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Abstract

Compressing images at extremely low bitrates (< 0.1

bpp) has always been a challenging task as the quality of

reconstruction significantly reduces due to the strongly im-

posing constraint on the number of bits allocated for the

compressed data. With the increasing need to transfer large

amounts of images with limited bandwidth, compressing im-

ages to very low sizes is a crucial task. However, the ex-

isting methods are not effective at extremely low bitrates.

To address this need we propose a novel network called

CompressNet which augments a Stacked Autoencoder with

a Switch Prediction Network (SAE-SPN). This helps in the

reconstruction of visually pleasing images at these low bi-

trates (< 0.1 bpp). We benchmark the performance of

our proposed method on the Cityscapes dataset, evaluating

over different metrics at very low bitrates showing that our

method outperforms the other state-of-the-art. In particu-

lar, at a bitrate of 0.07, CompressNet achieves 22% lower

Perceptual Loss and 55% lower Frechet Inception Distance

(FID) compared to the deep learning SOTA methods.

1. Introduction

With the exponential growth of visual data-transfer,

effective compression to extremely small scales is of

paramount significance. In the case of images, classical

image compression techniques such as JPEG [26], WebP

[1], BPG [6] fail to give good quality reconstructions at

low bitrates. However, lossy compression techniques using

generative compression [2], [18], and [19] show promise in

the reconstruction of aesthetically pleasing images at simi-

lar operating conditions.

Any lossy image compression scheme can be formulated

as a rate-distortion optimization problem. In this frame-

work, an analysis transform, f : R
N → R

M , maps input

data x to a vector z in latent space, and a synthesis trans-

form, g : R
M → R

N , transforms z back into the image

space. An autoencoder setup is used to achieve these.

∗equal contribution

Most of the existing compression systems are optimized

for distortion metrics such as peak signal-to-noise ratio

(PSNR) or different variants of structural similarity (SSIM)

(Wang et al., 2003). Traditionally emphasis has been put

on building hand-crafted codecs (encoder-decoder pairs for

compression tasks), by making strong assumptions such as

the codec applying linear transform, as has been done with

JPEG and JPEG2000. This assumption has an inherent

problem as it is inaccurate to assume that a linear codec can

generalize to compress a wide variety of natural images.

For very low bitrates, traditional metrics lose their rele-

vance as they favor pixel-wise preservation of local struc-

ture over preserving texture and global structure. Recent

works by Patel et.al in [17], [16] and Blau et.al in [7] in-

dicate the need for better perceptual metrics that evaluate

the visual quality of the images, rather than evaluating the

structural similarity as captured by the traditional metrics.

For a compression task, the reconstructions are required to

have high perceptual quality, and also resemble the original

image closely. Training a system with adversarial losses in

this scenario produces better results as it enables a better

understanding of the global structure of the image. We inte-

grate a Generative Adversarial Network (GAN) setup along

with the autoencoder for achieving this task.

The effectiveness of an autoencoder variant, stacked-

autoencoders that incorporate layer-wise loss for learning

latent dimensions for supervised tasks has been proven

to enhance reconstruction quality for image compression

tasks [29] over traditional autoencoders. We incorpo-

rate a similar idea in CompressNet for enhancing the re-

construction quality at extremely low bitrates. In addi-

tion to stacked-autoencoders, Stacked What-Where Au-

toencoder(SWWAE) [30] models suggest the use of pooling

switch information for improved data-reconstruction across

the encoder-decoder architectures. However, incorporat-

ing the pooling switch information increases data overhead

making it infeasible for image-compression tasks at very

low bitrates. To incorporate SWWAE models for com-

pression tasks with no additional data-overhead, we pro-

pose a network to predict pooling switches and use it along

with the SAE-all architecture. This allows us to operate
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Figure 1: Original Image, a) Original image patches, b) SAE-SPN (ours) image patches, c) BPG image patches [6]

at extremely low bitrates adding very little computational

overhead and shows comparable performance to SWWAE,

which has proven to perform appreciably well for compres-

sion tasks.

In this paper, we propose three novel variants for extreme

compression, summarized as:

• Stacked Autoencoder (SAE) based architecture with

layer-wise loss

• Stacked What-Where Autoencoder (SWWAE) based

architecture with layer-wise Loss

• Stacked Autoencoder with Switch Prediction Network

(SAE-SPN) with layer-wise Loss

2. Literature Review

The classical approach to compression theory, mathe-

matically formulated by Shannon’s theory of communica-

tion [20], provides the fundamental basis that the coding

theory is built on. Classical methods leverage explicit prob-

abilistic modeling and feature extractions, effectively engi-

neered for the task of image-compression [21], JPEG [26],

and BPG [6]. Application of deep learning for image com-

pression has emerged as an active area of research in the

recent past. Incorporating autoencoder models into com-

pression frameworks remains to be one of the most popular

approaches amongst the deep learning techniques. Theis et

al. [24], Balle et al.[5], Toderici et al.[25], Lee et al. [13]

and Minnen et al. [15] have employed DNN architectures

successfully for the task of image compression. Along with

the autoencoders, GANs [9] have also been looked at as an

alternative to the more traditional approaches such as JPEG

[26] and BPG [6]. They tend to produce more aesthetically

pleasing and accurate reconstructions. In this section, we

specifically review image-compression frameworks that in-

corporate autoencoders and GANs.

2.1. Autoencoder

An autoencoder is a neural network that learns to recon-

struct the input. It has a latent layer that describes a code

used to represent the input to help reconstruct it back. Au-

toencoders have a constraint of not being able to be opti-

mized directly due to the inherent non-differentiability of

the compression loss. Mean-squared loss is generally used

to measure the degree of distortion between the original and

reconstructed images and is used to optimize the encoder-

decoder network. Theis et al. [24] proposed a way to over-

come this problem and have shown that minimal changes

to the loss are sufficient to train deep autoencoders which

are at par with JPEG 2000 in terms of the degree of com-

pression making it suitable for compressing high-resolution

images. Alexendre et al. (2018) [4] proposed using au-

toencoders along with residual blocks and skip connections

to achieve lossy compression at low bitrates (∽ 0.15bpp).
However this approach suffers at extremely low bitrates

(≤ 0.1bpp) because it optimizes for MS-SSIM, which em-

phasizes on pixel -level preservation of an image, leading to

blurry reconstructions.

2.2. Generative Adversarial Network

GANs have been used for learning intractable distribu-

tions in an unsupervised manner. At very low bit-rates,

compression networks based on reconstruction losses prove

to be ineffective as they learn unimodal approximations of

the real distribution. Fingscheidt et al. [14] showed using

GAN architectures that traditional compression algorithms
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Figure 2: CompressNet Architecture

and techniques that use reconstruction loss to optimize for

image compression lead to high PSNR and MS-SSIM but

this does not necessarily translate to good perception func-

tions, in this case, semantic segmentation. This necessitates

the usage of GAN to capture the global structure and context

of the image, enabling extreme learned compression. Given

a data set X, GANs are to approximate its (unknown) distri-

bution px through a generator G(z) that tries to map samples

z from a fixed prior distribution pz to the distribution px.

This helps the generator to reconstruct the sharper images

The generator G is trained in parallel with a discriminator

D by searching for a saddle point of a mini-max objective.

We have to take into consideration the reconstruction error

and add the corresponding loss term E[d(x, g(D(G(z)))],
which refers to the Vanilla GAN loss proposed in [9] to the

total loss. The objective function now is

min
G

max
D

E[f(D(x))] + E[g(D(G(z)))]

+ λE[d(x, g(D(G(z)))]
(1)

which implies minimising LGAN over G.

LGAN := max
D

E[f(D(x)] + E[g(D(G(z)))

+ λE[d(x, g(D(G(z)))]
(2)

In this work, we use f(y) = log(y) and g(y) = log(1 − y)
used in Vanilla GAN proposed by Goodfellow et al.[9]

which implies that we are finding the G minimizing the JS

Divergence between the distribution of x and G(z).
The effectiveness of Generative Compression can be at-

tributed to the fact that the decoder is adversarially trained

with a ”paired” discriminator, similar to how a GAN is

trained. It allows the decoder to learn the real distribution of

the data and helps it generate visually pleasing reconstruc-

tions from a compressed latent representation.

Of late the image and video compression research com-

munity have increasingly shown a strong penchant towards

the usage of GANs. The work by Santurkar et al. [19] is one

of the early ones employing a GAN framework for image

compression. Although they efficiently justify the potential

of GANs, the work is more oriented towards representation

learning on thumbnail images and not full resolution im-

ages. Rippel et al. in [18] proposed an adversarial frame-

work for compression. It was primarily intended towards

minimizing artifacts using an adversarial loss term, focus-

ing on generating visually pleasing reconstructions. Agusts-

son et al. in [2] propose two networks for general and selec-

tive compression using conditional GANs. This is the cur-

rent state of the art compression standard at extremely low

bitrates. It has been inferred in [2] that the usage of con-

ditional GANs is more pronounced in the case of selective

object-based compression over general compression which

is the current objective.

3. Method

The architecture for extreme learned compression (Fig-

ure 2) has been inspired by the recent work proposed by

Agustsson et al. in [2], specifically, the architecture of the

encoder E and the generator G proposed in Wang et al. [27].

The detailed explanation of both these architectures is ex-

plained below with the help of the diagrams.

The encoder takes in the image and converts it into a

compressed feature space which is then passed through the

Quantizer. Quantizer assigns a quantized value to each

value in the compressed feature space based on the nearest

quantization level, to obtain ŵ a compressed and quantized

representation. This forms the latent dimension from which

the Decoder learns to reconstruct the original image back.

This latent representation is then passed into the Generator
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(a) SAE/SWWAE Architecture (b) SAE-SPN Architecture

Figure 3: Architecture Description

or Decoder, G which produces the reconstructed image x̂.

The discriminator, D is used for adversarial training which

takes in this reconstructed image and the actual image. It

predicts whether the given image is real or reconstructed.

The discriminator follows the PatchGAN architecture [11].

A PatchGAN discriminator maps a 512 × 512 to a N ×N
array of outputs X, where each Xij signifies whether the

patchij in the image is real or fake.

3.1. Approach

In order to improve the quality of reconstructions com-

pared to existing to generative compression methods, we

adopt three approaches as mentioned before. Each approach

aims to modify the autoencoder setup in our model. These

approaches are as follows:

3.1.1 Stacked Autoencoders

In this model, as shown in Figure 3a we compute layer-wise

loss and add it to the final objective function and then opti-

mize the entire network jointly. The layer-wise loss is cal-

culated by taking the L2 norm between the layer responses

after every MaxPool - MaxUnpool operation in encoder-

decoder architecture. This ensures that resulting reconstruc-

tions are as similar as possible even in the feature space

and allows the encoded information to be propagated deeper

into the encoding network, without much loss of informa-

tion.

3.1.2 Stacked What-Where Autoencoders

Including pooling switch information infuses the decoder

network with missing information. As a result during the

reconstruction phase, the individual activations are placed at

the location corresponding to the location where the maxi-

mum activation was observed during max-pooling in the en-

coding stage. However, this extra information comes at an

additional cost of having to transmit these switch informa-

tion from encoder to decoder. This increases the informa-

tion overhead during compression and makes extreme com-

pression infeasible since information transmission has to be

minimized while keeping the reconstructions sharp.

3.1.3 Stacked Autoencoders with Switch Prediction

Network

Even though the SWWAE architecture provides visually

pleasing reconstructions the information overhead has to

be eliminated to make it suitable for extreme compression.

Incorporating pooling switch information seems to be the

right direction to move ahead since the quality of the re-

constructions obtained is significantly sharper. To retain the

performance of the network in terms of perceptual quality

along with traditional metrics like PSNR, FSIMC we pre-

dict the pooling switches using an auxiliary Switch Predic-

tion Network (SPN) (Figure 3b). It is a convolutional neu-

ral network with a sigmoid activation function in the output.

We assume a 2×2 max pool operation in the encoder, which

maps a 4 element patch to a single value. 0 represents the

top-left value in the 2×2 patch, 1 represents the top right, 2

represents the bottom left value and 3 represents the bottom

right in the patch. For our experiments we have consid-

ered a 3 × 3 kernel to regress values in the range 0-1, then

classes for predicting the max-pooling location are assigned

as class 0 for values between 0-0.25, class 1 for values be-

tween 0.25-0.5, class 2 for values between 0.5-0.75, class 3

for values between 0.75-1. The functioning of this variant

remains the same as SWWAE with the deployment of the

switch prediction network in the decoder of the overall ar-

chitecture.

Figures 3a and 3b explains how both the architectures are

used for extreme compression. In both figures, 3a and 3b,

the left side represents the encoder and right side represents
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(a) Original Image (b) SAE-All (ours) @ 0.073 bpp (c) SWWAE (ours) @ 56.31 bpp

(d) BPG [6] @ 0.0726 bpp (e) SAE-SPN (ours) @ 0.073 bpp (f) SAE-All (ours) @ 0.036 bpp

Figure 4: Visual benchmarking of our proposed models with classical state-of-the-art method BPG[6]

the decoder. a) signifies the SAE and SWWAE architecture

which is designed similarly with layerwise L2 loss between

each layer of encoder and decoder. Part b) of the figure

describes SAE-SPN architecture. The salient difference is

that instead of passing the pooling switch information like

in SWWAE, we predict pooling switch based on decoder re-

sponse. SWWAE uses pooling switch information to recon-

struct the pixels at the exact location from where the max

activation had taken place. Intuitively since we are predict-

ing the pooling switches in SAE-SPN and no pooling switch

information in SAE-All, the reconstructed pixels might not

be always in the correct location of max activations giving a

slightly inferior performance compared to SWWAE but has

no information overhead. This makes it very feasible to be

be used in extreme level compression.

3.2. Loss Function

The loss function used to optimize the entire pipeline

consists of,

• Vanilla GAN loss function to optimize the generator

and the discriminator, LGAN

• Mean Squared Loss (MSE) to force the output recon-

struction to be similar to the input image, LMSE

• Perceptual Loss component to take care of the textu-

ral and feature similarity between the input and out-

put images by minimizing the L2 distance between

the response from the 4th convolutional layer of a pre-

trained Alexnet, Lperceptual

• SAE layer-wise loss the L2 norm between the layer

responses after every MaxPool - MaxUnpool operation

in encoder-decoder architecture, LSAE

L = min
E,G

LGAN + λMLMSE + λpLperceptual + λSLSAE

(3)

where,

LGAN = E[logD(x)] + E[log(1−D(G(z)))]

LMSE = ‖x− x̂‖2

Lperceptual = ‖conv4(x)− conv4(x̂)‖2

4. Experiments

4.1. Architecture, Losses, and Hyperparameters

The network architecture for our encoder and de-

coder/generator is based on the global generator network

proposed by Wang et al. [28], in turn, based on the archi-

tecture proposed by Johnson et al.[12]

Encoder

Let c7s1-k denote a 7 × 7 Convolution-Instance Norm-

ReLU layer with k filters and stride 1. dk denotes a 3 × 3

2329



(a) Original Image (b) SAE-All (ours) @ 0.073 bpp (c) SAE-SPN (ours) @ 0.073 bpp

Figure 5: Comparison of CompressNet with SAE-All method; CompressNet reconstructs with greater detail

Convolution-Instance Norm-ReLU layer with k filters, and

stride 2. We use reflection padding to reduce boundary ar-

tifacts. Rk denotes a residual block that contains two 3× 3
convolutional layers with the same number of filters on both

layers. uk denotes a 3 × 3 fractional-strided-Convolution-

Instance Norm-ReLU layer with k filters, and stride 1

2
.

Architecture: c7s1-60, d120, d240, d480,

d960

Decoder

Let c3s1-960 denote a 3×3 Convolution-Instance Norm-

ReLU layer with 960 filters and stride 1. Rk denotes a resid-

ual block that contains two 3× 3 convolutional layers with

the same number of filters on both layers. uk denotes a 3×3
fractional-strided-Convolution- Instance Norm-ReLU layer

with k filters, and stride 1

2
.

Architecture: c3s1-960, R960 X 9, u480,

u240, u120, u60, c7s1-3

Discriminator

Let c4s2p1-k denote a 4 × 4 Convolution-Leaky ReLU

layer with k filters and stride value as 2 and padding value

as 1 with k filters.

Architecture:c4s2p1-64, c4s2p1-128,

c4s2p1-192, c4s2p1-256, c4s2p1-512,

c4s1p1-1

We have also included a hard quantizer (non-

differentiable), with L = 5 centers, C = {-2,-1,0,1,2}, to

control the bitrate given by the expression, (Eq. 4). Addi-

tionally, we have incorporated sub-pixel convolutions with

ICNR initialization [3], in place of the originally proposed

convolution + upsampling in the decoder to get rid of

checkerboard artifacts.

The encoder takes in an image of size H x W x 3 and re-

turns a latent space dimension of H/16 x W/16 x C. Hence

the operating point characterized by bpp (Eq. 4) is directly

related to the parameter C. We experimented with the per-

formance of our models, at C = {4,8} corresponding to

0.0363 bpp and 0.0726 bpp.

The encoder and the decoder/generator are trained with

the Adam optimizer with a learning rate of 2e-3, coupled

with a Learning Rate(LR) scheduler with a decay parameter

of 0.5 for improved training. The discriminator is trained

using the SGD optimizer with a learning rate of 2e-5.

We are also predicting only the first layer switches for

the encoder which is of dimension 256 × 256 × 60, with

the rest of the unpooling in the decoder done by Transposed

Convolution. The intuition behind predicting the first level

switches is while encoding the input onto a latent space, the

first pool layer carries the most local information, making it

essential to reconstructing the original image.

bpp =
H/16× W/16× C × log

2
L

H × W
(4)

To obtain more visually pleasing reconstructions, we

adopt LMSE with a weight, λMSE = 1. Since we look to

enhance the perceptual quality of the reconstructions, we

incorporate Lperceptual based on AlexNet architecture pro-

posed by [19] with a weight, λp = 5. In addition to the

above losses, we incorporate the vanilla GAN loss LGAN ,

and the SAE layer loss LSAE for sharper reconstructions,

with weight λS = 1.

4.2. Datasets and Preprocessing steps

We train and evaluate our models on the Cityscapes

dataset [8]. We enhance our models by including the

CLIC (Challenge on Learned Image Compression) 2019

dataset to generalize better on the color information. The

datasets were augmented to 18000 image patches of size

512 × 512 px generated with random crops and flips. Fur-

thermore, Contrast Limited Adaptive Histogram Equaliza-
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(a) Perceptual Loss with training (b) PSNR Metric with training

Figure 6: Comparison of Perceptual and Traditional Metrics across models with training

tion (CLAHE) [31] was used to enhance the local contrast

of these images before feeding them to the network.

4.3. Baselines

We benchmark all our compression models against tradi-

tional as well as deep learning-based state-of-the-art meth-

ods. BPG [6] is the current state-of-the-art engineered

image compression codec, that outperforms the other re-

cent codecs such as JPEG2000 [26] and WebP[1] in terms

of PSNR. Specifically in the extreme-learned compression

(bpp < 0.1) setting, generative compression proposed by

Agussten et al. [2] is the current deep learning based state-

of-the-art. Just for evaluation purposes, we use pre-trained

weights of the same architecture [23] for comparison. Apart

from the above state-of-the-art methods, we compare our

models with other popular and common compression stan-

dards like JPEG2000 operated at similar bitrates, i.e 0.0726

bpp, and 0.0363 bpp.

4.4. Evaluation Metrics

We benchmark the performance of all our models with

traditional metrics such as PSNR and SSIM. However, the

primary focus is benchmarking based on perceptual quality.

In that regard, we evaluate the performance against per-

ceptual loss, FSIMc and Fréchet Inception Distance (FID).

Perceptual Loss is calculated as the L2 distance between

the response of the input and reconstructed image obtained

after 4th conv layer of the AlexNet. FSIMc is a measure

that is based on the fact that the human visual system uses

low-level features to interpret images.

A dimensionless quantity called phase congruence is

used to calculate similarity between images. FID is a per-

ceptual quality metric proposed by Heusel et al.[10] specifi-

cally, for evaluating the GAN synthesized images. FID uses

the output features after the third pool layer of an inception

[22] network, modelled using a multivariate Gaussian with

mean µ and Σ. FID between the input dataset x, and recon-

structed dataset g, is computed as,

FID(x, g) = ||µx−µg||
2

2
+Tr(Σx+Σg−2(ΣxΣg)

1

2 ) (5)

FID is a measure of how well the generated samples are

approximating the real data distribution. Lower FID values

signify the distance between the real and the generated data

distribution is less and hence correlates with better image

quality and diversity.

Figure 7: Comparison of FID across models with training

5. Results

To compare performance across different methods, we

plotted different performance metrics discussed above,

across epochs.
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Bit Rate = 0.0726 bpp

SSIM PSNR FSIMc PLoss FID

JPEG2K[26] 0.6793 23.1865 0.8491 10.89 159.05

BPG[6] 0.6411 22.6323 0.8240 10.19 139.58

DL SOTA[23] 0.6035 18.7794 0.7367 6.67 167.13

SAE (ours) 0.4536 17.7478 0.7932 5.15 87.44

SAE-SPN (ours) 0.5128 18.5084 0.7919 5.07 74.06

SWWAE (ours) 0.8118 23.9258 0.9457 4.17 50.47

Bit Rate = 0.0363 bpp

JPEG2K 0.6002 21.4389 0.7863 15.68 231.15

SAE (ours) 0.3446 15.5972 0.6926 10.19 161.24

(a) Comparison of traditional metrics (b) Comparison of perceptual metrics

Figure 8: Benchmarking our algorithm against competing algorithms

Plots in Fig. 6a is a representation of the relationship

between perceptual loss and epochs for different methods.

Following the intuition that since more information on pool-

ing switches is being sent from the encoder to decoder, the

quality of reconstruction achieved with SWWAE is signifi-

cantly better than its counterparts like SAE-SPN and SAE-

All, it also achieves the lowest perceptual loss implying bet-

ter perceptual quality. SAE-All, CompressNet also shows

comparable performance at 0.0726 bpp and far outperforms

BPG and JPEG2000.

Plots in Fig. 6b is a representation of the relationship

between PSNR and epochs for different methods. As ob-

served, JPEG 2000 (at 0.0726 bpp) and BPG do appreciably

well for PSNR metric, followed by SWWAE, SAE-All (at

0.0726 bpp) and SAE-All (at 0.0363 bpp). This is because

traditional compression metrics optimize for PSNR but lose

out on visual sharpness, as evident by reconstructions are

shown in Fig. 4.

Plots presented in Fig. 7 describes the trends between

FID and epochs for different methods. As discussed above,

lower FID signifies better approximation to real data dis-

tribution and generates visually better-looking images. As

expected SWWAE performs the best in this metric closely

followed by CompressNet performance and SAE-All. This

trend follows our intuition of SWWAE and CompressNet

performing well on this metric due to the addition of pool-

ing switch information. Traditional compression methods

fall behind in this metric, as is evident from the plot. This is

because traditional methods optimize for PSNR instead of

a perceptual loss.

The bar plot aptly describes the performance of our

methods against BPG and JPEG2000 for different metrics

like Perceptual loss, SSIM, and FSIMc. We have bench-

marked the performance of our proposed methods against

both the traditional and deep learning based state-of-the-art

in fig 8.b. Although perceptual loss and FID are the primary

metrics evaluating the visual quality of reconstructions, we

have reported results against the traditional metrics as well.

The methods we have proposed do comparably well on the

traditional metrics and vastly outperform in terms of opti-

mizing for perceptual quality of the image.

User study : To see if the perceptual quality and the FID

metric are actually per the human perception, we conducted

a small scale user study. In the survey, the original image

was shown along with the reconstructed images obtained by

3 different methods CompressNet, BPG, and JPEG2K. 100

users from diverse backgrounds were asked to indicate their

preference for each pair of reconstructions in the question-

naire. The percentage of preferred choice has been reported.

This validates that CompressNet outperforms the traditional

compression methods with superior perceptual quality.

Figure 9: User study results indicating preference on image

sharpness and quality across different methods

6. Conclusion

We have proposed and evaluated different GAN-based

frameworks for extreme learned compression that signifi-

cantly outperforms prior works for extremely low bitrates in

terms of visual quality. Our proposed model, CompressNet

(SAE-SPN) shows great promise for image compression as

is evident by the results presented, where it performs com-

parably to traditional methods like JPEG2000 and BPG in

terms of PSNR and FSIMc, but is much superior to those

methods when it comes to perceptual quality and FID. We

believe learning compressed representations is a promising

avenue to learn high-resolution generative models for mul-

timodal data compression as well as adaptive image com-

pression with wide-ranging applications.
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