - MaxUnpool operation in encoder-
decoder architecture. This ensures that resulting reconstruc-
tions are as similar as possible even in the feature space
and allows the encoded information to be propagated deeper
into the encoding network, without much loss of informa-
tion.

3.1.2 Stacked What-Where Autoencoders

Including pooling switch information infuses the decoder
network with missing information. As a result during the
reconstruction phase, the individual activations are placed at
the location corresponding to the location where the maxi-
mum activation was observed during max-pooling in the en-
coding stage. However, this extra information comes at an

additional cost of having to transmit these switch informa-
tion from encoder to decoder. This increases the informa-
tion overhead during compression and makes extreme com-
pression infeasible since information transmission has to be
minimized while keeping the reconstructions sharp.

3.1.3 Stacked Autoencoders with Switch Prediction
Network

Even though the SWWAE architecture provides visually
pleasing reconstructions the information overhead has to
be eliminated to make it suitable for extreme compression.
Incorporating pooling switch information seems to be the
right direction to move ahead since the quality of the re-
constructions obtained is significantly sharper. To retain the
performance of the network in terms of perceptual quality
along with traditional metrics like PSNR, F'STM < we pre-
dict the pooling switches using an auxiliary Switch Predic-
tion Network (SPN) (Figure 3b). It is a convolutional neu-
ral network with a sigmoid activation function in the output.
We assume a 2 x 2 max pool operation in the encoder, which
maps a 4 element patch to a single value. 0 represents the
top-left value in the 2 x 2 patch, 1 represents the top right, 2
represents the bottom left value and 3 represents the bottom
right in the patch. For our experiments we have consid-
ered a 3 x 3 kernel to regress values in the range 0-1, then
classes for predicting the max-pooling location are assigned
as class O for values between 0-0.25, class 1 for values be-
tween 0.25-0.5, class 2 for values between 0.5-0.75, class 3
for values between 0.75-1. The functioning of this variant
remains the same as SWWAE with the deployment of the
switch prediction network in the decoder of the overall ar-
chitecture.

Figures 3a and 3b explains how both the architectures are
used for extreme compression. In both figures, 3a and 3b,
the left side represents the encoder and right side represents
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(d) BPG [6] @ 0.0726 bpp

(e) SAE-SPN (ours) @ 0.073 bpp

(c) SWWAE (ours) @ 56.31 bpp

(f) SAE-AII (ours) @ 0.036 bpp

Figure 4: Visual benchmarking of our proposed models with classical state-of-the-art method BPG[6]

the decoder. a) signifies the SAE and SWWAE architecture
which is designed similarly with layerwise L, loss between
each layer of encoder and decoder. Part b) of the figure
describes SAE-SPN architecture. The salient difference is
that instead of passing the pooling switch information like
in SWWAE, we predict pooling switch based on decoder re-
sponse. SWWAE uses pooling switch information to recon-
struct the pixels at the exact location from where the max
activation had taken place. Intuitively since we are predict-
ing the pooling switches in SAE-SPN and no pooling switch
information in SAE-AII, the reconstructed pixels might not
be always in the correct location of max activations giving a
slightly inferior performance compared to SWWAE but has
no information overhead. This makes it very feasible to be
be used in extreme level compression.

3.2. Loss Function

The loss function used to optimize the entire pipeline
consists of,

e Vanilla GAN loss function to optimize the generator
and the discriminator, L an

e Mean Squared Loss (MSE) to force the output recon-
struction to be similar to the input image, Ly/sg

e Perceptual Loss component to take care of the textu-
ral and feature similarity between the input and out-
put images by minimizing the L? distance between

the response from the 4*" convolutional layer of a pre-
trained Alexnet, Lyerceptual

e SAE layer-wise loss the L? norm between the layer
responses after every MaxPool - MaxUnpool operation
in encoder-decoder architecture, Lg g

L= %uél Laan + A Lrise + ApLperceptual + AsLsAE
3
where,
Lgan = Ellog D(x)] + E[log(1 — D(G(2)))]
Lyse = ||z — 2|2

Loperceptual = ||conva(x) — conva(Z)||2

4. Experiments
4.1. Architecture, Losses, and Hyperparameters

The network architecture for our encoder and de-
coder/generator is based on the global generator network
proposed by Wang et al. [28], in turn, based on the archi-
tecture proposed by Johnson et al.[12]

Encoder

Let ¢7s1-k denote a 7 x 7 Convolution-Instance Norm-
ReLU layer with k filters and stride 1. dk denotes a 3 x 3
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(a) Original Image

(b) SAE-AII (ours) @ 0.073 bpp

(c) SAE-SPN (ours) @ 0.073 bpp

Figure 5: Comparison of CompressNet with SAE-All method; CompressNet reconstructs with greater detail

Convolution-Instance Norm-ReLU layer with £ filters, and
stride 2. We use reflection padding to reduce boundary ar-
tifacts. Rk denotes a residual block that contains two 3 x 3
convolutional layers with the same number of filters on both
layers. uk denotes a 3 x 3 fractional-strided-Convolution-
Instance Norm-ReL.U layer with k filters, and stride %

Architecture: c¢7s1-60, d120, d240, d480,
do60

Decoder

Let c3s1-960 denote a 3 x 3 Convolution-Instance Norm-
ReLU layer with 960 filters and stride 1. Rk denotes a resid-
ual block that contains two 3 x 3 convolutional layers with
the same number of filters on both layers. uk denotes a 3 x 3
fractional-strided-Convolution- Instance Norm-ReL U layer
with k filters, and stride 3.

Architecture: c3s1-960, R960 X 9, u480,
u240, ul20, u60, c7sl-3

Discriminator

Let c4s2pl-k denote a 4 x 4 Convolution-Leaky ReLLU
layer with k filters and stride value as 2 and padding value
as 1 with k filters.

Architecture:c4s2pl-64, c4s2pl-128,
c4s2pl-192, c4s2pl-256, c4s2pl-512,
cdslpl-1

We have also included a hard quantizer (non-
differentiable), with L = 5 centers, C = {-2,-1,0,1,2}, to
control the bitrate given by the expression, (Eq. 4). Addi-
tionally, we have incorporated sub-pixel convolutions with
ICNR initialization [3], in place of the originally proposed
convolution + upsampling in the decoder to get rid of
checkerboard artifacts.

The encoder takes in an image of size H x W x 3 and re-
turns a latent space dimension of H/16 x W/16 x C. Hence

the operating point characterized by bpp (Eq. 4) is directly
related to the parameter C. We experimented with the per-
formance of our models, at C = {4,8} corresponding to
0.0363 bpp and 0.0726 bpp.

The encoder and the decoder/generator are trained with
the Adam optimizer with a learning rate of 2e-3, coupled
with a Learning Rate(LR) scheduler with a decay parameter
of 0.5 for improved training. The discriminator is trained
using the SGD optimizer with a learning rate of 2e-5.

We are also predicting only the first layer switches for
the encoder which is of dimension 256 x 256 x 60, with
the rest of the unpooling in the decoder done by Transposed
Convolution. The intuition behind predicting the first level
switches is while encoding the input onto a latent space, the
first pool layer carries the most local information, making it
essential to reconstructing the original image.

_ H/16 x W/16 x C x log, L
a Hx W

bpp 4)

To obtain more visually pleasing reconstructions, we
adopt Lyssp with a weight, Ayssp = 1. Since we look to
enhance the perceptual quality of the reconstructions, we
incorporate Lperceptual based on AlexNet architecture pro-
posed by [19] with a weight, A, = 5. In addition to the
above losses, we incorporate the vanilla GAN loss Lgan,
and the SAE layer loss Lg4g for sharper reconstructions,
with weight Ag = 1.

4.2. Datasets and Preprocessing steps

We train and evaluate our models on the Cityscapes
dataset [8]. We enhance our models by including the
CLIC (Challenge on Learned Image Compression) 2019
dataset to generalize better on the color information. The
datasets were augmented to 18000 image patches of size
512 x 512 px generated with random crops and flips. Fur-
thermore, Contrast Limited Adaptive Histogram Equaliza-
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Figure 6: Comparison of Perceptual and Traditional Metrics across models with training

tion (CLAHE) [31] was used to enhance the local contrast
of these images before feeding them to the network.

4.3. Baselines

We benchmark all our compression models against tradi-
tional as well as deep learning-based state-of-the-art meth-
ods. BPG [6] is the current state-of-the-art engineered
image compression codec, that outperforms the other re-
cent codecs such as JPEG2000 [26] and WebP[1] in terms
of PSNR. Specifically in the extreme-learned compression
(bpp < 0.1) setting, generative compression proposed by
Agussten et al. [2] is the current deep learning based state-
of-the-art. Just for evaluation purposes, we use pre-trained
weights of the same architecture [23] for comparison. Apart
from the above state-of-the-art methods, we compare our
models with other popular and common compression stan-
dards like JPEG2000 operated at similar bitrates, i.e 0.0726
bpp, and 0.0363 bpp.

4.4. Evaluation Metrics

We benchmark the performance of all our models with
traditional metrics such as PSNR and SSIM. However, the
primary focus is benchmarking based on perceptual quality.

In that regard, we evaluate the performance against per-
ceptual loss, FSIM, and Fréchet Inception Distance (FID).
Perceptual Loss is calculated as the L? distance between
the response of the input and reconstructed image obtained
after 4" conv layer of the AlexNet. FSIM, is a measure
that is based on the fact that the human visual system uses
low-level features to interpret images.

A dimensionless quantity called phase congruence is
used to calculate similarity between images. FID is a per-
ceptual quality metric proposed by Heusel et al.[10] specifi-
cally, for evaluating the GAN synthesized images. FID uses
the output features after the third pool layer of an inception

[22] network, modelled using a multivariate Gaussian with
mean p and 3. FID between the input dataset x, and recon-
structed dataset g, is computed as,

FID(, 9) = [|fta — p1g] |3+ Tr(Sy + Sy — 2(459) %) (5)

FID is a measure of how well the generated samples are
approximating the real data distribution. Lower FID values
signify the distance between the real and the generated data
distribution is less and hence correlates with better image
quality and diversity.

240
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Figure 7: Comparison of FID across models with training

5. Results

To compare performance across different methods, we
plotted different performance metrics discussed above,
across epochs.
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Normalized PSNR SSIM FSIMc

m JPEG2000 mBPG
(a) Comparison of traditional metrics

il

DL SOTA m SAE (ours) B SAE-SPN (ours) mSWWAE (ours)

Bit Rate = 0.0726 bpp
SSIM | PSNR | FSIM. | PLoss | FID
JPEG2K][26] 0.6793 | 23.1865 | 0.8491 | 10.89 | 159.05
BPGI6] 0.6411 | 22.6323 | 0.8240 | 10.19 | 139.58
DL SOTA[23] | 0.6035 | 18.7794 | 0.7367 | 6.67 | 167.13
SAE (ours) 0.4536 | 17.7478 | 0.7932 | 5.15 87.44
SAE-SPN (ours) | 0.5128 | 18.5084 | 0.7919 | 5.07 74.06
SWWAE (ours) | 0.8118 | 23.9258 | 0.9457 | 4.17 50.47
Bit Rate = 0.0363 bpp
JPEG2K 0.6002 | 21.4389 | 0.7863 | 15.68 | 231.15
SAE (ours) 0.3446 | 15.5972 | 0.6926 | 10.19 | 161.24
(b) Comparison of perceptual metrics

Figure 8: Benchmarking our algorithm against competing algorithms

Plots in Fig. 6a is a representation of the relationship
between perceptual loss and epochs for different methods.
Following the intuition that since more information on pool-
ing switches is being sent from the encoder to decoder, the
quality of reconstruction achieved with SWWAE is signifi-
cantly better than its counterparts like SAE-SPN and SAE-
All, it also achieves the lowest perceptual loss implying bet-
ter perceptual quality. SAE-AIl, CompressNet also shows
comparable performance at 0.0726 bpp and far outperforms
BPG and JPEG2000.

Plots in Fig. 6b is a representation of the relationship
between PSNR and epochs for different methods. As ob-
served, JPEG 2000 (at 0.0726 bpp) and BPG do appreciably
well for PSNR metric, followed by SWWAE, SAE-AII (at
0.0726 bpp) and SAE-AII (at 0.0363 bpp). This is because
traditional compression metrics optimize for PSNR but lose
out on visual sharpness, as evident by reconstructions are
shown in Fig. 4.

Plots presented in Fig. 7 describes the trends between
FID and epochs for different methods. As discussed above,
lower FID signifies better approximation to real data dis-
tribution and generates visually better-looking images. As
expected SWWAE performs the best in this metric closely
followed by CompressNet performance and SAE-AIL. This
trend follows our intuition of SWWAE and CompressNet
performing well on this metric due to the addition of pool-
ing switch information. Traditional compression methods
fall behind in this metric, as is evident from the plot. This is
because traditional methods optimize for PSNR instead of
a perceptual loss.

The bar plot aptly describes the performance of our
methods against BPG and JPEG2000 for different metrics
like Perceptual loss, SSIM, and FSIM.. We have bench-
marked the performance of our proposed methods against
both the traditional and deep learning based state-of-the-art
in fig 8.b. Although perceptual loss and FID are the primary
metrics evaluating the visual quality of reconstructions, we
have reported results against the traditional metrics as well.
The methods we have proposed do comparably well on the
traditional metrics and vastly outperform in terms of opti-
mizing for perceptual quality of the image.

User study : To see if the perceptual quality and the FID
metric are actually per the human perception, we conducted
a small scale user study. In the survey, the original image
was shown along with the reconstructed images obtained by
3 different methods CompressNet, BPG, and JPEG2K. 100
users from diverse backgrounds were asked to indicate their
preference for each pair of reconstructions in the question-
naire. The percentage of preferred choice has been reported.
This validates that CompressNet outperforms the traditional
compression methods with superior perceptual quality.

® Compressnet (Ours)
® BPG
JPEG2K

Figure 9: User study results indicating preference on image
sharpness and quality across different methods

6. Conclusion

We have proposed and evaluated different GAN-based
frameworks for extreme learned compression that signifi-
cantly outperforms prior works for extremely low bitrates in
terms of visual quality. Our proposed model, CompressNet
(SAE-SPN) shows great promise for image compression as
is evident by the results presented, where it performs com-
parably to traditional methods like JPEG2000 and BPG in
terms of PSNR and FSIM,, but is much superior to those
methods when it comes to perceptual quality and FID. We
believe learning compressed representations is a promising
avenue to learn high-resolution generative models for mul-
timodal data compression as well as adaptive image com-
pression with wide-ranging applications.
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