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Abstract

For every event occurring in the real world, most of-

ten a sound is associated with the corresponding visual

scene. Humans possess an inherent ability to automati-

cally map the audio content with visual scenes leading to

an effortless and enhanced understanding of the underlying

event. This triggers an interesting question: Can this nat-

ural correspondence between video and audio, which has

been diminutively explored so far, be learned by a machine

and modeled jointly to localize the sound source in a vi-

sual scene? In this paper, we propose a novel algorithm

that addresses the problem of localizing sound source in

unconstrained videos, which uses efficient fusion and atten-

tion mechanisms. Two novel blocks namely, Audio Visual

Fusion Block (AVFB) and Segment-Wise Attention Block

(SWAB) have been developed for this purpose. Quantitative

and qualitative evaluations show that it is feasible to use

the same algorithm with minor modifications to serve the

purpose of sound localization using three different types of

learning: supervised, weakly supervised and unsupervised.

A novel Audio Visual Triplet Gram Matrix Loss (AVTGML)

has been proposed as a loss function to learn the local-

ization in an unsupervised way. Our empirical evaluations

demonstrate a significant increase in performance over the

existing state-of-the-art methods, serving as a testimony to

the superiority of our proposed approach.

1. Introduction

Visual events are most often correlated with sound lead-

ing to better audio and visual comprehension of the scene.

They can be considered as two different outlooks [2] of the

same data. Hence, an integrated analysis of the two modal-

ities can provide rich spatial and temporal cues to local-

ize sound source in visual scenes. Humans are empowered

to learn this implicit mapping [2, 39], which is performed

unconsciously due to the ubiquitous availability of audio-

visual examples around them. They tend to learn strong

correlations between the two sensory streams from a very
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Figure 1. Example of sound source localization. Three tasks de-

picted for a video split into shorter non-overlapping segments: su-

pervised event localization (shown in red) which predicts event la-

bels for each video segment, weakly supervised event localization

(shown in green) which is trained by giving only one event label

for the whole video but is made to predict event labels for every

segment in the video during inference, and unsupervised sound

source localization which gives attention maps without using any

event labels. The attention maps are inaccurate in the absence of

a joint audio-visual event (i.e. not properly audible or visible or

both) in a segment, as evident from the attention map of the left-

most frame of the bottom row (unsupervised case).

early stage of life [28, 37]. Can this technique be leveraged

to jointly model an audio-visual learning for event localiza-

tion? Can this correlation be captured to make machines

learn to understand real-life events using high-level seman-

tic representations of the two modalities? Given the avail-

ability of a large number of unlabeled videos, is it possible

to obtain supervision from only the input videos without

any event labels? These questions if answered, open av-

enues to a wide range of areas like audio-visual scene un-

derstanding, audio-based saliency detection, segmentation,

surveillance, lip-reading for surveillance oriented applica-
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tions and audio-based video captioning. However, this is a

highly challenging task as audio is not as semantically close

to images/videos as like text [3]. Hence, combining audio

with vision is tougher than combining text with vision. In

addition, audio not being perfectly in sync with video, pres-

ence of ambient sound like breeze, as well as the object pro-

ducing the sound being momentarily occluded in the video,

are other important factors that complicate the task of local-

ization and scene understanding.

Although there have been several attempts on audio-

visual fusion [6, 9, 16, 20, 21] prior to the deep learning era,

the release of datasets like SoundNet [4] and Audioset [14]

fueled more interest in the domain and an unprecedented

spike in research has been witnessed ever since. Following

that, there has been some work on sound source localization

[2, 3, 11, 23, 24, 34, 39, 44, 47, 53], most of which work in

a self-supervised fashion making use of two sub-networks

to extract features from the audio and video streams sep-

arately and one module to enable fusion of these features.

Output of fusion indicates whether the audio corresponds

to that particular video or not. Attention maps are obtained

as intermediate results of the process. However, the draw-

backs that have been generally observed are: 1) some works

[3, 53] have not showcased their observations across diverse

unconstrained videos but restricted to a specific domain like

music; 2) a few works [2, 3, 39] consider only one frame

representing a full video thus not taking the temporal infor-

mation into consideration; 3) works [24, 44] that deal with

unconstrained videos have not shown sound localization in

an unsupervised setup; 4) almost all the works use simple

fusion strategies like element-wise multiplication, addition

and feature concatenation to fuse audio and visual content

which is not rich enough to find high-level associations be-

tween the two modalities.

This instilled our interest to perform sound localization

in unconstrained videos using both spatial and temporal in-

formation. The goal of this paper is to jointly model au-

dio and visual information from unconstrained videos to get

compact feature representations that can localize the object

producing the sound in a scene and thereby perform event

localization, when provided with event labels for supervi-

sion. Three types of learning: supervised, weakly super-

vised and unsupervised, have thus been systematically in-

vestigated (as shown in figure 1) for this task using the same

algorithm with minor changes, thereby exhibiting the scal-

ability and robustness of the proposed method.

We propose a novel method which uses two blocks

for processing: Audio Visual Fusion Block (AVFB) and

Segment-Wise Attention Block (SWAB). AVFB uses a hy-

brid of neural network (LSTM) [25, 26, 32, 33, 49] and

multi-modal bilinear pooling [7, 10, 22, 41, 42, 50] to fuse

the feature representations obtained after extraction using

pre-trained CNNs from the two modalities (that is, from au-

dio of single-channel and video which are broken into seg-

ments of 1 second each). SWAB uses the audio-assisted vi-

sual features coming from the fusion block (AVFB) and the

audio features, along with the global information from the

respective modalities, to localize sound source in the scene

by providing segment-wise attention. The feature represen-

tations from AVFB and SWAB are then aggregated together

and fed into fully connected layers to obtain the event la-

bels (in case of supervised and weakly supervised learn-

ing tasks). We also propose a novel loss function, AVT-

GML (Audio Visual Triplet Gram Matrix Loss) to localize

sound source without any event labels. Our key contribu-

tions are summarized as follows: i) We propose an Au-

dio Visual Fusion Block (AVFB) which effectively fuses

the features extracted from audio and video streams to pro-

vide audio-assisted visual features, where audio helps in at-

tending to specific regions in the video by providing corre-

sponding weightage to the spatial regions; ii) We propose

a Segment-Wise Attention Block (SWAB) which combines

global information of the two modalities with audio-assisted

visual features and audio features correspondingly such that

it weighs the segments in the video according to the impor-

tance of segments in the audio; iii) We propose an Audio

Visual Triplet Gram Matrix Loss (AVTGML) function to

localize sound source in an unsupervised way. The fact that

this loss takes the dynamic inter-segment relationship into

account makes it different from other triplet loss functions

used for this application [39]; iv) Our experimental results

on the AVE dataset [44] demonstrate that our method sig-

nificantly outperforms the existing state-of-the-art methods.

2. Related Work

Though there has been prolific research on audio-visual

cross-modal analysis for different applications, we focus

only on topics that are more relevant to our work of sound

source localization. We also describe how our work dif-

fers from traditional methods, recent deep learning based

sound source localization and other closely related audio-

visual representation learning techniques.

Comparison with human sensory perception The mo-

tivation of making machines learn aligned representations

of audio and video stems from the way humans integrate

multi-sensory information. The work done in [28, 37] show

how this fusion arises from a very early stage of life. An

evident example of such audio-visual integration in humans

is McGurk effect [27] which elucidates the importance of

vision in speech perception. Likewise, Sekular et al. [38]

reveals that sound can also alter visual perception. We take

inspiration from this human mechanism to develop an al-

gorithm that integrates audio and visual information to effi-

ciently localize sound for better scene perception.

Traditional audio-visual correspondence learning

Even before deep learning made its feat in the vision and
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audition domain, few works attempted to combine the two

modalities using conventional low-level features [6, 9, 16,

20, 21]. One such early work [16] relied on audio-visual

synchrony for sound source localization which modeled the

signals as a non-stationary Gaussian process. The joint dis-

tribution of audio & video signals was learnt in [9] using

a non-parametric approach by projecting data into a low-

dimensional subspace. Spatial sparsity constraints were

used to achieve audio-visual correlation in [21]. Barzelay

and Schechner [6] explored temporal coincidences (motion

cues) between the 2 modalities to accomplish cross-modal

association. Likewise, Izadinia et al. [20] used Canonical

Correlation Analysis (CCA) to capture audio-visual corre-

lation for detecting and segmenting moving objects. In con-

trast, our work doesn’t use low-level handcrafted features

(e.g. gradient of intensity values) and exploits deep learn-

ing instead, to automatically learn the fusion between audio

and video, accommodating as much variability in data as

possible without imposing any constraints, thereby ensur-

ing generalizability and robustness.

Deep learning based audio-visual correspondence

learning There has been a lot of focus in research towards

audio visual cross-modal analysis where audio and visual

information are considered supervisory to each other and

hence are used for self-supervision. Senocak et al. [39] pro-

pose an unsupervised method for sound source localization

and show that a bit of prior knowledge helps in improv-

ing the model performance. Arandjelovic and Zisserman

[2, 3] also learn a good audio-visual correspondence using

self-supervised learning. Along similar lines, audio source

separation using both audio and visual signals have been

attempted in [12, 13, 29, 48, 52, 53]. Tian et al. [44] and

Lin et al. [24] perform audio-visual event localization using

supervised and weakly supervised learning. Deep multi-

modal clustering is employed to get efficient audio-visual

correspondence in [19]. Unlike these works, our method

provides efficient fusion of audio and visual information

from unconstrained videos by also providing segment-wise

attention leading to superior performance.

Other audio visual based applications Aytar et al. [4]

propose a student-teacher network to transfer discriminative

visual information to sound modality. Owens et al. [30]

use a recurrent neural network to synthesize sound from

silent videos. Visual representations are learnt using am-

bient sound in [31]. Another prior work [8] attempts to

perform lip reading using ConvNet architecture. There has

also been a boom in research which involves combining the

three modalities: text, visual content and audio. A few such

recent works [1, 18, 36] make use of both audio and visual

features to answer users’ questions about dynamic scenes

using natural language (scene-aware dialog). Harwath et

al. [15] use unsupervised learning to analyze associations

between image scenes and spoken audio captions. Tian et
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Figure 2. The overall architecture of our proposed model to per-

form sound source localization in a visual scene using three dif-

ferent types of learning: supervised, weakly supervised and unsu-

pervised. AVFB and SWAB refer to the proposed ‘Audio Visual

Fusion Block’ (for efficiently fusing features from the two modal-

ities) and ‘Segment-Wise Attention Block’ (to provide segment-

wise attention apart from region-wise attention) respectively. In

case of unsupervised learning, the feature representations from

SWABs are used in the proposed Audio Visual Triplet Gram Ma-

trix Loss (AVTGML) function to get the attention maps.

al. [43] develop an audio-visual based video captioning net-

work in an attempt to combine text with audio and visual se-

quences. Vision, sound and text have also been used collec-

tively to achieve an aligned representation for cross-modal

retrieval and other similar tasks in [5]. Contrary to all these

methods, our work focuses solely on using visual content

and its audio counterpart to precisely localize sound source

in a visual scene.

3. Proposed Algorithm

The proposed algorithm (as shown in figure 2) for sound

source localization consists of the following sequence of

steps: 1) Extract features from vision and sound modali-

ties using CNNs; 2) Fuse the extracted features from the

two modalities using Audio Visual Fusion Block (AVFB)

to get the audio-assisted visual features that contain the at-

tention to be given to each spatial region in each segment of

the video; 3) Feed the audio-assisted visual features and au-

dio features respectively into LSTMs to model their tempo-

ral dependencies; 4) Give the outputs of the two LSTMs to

their respective Segment-Wise Attention Block (SWAB) to

ensure that attention is given not only to the spatial region in

each segment, but also to the segments of both the modali-

ties themselves; 5) Aggregate the feature representations of

both the modalities; 6) Feed the result of aggregation to a

series of fully connected layers to get segment-level labels

(supervised) or video-level labels (weakly supervised); 7) In

the case of unsupervised learning, apart from the visual and

its audio counterpart, extract the features of a negative au-
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Figure 3. Audio Visual Fusion Block (AVFB). This integrates

neural network based fusion with a bilinear model (MFB) [50] to

fuse the visual and audio features extracted from CNNs. ⊗ and ⊕

refer to element-wise multiplication and addition respectively.

dio sample (that is, an audio belonging to any other random

video) as well, get the corresponding outputs from SWAB

and feed them to the proposed Audio Visual Triplet Gram

Matrix Loss (AVTGML) function. In this way, the same ar-

chitecture is used with minor changes to accomplish all the

three types of learning tasks.

3.1. Notations

Based on [44], we consider unconstrained videos which

have audio-visual events that are both visible and audi-

ble. Let the video and audio channels be represented as

{VC,AC}. Each video of ten seconds duration, is split into

T (= 10) non-overlapping segments of length one second

each. We denote each such tuple of visual and audio seg-

ments as {Vt,At}
T
t=1. Following [44], the event label for

the video segment is denoted as yt = {yct |y
c
t ∈ {0, 1}, c =

1, ..., C,
∑C

c=1 y
c
t = 1}. Here, C denotes the total num-

ber of event categories plus one label for background. Au-

dio and visual features are extracted from these raw seg-

ments using pre-trained CNNs [17, 40], which are denoted

as {F v
t , F

a
t }

T
t=1 where F v

t ∈ R
dv×S and F a

t ∈ R
da . Here,

dv is the number of CNN feature maps, S is the vectorized

spatial dimension of each feature map and da refers to the

dimension of audio features. Similar to [44], the rest of our

architecture is built on top of these local features.

3.2. Audio Visual Fusion Block (AVFB)

Once the features are extracted from pre-trained CNNs

[17, 40], they are fed to the AVFB (shown in figure 3). One

time-step is shown in case of LSTM based fusion while the

MFB module is shared for all time steps in figure 3. This

block combines two fusion strategies to effectively fuse the

audio and visual features as follows:

LSTM based fusion: The audio and visual features are

initially taken to a common embedding space so that they

can be concatenated and then fed to an LSTM for fusion.

To achieve this, we utilise global average pooling so that

the visual feature obtained from a pre-trained CNN, F v
t ∈

R
dv×S , is converted to a feature representation lvt ∈ R

de ,

and similarly the audio features F a
t ∈ R

da are passed

through dense layers to convert them to feature lat ∈ R
de ,

where de is the dimension of the common embedding space.

For every segment, features lvt and lat are concatenated se-

quentially as ([lv1 + la1 , l
a
1 ], [l

v
2 + la2 , l

a
2 ], ..., [l

v
T
+ la

T
, la

T
]), so

that the visual content obtains the necessary time-stamped

information from its audio counterpart for efficient fusion.

Given an input [lvt + lat , l
a
t ], the update of hidden and cell

states produced by LSTM is represented as:

h
′

t, c
′

t = LSTM([lvt + lat , l
a
t ], h

′

t−1, c
′

t−1) (1)

We shall interchangeably use h
′

t and LF v
t , which represents

the output of LSTM-based fusion between audio & visual

features. This fusion is along the lines of [25, 26, 32, 33,

49] who also employ LSTM based fusion, but for visual

question answering.

Adapting Multi-modal Factorized Bilinear Pooling

(MFB) for audio-visual fusion: A standard bilinear model

can be represented as:

yi = x
T
1 Wix2 i = 1, ..., p (2)

where, x1 ∈ R
dx1 and x2 ∈ R

dx2 are feature vectors

from two different modalities to be fused, while W =
[W1, ...,Wp] ∈ R

dx1
×dx2

×p is the projection matrix that

is learnt to get a p-dimensional output y. Due to colossal

amount of parameters and high computational cost in this

model, Yu et al. [50] proposed Multi-modal Factorized Bi-

linear Pooling (MFB), where W is factorized into two low-

rank matrices. Absorbing this idea from [50] and adapting

it to our case of audio-visual fusion, we get:

z̃t = SumPooling(UTF v
t ◦ V TF a

t , q) (3)

z
′

t = sign(z̃t)|z̃t|
0.5; zt = z

′

t/||z
′

t|| (4)

where, U ∈ R
dv×(qp) and V ∈ R

da×(qp) are two low-rank

matrices obtained from W which are learnt, q represents la-

tent dimensionality and ◦ refers to Hadamard product. The

output of MFB module (zt) is used to estimate the attention

weight vector λt providing attention over the spatial regions

based on the weightage provided by its audio counterpart,

as:

λt = Softmax(Wzzt + bz) t = 1, ..., T (5)

where, Wz and bz are learnable parameters. The audio

aware visual vector for each time step t is computed as:

MF v
t = MFB(F v

t , F
a
t ) =

S
∑

i=1

λi
tF

vi

t (6)

This fusion based attention gives the relevance of each spa-

tial grid (in each frame) to the audio, leading to a better un-

derstanding of the event. Finally, by combining the outputs
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Figure 4. Segment-Wise Attention Block (SWAB). This helps to

learn the degree of attention required in each segment in addition

to the spatial attention provided by AVFB. The module takes as

input, feature encodings from LSTMs (see figure 2) and generates

segment-wise attention as output for aggregation and fusion.

of the above two fusion methods, the audio-assisted visual

features are obtained as:

IF v
t = LF v

t +MF v
t (7)

Hence, the advantages of both LSTM and bilinear model

based fusion have been exploited by our proposed frame-

work.

3.3. Modeling temporal dependencies

Since audio and video are both sequential in nature, their

temporal dependencies are better encoded using two sepa-

rate LSTMs, given an input Xt (as either IF v
t or F a

t ), as:

hm
t , cmt = LSTM(Xt, h

m
t−1, c

m
t−1) (8)

where, m can be a (audio) or v (audio-assisted visual) de-

pending on what Xt is.

3.4. SegmentWise Attention Block (SWAB)

Apart from spatial attention provided by AVFB, it is

also important to give weightage to each segment of au-

dio and visual content, because not all segments provide

equal amount of information about an event. Certain time

steps reveal more information about an event than other

time steps. The sound at a particular segment might give

stronger clues about an event compared to other segments

and likewise for its visual counterpart. Hence, giving equal

attention to all segments would seem unreasonable. In order

to provide segment-level attention (shown in figure 4), an

overall knowledge of all segments is required beforehand.

Pooling is used to get this global information. As quoted

in [45], although mean pooling succeeds in giving an overall

intuition of what the content is about, it tends to leave out

fine discriminative details. Hence a combination of mean

and max pooling ensures in capturing the overall content

without missing any major detail. The empirical evidence

of the superior performance of this combination is discussed

later. Let the outputs of mean and max pooling layers be de-

noted as Rm
ave and Rm

max respectively. The process of pro-

viding segment-wise attention can be mathematically for-

mulated as follows:

gmave = relu(Wm
g Rm

ave + bmg )

gmmax = relu(Wm
g Rm

max + bmg )

ḡmt = relu(Wm
ḡ hm

t + bmḡ )

g̃m = gmave + gmmax;P
m
t = ḡmt ⊗ g̃m

(9)

where, ⊗ refers to element-wise multiplication. The

segment-attention weights are then computed as:

αm
t = Softmax(Wm

α Pm
t + bmα ) (10)

Finally, scaling the features in each segment hm
t by the cor-

responding attention weights αm
t , provides the features with

varied segment-wise importance in a video, as:

smt = αm
t ⊗ hm

t (11)

3.5. Aggregation

We have two feature representations in each modality:

region-wise and segment-wise attended features. A simi-

larity measure, motivated from [51], is calculated between

these two types of feature representations as:

simt = (ha
t − hv

t ) ◦ (s
a
t − svt )

= (ha
t ◦ s

a
t − hv

t ◦ s
a
t ) + (hv

t ◦ s
v
t − ha

t ◦ s
v
t )

= (c11F
a
t ◦ c12F

a
t − c22F

v
t ◦ c12F

a
t )

+ (c22F
v
t ◦ c21F

v
t − c11F

a
t ◦ c21F

v
t )

(12)

where, c11, c12, c21 and c22 are the coefficients that mod-

ify the initial features extracted from pre-trained CNNs

(F v
t , F

a
t ) to the region-wise (hv

t , h
a
t ) and segment-wise

(svt , s
a
t ) attended features (as in equation 12). Unlike [51]

where the coefficients come from a non-parametric corre-

lation function, they are learnt by the network implicitly in

our case. This similarity measure simt is concatenated with

hv
t , h

a
t , s

v
t and sat to get the final aggregated features.

3.6. Supervised and Weakly Supervised event local
ization

The aggregated features are fed to a shared fully con-

nected layer with softmax function to predict the proba-

bility distribution over C event categories for each input
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audio-visual segment in the supervised event localization

task. Multi-class cross entropy loss is used to train the net-

work. In case of weakly supervised event localization task,

it is formulated as a MIL (Multiple Instance Learning) prob-

lem [46]. Similar to [44], the predictions for each segment

are aggregated to get a video-level prediction using MIL

pooling, which averages over all predictions to get a single

prediction for one video. During testing, event category is

predicted for each segment.

3.7. Unsupervised Sound Source Localization

Event labels are not required if we want to know only the

location of sound source, in a visual scene. So the goal here

is to localize sound with only the video as input. This is

the first work on performing sound localization using unsu-

pervised learning on AVE dataset [44]. In order to localize

sound without giving any event label, an additional negative

audio sample is given to the network. That is, apart from

the video and its corresponding audio (positive sample), an

audio sample from a random video is considered as the neg-

ative sample. Our model is made to learn the sound local-

ization by minimizing the distance between visual content

and the positive audio sample and maximizing the distance

between the visual content and the negative audio sample

based on Triplet Loss.

The feature representations for visual (svt ), positive audio

(sa+t ) and negative audio (sa−t ) samples from the Segment-

Wise Attention Block (SWAB) are used to compute the

cost. Let {svt }
T
t=1, {s

a+
t }Tt=1 and {sa−t }Tt=1 be denoted

as Z = [sv1, ..., s
v
T
]T , Y+ = [sa+1 , ..., sa+

T
]T and Y

− =
[sa−1 , ..., sa−

T
]T respectively. In order to capture the inter-

segment dynamic interactions across the two modalities,

their corresponding Gram matrices are computed as:

G(Z) =











< sv1, s
v
1 > < sv1, s

v
2 > . . . < sv1, s

v
T
>

< sv2, s
v
1 > < sv2, s

v
2 > . . . < sv2, s

v
T
>

...
...

. . .
...

< sv
T
, sv1 > < sv

T
, sv2 > . . . < sv

T
, sv

T
>











(13)

where, < svi , s
v
j > refers to the inner product. The T ×

T Gram matrix G(Z) captures the dynamic inter-segment

interactions efficiently. G(Z) is further normalized using

the Frobenius normalization as:

G(Z) = G(Z)/||G(Z)||F = ZZ
T /||ZZT ||F (14)

G(Y+) and G(Y−) are calculated similarly. The two dis-

tance terms required to calculate the Triplet Loss are:

dpos = < G(Z),G(Y+) >F ; d
neg = < G(Z),G(Y−) >F

(15)

where, < G(Z),G(M) >F =
∑T

i,j=1 G(Z)ijG(M)ij refers

to Frobenius inner product (M can be Y
+ or Y

−). This

gives cosine similarity between the two Gram matrices. The

aim is to maximize similarity between visual content and

its audio counterpart and minimize the similarity between

visual content and the negative audio sample. This is done

using the proposed Audio Visual Triplet Gram Matrix Loss

(AVTGML) function, as:

Lunsup =
1

N

N
∑

i=1

max(dnegi − dposi + γ, 0) (16)

where, γ is the margin which is empirically chosen as 0.7

and N is the number of training samples.

4. Experiments and Results

4.1. Dataset used

The Audio-Visual Event dataset from [44] is used to eval-

uate our proposed method. This dataset which is a subset

of Audioset [14] contains 4143 videos each of length 10

seconds, across 28 different categories. However, the du-

ration of the events in these videos span from a minimum

of 2 seconds to a maximum of 10 seconds. The dataset en-

compasses a wide and diverse range of event categories like

human speeches, animal sounds, musical performances, ve-

hicle sounds, etc. Labels are available video-wise as well

as segment-wise with clearly demarcated temporal bound-

aries. Each category contains 60 to 188 video shots.

4.2. Implementation Details

The audio and visual features from raw audio and visual

segments are extracted using pre-trained CNNs as in [44].

The visual features are extracted using VGG-19 [40] pre-

trained on ImageNet [35] for every one second segment in

the video while the audio features are extracted using [17]

which bears a close resemblance to VGG architecture. The

VGG architectures are used to ensure a fair comparison with

the existing state-of-the-art methods.

Method Sup. Acc. W-Sup. Acc.

Audio 60.6 57.9

Visual 56.7 54.3

Audio-assisted Visual 59.9 56.5

Audio + Visual 73.1 65.8

AVE [44] 72.7 66.7

AVSDN [24] 72.8 66.5

Ours (Aud + Aud-ass. Vis) 74.8 68.9

Table 1. Performance comparison (in %) of various methods em-

ployed for supervised and weakly supervised event localization

tasks. For a fair comparison, we use our implementation version

of AVSDN [24], which uses VGG-19 to extract visual features.
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Figure 5. Bar chart depicting accuracies of a few selected event categories, as obtained using 3 variants of our proposed model (supervised)

that use: only audio (A), only visual (V), audio-assisted visual plus audio features respectively.

4.3. Performance Analysis

The performance of our proposed method is evaluated

against various other models (as shown in table 1) for both

supervised and weakly supervised tasks. The final aggre-

gation of audio and visual features is effective in spatial lo-

calization of sound in video. Aggregating audio-assisted

visual features with audio features gives the best accuracy

in our model (last row of table 1). Our proposed model

is also evaluated against other existing works [24, 44] and

our model beats them by a significant margin. Also, it can

be observed that using only audio features outperforms the

case of using only visual features. Since audio-assisted vi-

sual features contain some amount of audio information,

they are more accurate than using plain visual features.

4.4. Ablation Studies

Different Fusion Techniques Interactions between the

two modalities determine the performance of event localiza-

tion (as is evident from table 1). While simple element-wise

operations can also be used for fusion, it was empirically

observed that they fail to absorb high-level associations be-

tween the two modalities. This is shown in table 2 which an-

Fusion strategy Accuracy (in %)

Element-wise multiplication 67.7

Element-wise addition 69.3

Concatenation + FC 68.8

LSTM 71.1

MFB [50] 73.2

AVFB (LSTM + MFB)∗ 74.8

Table 2. Different Fusion Strategies. Accuracies of models em-

ploying different audio-visual fusion techniques (in supervised

learning setup) are compared against our AVFB. Rest of the model

(SWAB and aggregation) is kept intact. Concatenation + FC refers

to fusing by concatenating features followed by passing it to a fully

connected layer. ∗ - identical to the last row of table 1.

alyzes the performance of different fusion strategies. Also,

the best performance is achieved using our AVFB model

compared to that obtained using LSTM-based fusion and

MFB [50] separately. This shows that a combination of neu-

ral network based fusion and bilinear pooling based fusion

outperforms other fusion techniques.

Analyzing accuracies of individual event categories

Figure 5 shows the accuracies for a few event categories

(the rest shown in Supplementary) in groups of three bar

plots, as obtained by our proposed model, that uses only

audio, only visual and audio-assisted visual features with

audio features respectively. The fusion gives an obvious im-

provement in accuracy in most cases compared to that using

only the features from the two modalities without fusion.

Importance of each module in the architecture: Ta-

ble 3 shows the significance of the three modules: AVFB,

SWAB and Aggregation in our architecture. Using mean

and max pooling together in SWAB gives a minor improve-

ment in performance than using them separately (as shown

in table 3). The final step of aggregation of the two feature

representations obtained from the two modalities also leads

to substantial improvement in performance. On the whole,

all three modules play a vital role in capturing high-level

associations between the two modalities resulting in getting

compact feature representations for sound localization task.

Model Accuracy (in %)

AVFB 73.4

AVFB + SWAB (only mean) 74.0

AVFB + SWAB (only max) 73.7

AVFB + SWAB (mean + max) 74.4

AVFB + SWAB + Aggregation 74.8

Table 3. Ablation Study. The importance of each of the three

modules: AVFB, SWAB and Aggregation is demonstrated (in su-

pervised learning case). A combination of all the three modules

gives the best accuracy.
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Figure 6. Attention Maps in a video obtained from supervised, weakly supervised and unsupervised models, for each of the 10 segments.

The arrow on top of the figure indicates the presence of event (ground truth) in the video, where the sound is audible as well as the object

producing the sound is visible. Since the first two segments do not exhibit the event, attention maps randomly map to the background.

4.5. Qualitative Results

Figures 6, 7 and 8 show some qualitative results of our

model. Additional visual results are shown in the Supple-

mentary section. The attention maps obtained using su-

pervised, weakly supervised and unsupervised models are

shown in figure 6. It can be seen that the attention maps

Figure 7. Attention maps obtained using unsupervised learning

across various event categories. Input frames along with the learnt

attention maps are shown.

Figure 8. Input frames along with the attention maps for two dif-

ferent events showing that the attention is learnt based on the audio

and visual features and not based on the salient objects present.

obtained using unsupervised learning are almost as precise

compared to supervised and weakly supervised tasks, even

without the use of event labels. Figure 7 shows the attention

maps obtained by unsupervised sound localization for var-

ious event categories. It can be seen that the model works

well across a diverse set of events. Figure 8 leads to an

important observation that the attention gets mapped based

on the audio given and not just based on the salient objects

present in the scene thus indicating the importance of audio-

visual fusion and aggregation. This gives an affirmation that

the model relies majorly on audio for decision making.

5. Discussion and Conclusion

This paper proposes a method with two novel blocks:
Audio Visual Fusion Block (AVFB) and Segment-Wise At-
tention Block (SWAB) to tackle sound source localization
using supervised and weakly supervised learning. We also
propose a novel Audio Visual Triplet Gram Matrix Loss
(AVTGML) function to localize sound source using unsu-
pervised learning. We demonstrate empirically that jointly
modeling audio and visual content captures high-level se-
mantic information leading to better performance. We show
the importance of our proposed Audio Visual Fusion Block
(AVFB), Segment-Wise Attention Block (SWAB) and the
aggregation block, through extensive experiments. We have
also demonstrated that the sound source localization per-
formed using unsupervised learning yields attention maps
similar to that of the supervised setup. This can be attributed
to the proposed Audio Visual Triplet Gram Matrix Loss
(AVTGML) function which succeeds in capturing inter-
segment dynamic relationships in videos. The proposed
model allows the flexibility and scope of perceiving visual
scenes using sound localization by a machine. This area of
research further paves way to a wide range of applications
like audio-visual scene understanding and cross-modal lo-
calization.
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