
QUICKSAL: A small and sparse visual saliency model for efficient inference in

resource constrained hardware

Vignesh Ramanathan1, Pritesh Dwivedi1, Bharath Katabathuni1,2,

Anirban Chakraborty1, Chetan Singh Thakur1

1Indian Institute of Science, 2Archeron Group

{vigneshr, priteshd, katabathunib, anirban, csthakur}@iisc.ac.in, bharath@archerongroup.com

Abstract

Visual saliency is an important problem in the field of

cognitive science and computer vision with applications

such as surveillance, adaptive compressing, detecting un-

known objects and scene understanding. In this paper,

we propose a small and sparse neural network model for

performing salient object segmentation that is suitable for

use in mobile and embedded applications. Our model is

built using depthwise separable convolutions and bottle-

neck inverted residuals which have been proven to perform

very memory efficient inference and can be easily imple-

mented using standard functions available in all deep learn-

ing frameworks. The multiscale features extracted along the

layers with deep residuals allow our network to learn high

quality saliency maps. We present the quantitative results of

our QUICKSAL model with multiple levels of model spar-

sity ranging from 0% to ∼96%, with the non-zero parame-

ter count varying from ∼3.3M to ∼0.14M respectively - on

publicly available benchmark datasets - showing that our

highly constrained approach is comparable to other state-

of-the-art approaches (parameter count ∼35M). We also

present qualitative results on camouflage images and show

that our model can successfully distinguish between the

salient and non-salient parts even when both seem blended

together.

1. Introduction

In higher organisms, the eye is a complex optical system

which focuses the light from the surrounding environment

through an adjustable assembly of lenses to form an inverted

image on the retina. This image gets translated into electri-

cal neural impulses which can travel through the optic nerve

to the visual cortex and other areas of the brain to create vi-

sual perception. Even the most sophisticated brains cannot

perform real time, parallel processing of the entire visual

field, due to the high computational cost involved with pro-

cessing information at such a large scale [4, 53]. The ner-

vous system of organisms have evolved to filter this over-

whelming amount of information and process only a subset

of it. Two different approaches exist to implement this bot-

tleneck. The first, top down attention, is controlled by the

organism itself and biases attention based on the organisms

internal state and goals. The second mechanism, bottom up

attention, is based on different parts of a visual scene having

different instantaneous saliency values.

Recent advances in computer vision use increasingly

large deep neural networks to achieve state of the art re-

sults in various vision tasks such as image classification

[50, 15, 21], segmentation [42, 40], detection [46, 47, 33].

Over-parameterization is a widely-recognized property of

deep neural networks [9, 2], which results in high compu-

tational cost and memory footprint during inference. The

model size, memory footprint, computational complexity

and power usage are major factors to be considered when

using deep neural networks for embedded and mobile appli-

cations. It is not feasible to directly implement these models

in hardware, which are designed for real world applications

such as robotics and autonomous driving.

To address this issue, many methods have been pro-

posed such as low-rank approximation of weights [9, 24],

weight quantization [7, 45], knowledge distillation [16, 48],

network pruning [13, 27] and neural architecture search

[66, 29, 37, 20]. Neural architecture search methods are

computationally intensive and result in complex architec-

tures. We choose to keep our model design intuitive and

hence choose to adapt the principles stated in [49]. The

depthwise separable convolution splits a standard convolu-

tion into depthwise convolution and pointwise convolution,

thereby achieving benefits similar to low-rank approxima-

tion. This convolutional module is perfectly suited for use

in mobile applications, because it significantly reduces the

memory footprint during inference by never fully material-

izing large intermediate tensors [49]. This reduces the need

for main memory access in many embedded systems, that

have small amounts of very fast cache memory, thereby pro-

viding gains in computation time and power usage. Liter-

ature suggests that the memory fetching operation is much

more power hungry than a basic compute operation [17].

1678

The least significant weights of the network are pruned out

using an iterative algorithm [12, 10] that masks them out,

thereby further reducing the RAM,ROM and power require-

ments of our model. Our model can be easily implemented

using any modern deep learning framework [43, 1].

In this paper, we present a small, sparse and efficient

neural network model for salient object segmentation that

is suitable for use in embedded and mobile applications.

Section 2 reviews prior work in visual saliency. Section 3

describes our network architecture and its building blocks

in detail. Section 4 describes the pruning strategy. Section

5 describes the implementation details. Section 6 describes

the evaluation metrics and experimental results on bench-

mark datasets. Section 7 closes with a conclusion.

2. Related Work

Visual saliency models have shown significant progress

over the last few years. Earlier approaches for visual

saliency involved using various low-level features such as

colors, intensity and orientation to generate coarse saliency

maps [19]. Other approaches such as [32, 62, 35, 6]

combine local, regional and global contrast-based features

to detect salient parts of image. A neuromorphic visual

saliency algorithm is implemented on digital hardware us-

ing stochastic computation(SC) with very low power and

small area [52]. The SC hardware implementation of con-

volution filters is done using SC with simple logic gates.

[39] demonstrate a real-time implementation of a proto-

object based neuromorphic visual saliency model [38] on

an embedded processing board. In [54], an undirected

graph is created with all the image pixels as nodes, and

the edges between nodes being weighted by colour/intensity

differences (absolute gradients). A minimum spanning tree

is constructed by sequentially removing edges with large

weights, which is post processed to generate the saliency

maps. A comprehensive survey on traditional techniques

used to solve visual saliency is presented in [3].

Compared to the traditional methods that use hand-

crafted features, CNN-based methods extract highly ab-

stract features from images to achieve state-of-the-art re-

sults in various computer vision tasks, including salient ob-

ject detection. The bottom up approach for visual saliency

is implemented by training deep neural networks to either

predict eye fixation maps [23, 31] or perform salient ob-

ject segmentation [25, 56, 65] or both [22]. DSS [18]

achieves state-of-the-art results in salient object segmen-

tation across various benchmark datasets. Their model

is a VGG/RESNET-based network, with multiple shortcut

connections across layers which are fused in a way sim-

ilar to HED [59]. By combining rich multi-scale feature

maps from each layer, DSS is able to generate high qual-

ity saliency maps. DHSnet [30], uses a similar architecture

where saliency maps are generated at various scales and the

model is trained using binary cross-entropy loss between

the generated saliency maps and ground truths, at various

scales. [34] uses a grid like architecture, with initial lay-

ers using kernels of small size to capture lower level fea-

tures and deeper layers using kernels of large size to capture

global context information.These features are then com-

bined in a separate layer to refine the final prediction. [58]

uses a pyramid pooling scheme before the final prediction

layer to extract multi-scale features for saliency map predic-

tion. In [41], a Patch Generation Module, a Saliency Pre-

diction Module and a Recurrent Attention Module are pro-

posed that work in tandem to generate image patches, their

corresponding feature maps and aggregate them to generate

the saliency maps.

3. Network Architecture

We will first discuss about the building blocks of our

model and then describe in detail the network architecture

used to perform salient object segmentation.

3.1. Depthwise Separable Convolutions

Depthwise separable convolution is a form of factorized

convolution, which factorizes a standard convolution into

a depthwise convolution, where a single filter is applied to

each channel and a 1×1 convolution called a pointwise con-

volution, which linearly combines the outputs of the depth-

wise convolution. Figure 1 visualizes the depthwise sepera-

ble convolution operation. A standard convolution takes as

input a tensor of size hi × wi × di, and applies a convo-

lutional kernel K ∈k×k×di×dj to produce an output tensor

of size hi × wi × dj . The computational cost of a standard

convolutional operation is given as,

h · w · di · dj · k
2 (1)

where for zero padding and stride one, h = hi − k + 1 and

w = wi − k + 1. The computational cost involved with

performing depthwise seperable convolution is given as,

h · w · di · k
2 + h · w · di · dj (2)

The improvement in computational performance can be cal-

culated as,

h · w · di · k
2 + h · w · di · dj

h · w · di · dj · k2

=
h · w · di · (k

2 + dj)

h · w · di · dj · k2

=
1

dj
+

1

k2
(3)

1679

hixwixdi

hixwix1

hixwixdi hixwixdj

hixwix1

kxk

kxk

kxk

1x1

Depthwise Convolution

Pointwise Convolution

Figure 1. Depthwise seperable convolution factorized into depth-

wise convolution, which applies a filter to each input channel and

a pointwise 1 × 1 convolution to linearly combine the output of

the depthwise layer.

3.2. Bottleneck Inverted Residual Block

Consider a deep neural network consisting of n layers

each of which has an activation tensor size hi × wi × di.

For an input set of real images, the set of layer activations

form a manifold of interest [49]. It has been hypothesized

that manifolds of interest in neural networks could be em-

bedded in low-dimensional subspaces. This assumption lets

us insert linear bottleneck layers in between convolutional

blocks. It is important to use linear layers in order to prevent

non-linearities from destroying the information. [11, 49]

have shown empirical evidence to support this statement.

The bottlenecks contain the necessary information in a low-

dimensional subspace and the expansion layers exist for the

application of the non-linearities. Figure 2 shows the bot-

tleneck inverted residual block.

3.3. Inception Blocks With Deep Residuals

Salient object segmentation involves detecting the closed

contour which represents the object of interest. This means

we require both the object level semantics and low level fea-

tures such as edges, patterns, contrast etc. Neural networks

are known to learn increasing complex abstractions along

the layers. [14] have shown that information of interest for

pixel-level tasks is spread across all the layers of a convolu-

tional network. [25, 65] have observed that saliency can

be captured better when semantics are considered across

multiple scales by upsampling and downsampling image

patches. As in [5, 51], we use multi-scale dilated convo-

lutional blocks to capture this information. Dilated con-

volutions requires fewer parameters to cover the desired

scale. These multi-scale dilated convolutional blocks are

implemented using depth wise convolution and bottleneck

inverted residuals.

INPUT

 Depthwise channel
Expansion
Conv 1x1

Add

OUTPUT

ReLU

ReLU

 Pointwise Conv

 Depthwise Conv kxk

BatchNorm

BatchNorm

BatchNorm

Figure 2. Bottleneck inverted residual block where ReLU function

is applied to the output of expansion layers, and pointwise convo-

lution embedding the feature vector to a low dimension space.

INPUT

ReLU

Depthwise
Conv 3x3
Dilation: 3

Depthwise
Conv 3x3
Dilation: 2

Depthwise
Conv 3x3
Dilation: 1

Concat

ReLU

Pointwise Conv

OUTPUT Inception
Block

Transpose channel
compression Conv 3x3

Depthwise channel
expansion
 Conv 1x1

BatchNorm

BatchNorm BatchNormBatchNorm

BatchNorm

BatchNorm

Figure 3. The inception block comprised of multi-scale convolu-

tions. The effective field of view of the kernel operations are 1×1,

3×3, 5×5, 7×7. The 3×3, 5×5, 7×7 convolutions are imple-

mented using dilated convolutions to maintain the same parameter

count across all of them.

3.4. Detailed Architecture

Figure 4 shows the network architecture in detail. The

network consists of multiple residual connections across

various scales which combines the low level features with

1680

Bottleneck 3

Conv1

Input Saliency
Map

Bottleneck 4

Bottleneck 5

Bottleneck 7 Inception 5

Inception 4

Inception 3

Inception 2Bottleneck 1-2

Inception 1 Convf 1 Convf 2

Bottleneck 6

Figure 4. QUICKSAL Model

Input Operator t c n s

2242 × 3 Conv1 - 32 1 2

1122 × 32 Bottleneck1 1 16 1 1

1122 × 16 Bottleneck2 6 24 2 2

562 × 24 Bottleneck3 6 32 3 2

282 × 32 Bottleneck4 6 64 4 2

142 × 64 Bottleneck5 6 96 3 1

142 × 96 Bottleneck6 6 160 3 2

72 × 160 Bottleneck7 6 320 1 1

Table 1. The layers of encoder network where each line describes

a sequence of 1 or more identical (modulo stride) layers, repeated

n times. All layers in the same sequence have the same number

of output channels, c. The first layer of each sequence has a stride

s and all others use stride 1. All spatial convolutions use 3 × 3

kernels. The expansion factor t is always applied to the input size.

the high level features to give refined saliency maps. The

bottleneck is implemented as shown in figure 2 where ReLU

non-linearity is applied to the output of the depthwise 1×1,

3× 3 convolutions so that no information is destroyed. The

pointwise convolution is a linear operation that embeds the

feature vector to a low dimensional space. Table 1 shows

the encoder module. Figure 3 shows the inception module,

which consists of multi-scale convolutions to capture the lo-

cal and global context in the image. Each inception module

consists of a linear 3 × 3 transpose convolution operation

that upsamples and compresses the number of channels at

the output. The output of 3 × 3 and 1 × 1 convolution at

the final layer is then squashed using a softmax to gener-

ate probability scores per pixel, which are nothing but the

saliency maps. The last two convolution layers do not have

a batch norm implementation. Table 2 shows the decoder

module.

4. Pruning Strategy

Consider a network f(x; θ) with initial parameters

θ = θ0 ∼ Dθ. Network pruning involves finding a

mask m ∈ {0, 1}|θ| such that accuracy of the network

Input Operator t c s

72 × 320 Inception5 6 96 1

142 × 192 Inception4 6 32 1

282 × 64 Inception3 6 24 1

562 × 48 Inception2 6 16 1

1282 × 32 Inception1 6 16 1

2242 × 16 Convf1 - 8 1

2242 × 8 Convf2 - 1 1

Table 2. The layers of decoder network, where c represents the

number of output channels and s represents the stride of all con-

volution operations inside the inception blocks. The expansion

factor t is the ratio between the number of output channels of the

concatenation operation and input channels to the inception block.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Pruning Ratio

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

FB
W

DUT-OMRON
HKU-IS
ECSSD
PASCAL-S

Figure 5. FBW vs pruning ratio curve for the QUICKSAL model

trained on MSRA10k with a train/val/test split of 0.8/0.1/0.1 re-

spectively. The model performance remains constant until the

sharp drop at a pruning ratio of ∼93% (elbow).

f(x;m ⊙ θ) is comparable to that of f(x; θ), i.e we

would like to uncover a sub network which has the same

performance as the complete network. The network is

allowed to train for N iterations on the training data before

the least significant weights are pruned out. Pruning out p

1681

Pruning Percentage Non-Zero Parameters DUT-OMRON [61] HKU-IS [25] ECSSD [60] PASCAL-S [28]

MAE(↓) max.Fβ(↑) MAE(↓) max.Fβ(↑) MAE(↓) max.Fβ(↑) MAE(↓) max.Fβ (↑)

0% 3304705 0.084 0.714 0.053 0.882 0.061 0.908 0.117 0.809

20% 2643765 0.081 0.714 0.051 0.889 0.059 0.911 0.114 0.815

36% 2115014 0.079 0.721 0.051 0.887 0.060 0.907 0.113 0.819

48.8% 1692013 0.078 0.725 0.052 0.889 0.059 0.911 0.115 0.815

59.04% 1353612 0.084 0.716 0.053 0.885 0.060 0.908 0.116 0.816

67.24% 1082892 0.081 0.718 0.052 0.888 0.059 0.911 0.116 0.813

73.79% 866315 0.080 0.714 0.052 0.883 0.060 0.907 0.117 0.816

79.03% 693054 0.086 0.706 0.054 0.878 0.061 0.905 0.117 0.816

83.23% 554445 0.082 0.709 0.055 0.879 0.061 0.905 0.119 0.804

86.58% 443558 0.082 0.710 0.055 0.881 0.062 0.908 0.119 0.801

89.27% 354848 0.083 0.712 0.057 0.877 0.063 0.907 0.118 0.798

91.42% 283881 0.086 0.705 0.060 0.875 0.066 0.901 0.117 0.791

93.12% 227106 0.087 0.706 0.063 0.870 0.069 0.899 0.122 0.784

94.51% 181687 0.109 0.642 0.081 0.828 0.093 0.853 0.133 0.734

95.64% 145351 0.148 0.559 0.135 0.726 0.147 0.763 0.176 0.658

Table 3. Quantitative comparison of QUICKSAL trained on MSRA10k with multiple levels of pruning on various datasets. Each pruning

iteration removes 20% of the remaining model parameters. Top results are in bold numbers.

Pruning Percentage Non-Zero Parameters DUT-OMRON [61] HKU-IS [25] ECSSD [60] PASCAL-S [28]

MAE(↓) max.Fβ(↑) MAE(↓) max.Fβ(↑) MAE(↓) max.Fβ(↑) MAE(↓) max.Fβ (↑)

0% 3304705 0.072 0.745 0.049 0.905 0.062 0.916 0.109 0.821

20% 2643765 0.071 0.732 0.050 0.896 0.064 0.906 0.115 0.82

36% 2115014 0.071 0.747 0.050 0.901 0.066 0.911 0.114 0.817

48.8% 1692013 0.071 0.737 0.050 0.900 0.066 0.908 0.116 0.822

59.04% 1353612 0.070 0.740 0.051 0.900 0.064 0.915 0.113 0.824

67.24% 1082892 0.070 0.739 0.052 0.897 0.066 0.910 0.113 0.821

73.79% 866315 0.070 0.735 0.051 0.901 0.066 0.914 0.115 0.814

79.03% 693054 0.071 0.730 0.051 0.891 0.066 0.906 0.117 0.806

83.23% 554445 0.075 0.727 0.053 0.893 0.066 0.903 0.113 0.808

86.58% 443558 0.075 0.719 0.054 0.889 0.071 0.895 0.117 0.806

89.27% 354848 0.088 0.670 0.063 0.166 0.084 0.869 0.128 0.785

91.42% 283881 0.091 0.666 0.065 0.857 0.086 0.860 0.128 0.777

93.12% 227106 0.105 0.631 0.077 0.829 0.098 0.841 0.138 0.748

94.51% 181687 0.108 0.618 0.085 0.208 0.104 0.826 0.144 0.737

95.64% 145351 0.266 0.337 0.276 0.478 0.300 0.515 0.295 0.496

Table 4. Quantitative comparison of QUICKSAL trained on MSRA-B with multiple levels of pruning on various datasets. Each pruning

iteration removes 20% of the remaining model parameters. Top results are in bold numbers.

% of the model weights is carried out over k iterations. The

model parameters are reinitialized to their initial value θ0
after every pruning iteration [10]. The pruning strategy can

be summarized as follows,

Run for k iterations,

1. Randomly initialize a neural network f(x; θ0) (where

θ0 ∼ Dθ).

2. Train the network for j iterations, arriving at parame-

ters θj .

3. Prune bottom p
1

k% of the absolute value of parameters

in θj , creating a mask m.

4. Reset the remaining parameters to their values θ0.

5. Implementation Details

The weights of the encoder were initialized with those

pretrained on the ImageNet [8] dataset. We train our model

on MSRA10k dataset with a train/val/test split of 0.8/0.1/0.1

respectively. For fair comparison with DSS and DCL, we

train our model separately on the MSRA-B dataset (5,000

1682

Methods DUT-OMRON [61] HKU-IS [25] ECSSD [60] PASCAL-S [28]

MAE (↓) max.Fβ (↑) MAE (↓) max.Fβ(↑) MAE (↓) max.Fβ (↑) MAE (↓) max.Fβ (↑)

BSCA - - 0.175 0.719 0.182 0.758 0.223 0.667

DRFI - - 0.145 0.777 0.164 0.786 0.207 0.698

RFCN - - 0.079 0.892 0.107 0.890 0.118 0.837

Amulet 0.074 0.741 0.052 0.895 0.059 0.915 0.098 0.837

SRM 0.069 0.707 0.046 0.874 0.056 0.892 - -

NLDF 0.085 0.724 0.060 0.874 0.075 0.886 0.108 0.804

DSS* 0.068 0.736 0.039 0.913 0.052 0.916 0.080 0.830

ESOD 0.066 0.751 0.054 0.915 0.063 0.921 0.083 0.846

QUICKSAL-10k (Best) 0.078 0.725 0.052 0.889 0.059 0.911 0.115 0.815

QUICKSAL-10k (Elbow) 0.087 0.706 0.063 0.87 0.069 0.899 0.122 0.784

QUICKSAL-B (Best) 0.072 0.745 0.049 0.905 0.062 0.916 0.109 0.821

QUICKSAL-B (Elbow) 0.075 0.719 0.054 0.889 0.071 0.895 0.117 0.806

Table 5. Quantitative comparison with other state-of-the-art methods on various datasets. QUICKSAL-10k (Best) and QUICKSAL-10k (El-

bow) models are trained on MSRA10k and have a pruning ratio of 48.8% and 93.12% respectively. QUICKSAL-B (Best) and QUICKSAL-

B (Elbow) models are trained on MSRA-B and have a pruning ratio of 0% and 86.58% respectively. Best and second best results are shown

in red and blue respectively. Results best viewed in color.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Pruning Ratio

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

FB
W

DUT-OMRON
HKU-IS
ECSSD
PASCAL-S

Figure 6. FBW vs pruning ratio curve for the QUICKSAL model

trained on MSRA-B with a train/val/test split of 0.5/0.1/0.4 respec-

tively. The model performance remains constant until the sharp

drop at a pruning ratio of ∼86% (elbow).

images) with a train/val/test split of 0.5/0.1/0.4 respectively.

The images are rescaled to a size of 224 × 224 with no

data augmentation. We use Adam optimizer, with CyclicLR

scheduler [48] with the base and max learning rate set to

0.0001 and 0.001 respectively. We pruned out the bottom

20 % of the network parameters per pruning iteration, where

each pruning iteration runs for 20 epochs. We choose not to

prune the weights of the final convolution layer before the

softmax in order to maintain maximum expressibility at the

output layer.

*DSS also employs a CRF post-processing step.
�Non-zero parameters

Methods Model Parameters Model Size (in MB)

DSS 40M 152

DCL 135M 513

DHS 100M 381

Amulet 35M 133

SRM 30M 115

UCF 17M 65

RFCN 138M 526

ESOD 16M 64

QUICKSAL-10k (Best) 1.6M� 6.45

QUICKSAL-10k (Elbow) 0.22M� 0.86

QUICKSAL-B (Best) 3.3M� 12.6

QUICKSAL-B (Elbow) 0.44M� 1.69

Table 6. Comparison between the model sizes (approx) of state-

of-the-art methods. The model implementation is assumed to be

in float32, which is usually the case.

6. Experiments

6.1. Evaluation Metrics

Mean Absolute Error: MAE is computed as the mean

of pixel-wise absolute difference between the continuous

object saliency map and the binary ground-truth.

MAE =
1

H ×W

∑

i,j

|G(xij)− P (xij)| (4)

Weighted Fβ Measure: Weighted Fβ-measure [36]

evaluates a binarized map with respect to ground truth based

on weighted harmonic mean of precision and recall values.

1683

Image GT ESOD AMULET DHS UCF NLDF QUICKSAL
-10K(Best)

QUICKSAL
-10K(Elbow)

QUICKSAL
-B(Best)

QUICKSAL
-B(Elbow)DSS

Figure 7. Qualitative comparison with various state-of-the-art approaches on some challenging images from ECSSD.

Similar to other works, β2 = 0.3, thereby giving more im-

portance to precision.

Fβ =
(1 + β2)× Precision×Recall

β2 × Precision+Recall
(5)

6.2. Results

In table 3 and table 4, we present the results for our

QUICKSAL model with multiple levels of pruning trained

on the MSRA10k and MSRA-B datasets respectively. As

reported in [18], we observe that though MSRA10k is twice

as big as MSRA-B, models trained on it have a competi-

tive performance compared to those trained on the MSRA-

B. We can observe that our model performance remains

constant until it reaches a sparsity threshold, pruning be-

yond which results in performance degradation. This phe-

nomenon is visualized in figure 5 and figure 6, where

the curve has an elbow at a pruning ratio of 93.12% and

86.58% respectively. We will refer to these two models

as QUICKSAL-10k (Elbow) and QUICKSAL-B (Elbow).

Pruning seems to be also acting as a regularizer, allow-

ing our model to generalize better. The performance of

the QUICKSAL model trained on the MSRA-B dataset

starts degrading much sooner with pruning than for the

one trained on MSRA10k dataset. We observe the best

performance of the QUICKSAL trained on MSRA10k and

MSRA-B datasets at a pruning ratio of 48.8% and 0% (no

pruning) respectively. We will refer to these two models as

QUICKSAL-10k (Best) and QUICKSAL-B (Best).

In table 5, we compare the quantitative performance

of various state-of-the-art methods with ours based on the

aforementioned evaluation criteria. We compare against

DSS [18], DCL [26], DHS [30], Amulet [63], SRM

[58],UCF [64], RFCN [57], ESOD [41] and two non-deep

methods -DRFI [55] and BSCA [44]. In table 6, we com-

pare the model size of the different methods. We can see

1684

Figure 8. Qualitative results of our model on camouflage images.

that even though our model is significantly smaller than

state-of-the-art, it is still able to achieve comparable results.

It is to be noted that our model is designed with the con-

strain of being implementable on resource constrained hard-

ware. Metrics of other methods have either been reported

by the respective authors or have been computed by us us-

ing available predictions/weights. For a fair comparison,

we use the scores obtained without post-processing for all

methods (except DSS).

In figure 7, we compare the qualitative results of the

aforementioned methods with ours. We observe that our

model performs well in identifying objects with a cluttered

background (row 1) and low contrast (row 7) as well. It is

able to identify the salient object even when there are mul-

tiple objects in the images (row 5, 6, and 7). It is able to

perform well when there are objects within objects as in

(row 9), which consists of a bird with a sharp contrast with

a poster. It is able to distinguish to an extent objects from

shadows (row 4). In figure 8 we show the results of our

model on camouflage images. We observe that our model is

able to distinguish between salient and non-salient regions

in such complex scenario.

7. Conclusion

In this work, we have presented a small and sparse deep

neural network model that performs efficient salient object

segmentation. Our model was built using depthwise sep-

arable convolutions, bottleneck inverted residuals and in-

ception blocks with deep residuals, with the least signif-

icant weights pruned out to induce sparsity. Our model

design is 5-10 folds smaller than other state-of-the-art ap-

proaches. Pruning makes the network sparse and reduces

the memory and power requirements even further. Due to

sparsity, most of the weights are zero and we dont need

to compute the activation function for most of the hid-

den nodes. The reduced memory read/write operations,

saves the dynamic power significantly. Our network is

tailored to be hardware realizable for edge computing de-

vices. We have presented both quantitative and qualitative

results on multiple public benchmark datasets which show

that our QUICKSAL-10k (Elbow) and QUICKSAL-B (El-

bow) with ∼0.22M and ∼0.44M non-zero parameters re-

spectively have competitive results with other state-of-the-

art methods. Our QUICKSAL-10k (Best) and QUICKSAL-

B (Best) with ∼1.6M and ∼3.3M non-zero parameters re-

spectively, have a performance almost in the top two.

8. Acknowledgement

Research facilities for this work were supported

and funded by (i) INSPIRE faculty fellowship

(DST/INSPIRE/04/2016/000216) from the Depart-

ment of Science Technology, India, (ii) Funded by

SERB (Science and Engineering Research Board), India:

ECR/2017/002517 and IMP/2018/000550.

1685

References

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,

M. Devin, S. Ghemawat, G. Irving, M. Isard, et al. Tensor-

flow: A system for large-scale machine learning. In 12th

{USENIX} Symposium on Operating Systems Design and

Implementation ({OSDI} 16), pages 265–283, 2016.

[2] J. Ba and R. Caruana. Do deep nets really need to be deep?

In Advances in neural information processing systems, pages

2654–2662, 2014.

[3] A. Borji, M.-M. Cheng, Q. Hou, H. Jiang, and J. Li. Salient

object detection: A survey. Computational Visual Media,

pages 1–34, 2014.

[4] D. E. Broadbent. Perception and communication. Elsevier,

2013.

[5] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille. Semantic image segmentation with deep con-

volutional nets and fully connected crfs. In ICLR, 2015.

[6] M.-M. Cheng, N. J. Mitra, X. Huang, P. H. Torr, and S.-M.

Hu. Global contrast based salient region detection. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

37(3):569–582, 2014.

[7] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and

Y. Bengio. Binarized neural networks: Training deep neu-

ral networks with weights and activations constrained to+ 1

or-1. arXiv preprint arXiv:1602.02830, 2016.

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database.

In 2009 IEEE conference on computer vision and pattern

recognition, pages 248–255. Ieee, 2009.

[9] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fer-

gus. Exploiting linear structure within convolutional net-

works for efficient evaluation. In Advances in neural infor-

mation processing systems, pages 1269–1277, 2014.

[10] J. Frankle and M. Carbin. The lottery ticket hypothesis:

Finding sparse, trainable neural networks. arXiv preprint

arXiv:1803.03635, 2018.

[11] D. Han, J. Kim, and J. Kim. Deep pyramidal residual net-

works. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 5927–5935, 2017.

[12] S. Han, H. Mao, and W. J. Dally. Deep compres-

sion: Compressing deep neural networks with pruning,

trained quantization and huffman coding. arXiv preprint

arXiv:1510.00149, 2015.

[13] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights

and connections for efficient neural network. In Advances

in neural information processing systems, pages 1135–1143,

2015.

[14] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hy-

percolumns for object segmentation and fine-grained local-

ization. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 447–456, 2015.

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

770–778, 2016.

[16] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge

in a neural network. arXiv preprint arXiv:1503.02531, 2015.

[17] M. Horowitz. 1.1 computing’s energy problem (and what we

can do about it). In 2014 IEEE International Solid-State Cir-

cuits Conference Digest of Technical Papers (ISSCC), pages

10–14. IEEE, 2014.

[18] Q. Hou, M.-M. Cheng, X. Hu, A. Borji, Z. Tu, and P. H. Torr.

Deeply supervised salient object detection with short con-

nections. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 3203–3212,

2017.

[19] L. Itti, C. Koch, and E. Niebur. A model of saliency-based vi-

sual attention for rapid scene analysis. IEEE Transactions on

Pattern Analysis & Machine Intelligence, (11):1254–1259,

1998.

[20] K. Kandasamy, W. Neiswanger, J. Schneider, B. Poczos, and

E. P. Xing. Neural architecture search with bayesian optimi-

sation and optimal transport. In Advances in Neural Infor-

mation Processing Systems, pages 2016–2025, 2018.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages

1097–1105, 2012.

[22] S. S. Kruthiventi, V. Gudisa, J. H. Dholakiya, and

R. Venkatesh Babu. Saliency unified: A deep architec-

ture for simultaneous eye fixation prediction and salient ob-

ject segmentation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 5781–

5790, 2016.

[23] M. Kümmerer, L. Theis, and M. Bethge. Deep gaze i: Boost-

ing saliency prediction with feature maps trained on ima-

genet. arXiv preprint arXiv:1411.1045, 2014.

[24] V. Lebedev and V. Lempitsky. Fast convnets using group-

wise brain damage. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 2554–

2564, 2016.

[25] G. Li and Y. Yu. Visual saliency based on multiscale deep

features. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 5455–5463, 2015.

[26] G. Li and Y. Yu. Deep contrast learning for salient object de-

tection. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 478–487, 2016.

[27] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P.

Graf. Pruning filters for efficient convnets. arXiv preprint

arXiv:1608.08710, 2016.

[28] Y. Li, X. Hou, C. Koch, J. M. Rehg, and A. L. Yuille. The

secrets of salient object segmentation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 280–287, 2014.

[29] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li,

L. Fei-Fei, A. Yuille, J. Huang, and K. Murphy. Progres-

sive neural architecture search. In Proceedings of the Euro-

pean Conference on Computer Vision (ECCV), pages 19–34,

2018.

[30] N. Liu and J. Han. Dhsnet: Deep hierarchical saliency net-

work for salient object detection. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 678–686, 2016.

1686

[31] N. Liu, J. Han, D. Zhang, S. Wen, and T. Liu. Predicting eye

fixations using convolutional neural networks. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 362–370, 2015.

[32] T. Liu, Z. Yuan, J. Sun, J. Wang, N. Zheng, X. Tang, and

H.-Y. Shum. Learning to detect a salient object. IEEE

Transactions on Pattern analysis and machine intelligence,

33(2):353–367, 2010.

[33] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-

Y. Fu, and A. C. Berg. Ssd: Single shot multibox detector.

In European conference on computer vision, pages 21–37.

Springer, 2016.

[34] Z. Luo, A. Mishra, A. Achkar, J. Eichel, S. Li, and P.-M.

Jodoin. Non-local deep features for salient object detection.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 6609–6617, 2017.

[35] Y.-F. Ma and H.-J. Zhang. Contrast-based image atten-

tion analysis by using fuzzy growing. In Proceedings of

the eleventh ACM international conference on Multimedia,

pages 374–381. ACM, 2003.

[36] R. Margolin, L. Zelnik-Manor, and A. Tal. How to evaluate

foreground maps? In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 248–255,

2014.

[37] G. F. Miller, P. M. Todd, and S. U. Hegde. Designing neural

networks using genetic algorithms. In ICGA, volume 89,

pages 379–384, 1989.

[38] J. L. Molin, A. F. Russell, S. Mihalas, E. Niebur, and

R. Etienne-Cummings. Proto-object based visual saliency

model with a motion-sensitive channel. In 2013 IEEE

Biomedical Circuits and Systems Conference (BioCAS),

pages 25–28. IEEE, 2013.

[39] S. Narayanan, Y. Bethi, J. Lottier, E. Niebur, R. Etienne-

Cummings, and C. Thakur. Live demonstration: Real-time

implementation of proto-object based visual saliency model.

In 2019 IEEE International Symposium on Circuits and Sys-

tems, ISCAS 2019 - Proceedings, Proceedings - IEEE Inter-

national Symposium on Circuits and Systems. Institute of

Electrical and Electronics Engineers Inc., 1 2019.

[40] H. Noh, S. Hong, and B. Han. Learning deconvolution net-

work for semantic segmentation. In The IEEE International

Conference on Computer Vision (ICCV), December 2015.

[41] A. Pahuja, A. Majumder, A. Chakraborty, and

R. Venkatesh Babu. Enhancing salient object segmen-

tation through attention. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition

Workshops, pages 27–36, 2019.

[42] G. Papandreou, L.-C. Chen, K. P. Murphy, and A. L. Yuille.

Weakly- and semi-supervised learning of a deep convolu-

tional network for semantic image segmentation. In The

IEEE International Conference on Computer Vision (ICCV),

December 2015.

[43] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-

Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-

matic differentiation in pytorch. 2017.

[44] Y. Qin, H. Lu, Y. Xu, and H. Wang. Saliency detection via

cellular automata. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 110–119,

2015.

[45] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-

net: Imagenet classification using binary convolutional neu-

ral networks. In European Conference on Computer Vision,

pages 525–542. Springer, 2016.

[46] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You

only look once: Unified, real-time object detection. In The

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), June 2016.

[47] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In

C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and

R. Garnett, editors, Advances in Neural Information Process-

ing Systems 28, pages 91–99. Curran Associates, Inc., 2015.

[48] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta,

and Y. Bengio. Fitnets: Hints for thin deep nets. arXiv

preprint arXiv:1412.6550, 2014.

[49] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C.

Chen. Mobilenetv2: Inverted residuals and linear bottle-

necks. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 4510–4520, 2018.

[50] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014.

[51] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 1–9, 2015.

[52] C. S. Thakur, J. L. Molin, T. Xiong, J. Zhang, E. Niebur,

and R. Etienne-Cummings. Neuromorphic visual saliency

implementation using stochastic computation. In 2017 IEEE

International Symposium on Circuits and Systems (ISCAS),

pages 1–4. IEEE, 2017.

[53] J. K. Tsotsos. Is complexity theory appropriate for analyz-

ing biological systems? Behavioral and Brain Sciences,

14(4):770–773, 1991.

[54] W.-C. Tu, S. He, Q. Yang, and S.-Y. Chien. Real-time salient

object detection with a minimum spanning tree. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 2334–2342, 2016.

[55] J. Wang, H. Jiang, Z. Yuan, M. Cheng, X. Hu, N. Zheng, and

S. Detection. A discriminative regional feature integration

approach. IEEE Int. J. Comput. Vis, pages 1–18, 2017.

[56] L. Wang, H. Lu, X. Ruan, and M.-H. Yang. Deep networks

for saliency detection via local estimation and global search.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 3183–3192, 2015.

[57] L. Wang, L. Wang, H. Lu, P. Zhang, and X. Ruan. Saliency

detection with recurrent fully convolutional networks. In

European conference on computer vision, pages 825–841.

Springer, 2016.

[58] T. Wang, A. Borji, L. Zhang, P. Zhang, and H. Lu. A stage-

wise refinement model for detecting salient objects in im-

ages. In Proceedings of the IEEE International Conference

on Computer Vision, pages 4019–4028, 2017.

1687

[59] S. Xie and Z. Tu. Holistically-nested edge detection. In Pro-

ceedings of the IEEE international conference on computer

vision, pages 1395–1403, 2015.

[60] Q. Yan, L. Xu, J. Shi, and J. Jia. Hierarchical saliency detec-

tion. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 1155–1162, 2013.

[61] C. Yang, L. Zhang, H. Lu, X. Ruan, and M.-H. Yang.

Saliency detection via graph-based manifold ranking. In Pro-

ceedings of the IEEE conference on computer vision and pat-

tern recognition, pages 3166–3173, 2013.

[62] Y. Zhai and M. Shah. Visual attention detection in video se-

quences using spatiotemporal cues. In Proceedings of the

14th ACM international conference on Multimedia, pages

815–824. ACM, 2006.

[63] P. Zhang, D. Wang, H. Lu, H. Wang, and X. Ruan. Amulet:

Aggregating multi-level convolutional features for salient

object detection. In Proceedings of the IEEE International

Conference on Computer Vision, pages 202–211, 2017.

[64] P. Zhang, D. Wang, H. Lu, H. Wang, and B. Yin. Learning

uncertain convolutional features for accurate saliency detec-

tion. In Proceedings of the IEEE International Conference

on Computer Vision, pages 212–221, 2017.

[65] R. Zhao, W. Ouyang, H. Li, and X. Wang. Saliency detec-

tion by multi-context deep learning. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 1265–1274, 2015.

[66] B. Zoph and Q. V. Le. Neural architecture search with rein-

forcement learning. arXiv preprint arXiv:1611.01578, 2016.

1688

