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Abstract

The growth of Social Networks has fueled the habit of

people logging their day-to-day activities, and long First-

Person Videos (FPVs) are one of the main tools in this new

habit. Semantic-aware fast-forward methods are able to de-

crease the watch time and select meaningful moments, which

is key to increase the chances of these videos being watched.

However, these methods can not handle semantics in terms of

personalization. In this paper, we present a new approach to

automatically creating personalized fast-forward videos for

FPVs. Our approach explores the availability of text-centric

data from the user’s social networks such as status updates

to infer her/his topics of interest and assigns scores to the

input frames according to her/his preferences. Extensive ex-

periments are conducted on three different datasets with sim-

ulated and real-world users as input. Our method achieved

an average F1 score of up to 12.8 percentage points higher

than the best competitors. We also present a user study to

demonstrate the effectiveness of our method.

1. Introduction

The past decade has witnessed an explosion of tools for

Internet users to share their interests and day-to-day activities

with each other. The most representative tools are social mul-

timedia services such as Twitter, Facebook, and YouTube,

where the users upload and describe relevant information

about themselves. Most recently, wearable cameras have

emerged as a promising and effective tool for people to doc-

ument their lives. The high storage capacity and long battery

life of these devices foment continuous recording, resulting

in massive streams of raw footage further uploaded to the

online social media. While it is easy to produce and store

lengthy First-Person Videos (FPVs), they are unlikely to be

revisited, even if they contain meaningful moments for the

recorders and their followers.

Although video summarization techniques can provide a

User #1
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from social network:

PEOPLE; VEHICLE
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Interests extracted 
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BUILDINGS; NATURE
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Semantic Hyperlapse
for User #1
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Figure 1. Given a first-person video and user’s social network as

inputs, our method infers the preferences of the user, calculates a

per-frame interestingness score, and selects the frames (red arrows)

to create a personalized hyperlapse emphasizing interests.

summary with meaningful moments, such approaches are

limited in presenting only fragments of the original video,

causing a temporal gap in the storyline. There is a growing

body of research on hyperlapse methods [13, 14, 26, 11, 8,

28, 40]. These methods create a continuous flow of the time-

line by selecting a subset of frames regarding the stability

of the inter-frame transitions and the final video length. As

a result, the output video contains a fewer number of jerky

scene transitions, and their frames are temporally connected.

Most recent hyperlapse approaches [27, 34, 9, 17, 33, 35]

sample the input frames according to the semantic load to em-

phasize the relevant video segments. A major obstacle faced

by these techniques is the encoding of the semantic informa-

tion. They typically use a predefined set of objects – e.g.,

faces and pedestrians [27, 34], or classes from the PASCAL-

Context dataset [17]. Despite remarkable advances in using

predefined objects of interest, this approach may not suc-

cessfully be applied to FPVs, since they are shared in social

networks where there is a wide range of users and a variety

of preferences. People conceivably have distinct preferences

in retaining some moments rather than others [37, 32].
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Social Networks have become an underlying channel for

people to interact and expose their feelings, emotions, atti-

tudes, and opinions. Despite the broad usage of images and

videos, texts are primarily used by the users to describe their

preference over specific topics. Motivated by the success

of joint vision-language models [5, 38, 31, 15, 39, 12, 3, 25,

32, 4], in this paper, we explore the text-centric data from

the users’ social networks to create personalized hyperlapse

videos. We propose to build a unique representation space

that encodes video frames and preferences of social network

users. Each dimension in the created space defines a topic

of interest represented by a set of similar concepts. A user

is represented by the frequency of her/his preferred con-

cepts, while each frame is represented by a composition of

visual and textual features of its concepts. We compute the

similarity between these representations to obtain interest-

ingness scores over the whole video and define the segments

of higher relevance. The emphasis on the relevant segments

is achieved by reducing the playback rate of such segments

in the hyperlapse video. Fig. 1 depicts an example of two

personalized hyperlapse videos for users with different top-

ics of interest using the same input video in our method. The

interestingness score curve, along with a threshold defines

the segments with higher relevance for the different users.

We demonstrate the effectiveness of our approach on

three FPV datasets using simulated and real users’ data from

Twitter. Regarding personalization, our approach presents

an F1 score of up to 12.8 percentage points higher than the

best competitors without causing visual instability in the

output video. Moreover, we conduct a user study to assess

our results on personalization and visual smoothness.

In summary, our contributions are: i) a novel approach

that personalizes a hyperlapse video emphasizing the rel-

evant segments according to the user’s topics of interest

inferred from her/his social network profile; ii) a model for

encoding the user and video frames semantics in the same

representation space, capable of leveraging raw concepts

to topics. In other words, if in written texts the user says

she/he likes birds, our model generalizes birds to nature.

Therefore, the hyperlapse video emphasizes segments where

nature-related elements (birds, plants, trees, etc.) appear.

2. Related Work

In the past years, the problem of creating summaries

from long FPVs has been extensively studied. In video

summarization, the primary goal is to select the meaningful

keyframes or video shots from an input video. Some methods

allow the user to personalize the final summary based on

her/his preferences [37, 32, 25]. However, these solutions

do not create a pleasant experience for the user to follow

the video storyline, since they output skims that are not

temporally connected.

Hyperlapse algorithms, instead, tackle the problem of

video discontinuity by prioritizing temporal continuity and

video smoothness constraints considering a budget for the

number of output frames [13, 14, 11, 8, 28, 40]. Most recent

approaches focus on adaptive frame selection. A representa-

tive method in this category is the work of Joshi et al. [11],

in which the authors proposed to adaptively select frames

subject to speed-up and smoothness restrictions, presenting

the state-of-the-art performance in video stability.

Despite the advances in fast-forwarding FPVs, traditional

hyperlapse methods accelerate the entire video disregarding

the semantic content, turning the exciting moments, usually

short clips in a lengthy video, almost imperceptible. Seman-

tic fast-forward techniques [27, 34, 42, 17, 33, 35, 18] try to

avoid losing relevant events by emphasizing the important

segments of the input video. These methods usually segment

the video according to the semantic content in frames and

apply different speed-up rates according to their relevance.

The definition of what is relevant plays a central role in

the whole process of semantic fast-forwarding. Some ap-

proaches embed the semantic information using a predefined

set of objects [27, 34, 35]. Alternatively, other approaches de-

fine semantics based on general preferences. Yao et al. [42]

used majority voting over annotations from 3 individuals to

measure the relevance of a segment. Silva et al. [33] pro-

posed the CoolNet, a Convolutional Neural Network (CNN)

model, to identify images that are similar to frames com-

posing the most enjoyable videos on the YouTube platform.

Although semantics can be personalized by adjusting the

training data to videos liked by the user, no massive data

from a single user is available to train a CNN. Most recently,

Lan et al. [18] introduced the FastForwardNet (FFNet), a re-

inforcement learning-based method that selects the most im-

portant frames without processing the entire video. Despite

their results, the performance of FFNet in unconstrained

FPVs is still unknown. Also, the video smoothness con-

straint is neglected in their learning process.

It is worth noting that the relevance of frames in FPVs

recorded in unconstrained scenarios is strongly dependent on

the watchers’ interest, which may have different preferences

over the same video [37]. Lai et al. [17] proposed a person-

alized semantics technique which provides a list of objects

and asks the users to select their preferences. The drawbacks

include requiring the user interaction and the limited number

of objects, which are the 60 classes from the Pascal-Context

Dataset [23]. Moreover, the method is not designed to work

with regular FPVs, but with 360◦ videos.

In this paper, we present an approach that correlates the

text from the user’s social network and frames of the input

video to infer the topics of the user’s interest and the relevant

content to that specific user. Our ultimate goal is to create a

fast-forward video emphasizing the segments that are rele-

vant to a specific user, regarding the hyperlapse restrictions

of length and visual smoothness.
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Figure 2. Main steps to compute the Interestingness Score (Iuf ). We extract concepts from positive posts to compose bins (topics of interest)

in the user representation xu (left). For each input frame, we create a vector xf in which the bins are composed of the attention, confidence,

and uniqueness weights of each concept in the frames (right). The final score is the similarity between xu and xf .

3. Methodology

The goal of our approach is to infer the user’s preferences

from raw input texts in her/his social network and create

a personalized hyperlapse video. Formally, let the input

video V = {vf}
F
f=1 be a sequence of F frames. We aim

at selecting a subset V̂ ⊂ V with the most relevant frames

while preserving visual smoothness, temporal consistency,

and the speed-up rate S to achieve the desired number of

frames. Our methodology is composed of two major steps:

Frame Scoring and Hyperlapse Composition.

3.1. Frame Scoring

The first step of our methodology identifies and quantifies

the amount of semantics in frames according to the users’

preferences. As stated by Sharghi et al. [32], concepts can

better express the semantic information in terms of what we

see in a video. Also, the ability to relate concepts to frag-

ments of videos helps to create meaningful summaries [25].

Therefore, we use concepts to associate frames and users.

Representation Space. We build a representation space

which can be shared between the frames content and the user.

In this space, each dimension represents a topic of interest

consisting of a set of semantically similar concepts (e.g.,

guitar, violin, and cello comprising ‘string instruments’).

To create such space, we use the distributed word

representation framework, word2vec [22], to learn real-

valued vectors lying in a d-dimensional embedding space

where similar words in a context share a vicinity. Let

W = {wi ∈ R
d|i = 1, . . . , N} be the set of such vectors

(also known as word embeddings), where N is the number

of vectors. We cluster all wi embeddings into K clusters

using the k-means algorithm and label each embedding by

computing l(wi) = argmink‖qk −wi‖2, where qk ∈ R
d

is the centroid of the k-th cluster. Because similar concepts

are closer in the embedding space, we assume that each clus-

ter defines a topic of interest. Therefore, concepts extracted

from the frame’s content or user texts can be used to com-

pose a vector x = [x1, x2, · · · , xK ]⊺ ∈ R
K lying in a new

K-dimensional representation space, with each dimension

xk representing a topic of interest. We use human-annotated

region descriptions of the Visual Genome (VG) dataset [16]

as a corpus for training the word2vec since it benefits op-

timizing the proximity of visually similar concepts in the

embedding space. To include words from the social network

vocabulary, we initialize the word2vec with the parameters of

a pre-trained model generated from a corpus of 198 million

of tweets (posts on Twitter) and 6.7 billion of words from

general data (Wikipedia, Google News, etc.) [20].

We refer to x as a Bag of Topics (BoT) representation

due to similarities with the Bag of Features technique [7].

Note that this approach is different from the one described by

Passalis et al. [24] since it optimizes the distance between vi-

sual concepts straightforwardly, preserving the unsupervised

characteristic of the whole process.

User Interests. In social networks, users commonly share

their everyday activity through posts and comments, which

are undoubtedly high-level cues of preferences and opinions

to a specific topic, and Twitter is one of the most popular

platforms for this habit. Due to the noisy and complex nature

of tweets, obtaining topics of interest is a challenging task

[21, 1]. Motivated by these aspects, we use the Twitter API

to gather user tweets and extract the concepts. Neverthe-

less, it is worth noting that our approach can be expanded

to posts on Facebook, comments on YouTube videos or cap-

tions of Instagram pictures. An essential step to inferring

the user’s preferred concepts is to filter the collected posts

and use only the positive ones. We extract the nouns from

these posts to represent the user’s preferred concepts. Let

Du = {cj |j = 1 . . . C} be a document composed of C con-

cepts and φ : D → W be the function that maps a concept

c to a word embedding vector w ∈ W . Therefore, given

Dk
u = {c ∈ Du|l(φ(c)) = k}, we can represent Du as the

user BoT representation xu ∈ R
K , where xk = |Dk

u|. Fig. 2-

left shows the steps to compose xu.
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Figure 3. Personalized hyperlapse composition. We first calculate

a per-frame interestingness score, then we segment the video into

relevant and non-relevant segments, and calculate speed-ups for

each type of segment, such that lower speed-ups are assigned to

more relevant segments. The sampling process minimizes the costs

for semantics, instability, motion, and appearance.

Frame Topics. To represent a frame vf , we extract a set

Rf with R regions of interest and their respective coordi-

nates, scores, and dense per-region natural language descrip-

tions (a set of sentences Df = {s1, s2, s3, · · · , sR}) using

the DenseCap algorithm [10]. Then, we combine features

related to visual and textual cues to assign weights to each

region r ∈ Rf . We compute the following weights:

(i) Attention. To weight the viewer attention to the re-

gion r, we applied the algorithm of Wang et al. [41], which

uses temporal and motion information to detect salient ob-

jects in videos. Their method produces a probability map

P ∈ [0, 1]X×Y from vf , where X and Y are the width and

height of the frame, respectively. Let p(x, y) be the intensity

of a pixel in P located at x and y coordinates, and Mr be

the number of pixels in the region r. The attention weight is

computed as:

ωa
f (r) =

1

Mr

∑

x,y∈r

p(x, y). (1)

(ii) Confidence. The confidence weight, ωc
f (r), is the score

assigned to r by DenseCap. Higher confidence correspond

to more accurate regions, leading to better visualization of

the contents within.

(iii) Uniqueness. This weight reflects the importance of the

concepts in r for the whole video story. We handle the video

as a collection of documents D = {Df}
F
f=1 and calculate

the log-normalized Term Frequency-Inverse Document Fre-

quency (TF-IDF) of each term in the sentence sr ∈ Df that

describes the region r. Thus, the weight is computed as:

ωu
f (r, k) =

∑

c∈Cr

T (c,Df )[l(φ(c)) = k], (2)

where Cr is a document composed of the concepts in the

sentence sr, [·] is an indicator function that returns 1 if the

proposition is satisfied and 0, otherwise, and

T (c,Df ) = (1 + log(|{c ∈ Df}|)) · log

(

∑F
f=1 |Df |

|{c ∈ Df}|

)

.

(3)

The uniqueness score benefits visual concepts that are dis-

tinct in the video; therefore, these concepts might attract the

viewer interest. Note that, although the inverse document

frequency by itself can be used to compute the uniqueness,

combining it with the term frequency helps to avoid false

positives receiving high scores.

The final weight for the topic xk in xf ∈ R
K is obtained

as:

xk =
∑

r∈Rf

ωa
f (r) · ω

c
f (r) · ω

u
f (r, k). (4)

We denote xf as the BoT representation of the frame vf .

Fig. 2-right shows the process to compose the vector xf .

Interestingness Score. After computing the new semantic

representation for both the video frames and user, we can

estimate the interest of the user for any given image using a

vector similarity metric. In our approach, we use the cosine

similarity between xu and xf :

Iuf =
x
⊺

uxf

‖xu‖2‖xf‖2
. (5)

3.2. Hyperlapse Composition

The frame selection step in our the personalized hyper-

lapse is presented in Fig. 3. We compute a per-frame interest-

ingness score to create a profile curve for the input video V
given the texts from user u. Then, we partition V into T seg-

ments Ft = {vt,1, vt,2, · · · , vt,Mt
}, with t = 1, · · · , T and

Mt = |Ft| [34]. A semantic threshold is defined to classify

each Ft as relevant or not. Segments with higher interest-

ingness scores are classified as relevant, while the others are

classified as non-relevant.

In the following, we calculate different speed-up rates for

each type of segment such that the relevant segments receive

a lower speed-up rate, Ss, to maximize the exhibition of

relevant concepts. Consequently, the speed-up rate of non-

relevant segments, Sns, must be higher to keep the overall

speed-up S unchanged. Let Ls be the overall length of the

relevant segments and Lns the overall length of the non-

relevant segments, i.e., |V | = Ls + Lns. We estimate the

final speed-up rates S∗
s and S∗

ns by optimizing:

argmin
Ss,Sns

∣

∣

∣

∣

∣

|V |

S
−

(

Ls

Ss

+
Lns

Sns

)
∣

∣

∣

∣

∣

+λ1|Sns−Ss|+λ2|Ss|. (6)

The terms λ1|Sns − Ss| and λ2|Ss| ensure Ss to be as mini-

mum as possible, limited by difference of speed-ups.
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Because the difference between S∗
s and S∗

ns may produce

abrupt speed-up rate changes, we perform a speed-up rate re-

finement process [33]. We concatenate the relevant segments

using them as a new input video. Then, we iterate over the

partitioning and speed-up estimation steps using a new target

speed-up S = S∗
s . This process repeats while the new seman-

tic threshold increases by a factor of γ = 0.2. In addition

to decreasing the abrupt speed-up changes, this refinement

process assigns even lower speed-up rates to segments of

higher interest, producing greater emphasis on them.

A primary concern is to satisfy the hyperlapse require-

ments, i.e., guarantee continuity in the storyline, smooth-

ness in the frames transitions and desired speed-up rate

accuracy. Therefore, we model the transitions for any

given pair of frames (vg, vh) with the following inter-frame

costs: (i) the relevance drop cost, which is computed as

Ws(vg, vh) = 1/(Iug+Iuh+ǫ), where ǫ prevents the division

by 0 when both frames are completely irrelevant for the

user; (ii) the instability cost, Wi(vg, vh), which indicates the

average distance of the focus of expansion to the center of

the frame [30]; (iii) the speed of motion cost, Wm(vg, vh),
which is computed as the difference of the average magni-

tude of the optical flow vectors between the pair (vg, vh) and

the overall average magnitude of the optical flow vectors

for every pair of frames temporally distant by a factor of

S∗
t (the speed-up estimated for the t-th segment) and; (iv)

the appearance cost, Wa(vg, vh), which measures the dis-

similarity between vg and vh. We use the Earth Mover’s

Distance between their color histograms. Halperin et al. [8]

present a more detailed description of how to compute the

last three costs. The lower are these costs, the better is the

transition between vg and vh. The overall transition cost is

the weighted sum of individual cost terms:

E(vg, vh) = λsWs(vg, vh) + λiWi(vg, vh)

+λmWm(vg, vh) + λaWa(vg, vh).
(7)

For each segment Ft we obtain the selected frames F̂t by

solving the following minimization problem:

argmin
F̂t⊂Ft

|F̂t|−1
∑

n=1

E(v̂t,n, v̂t,n+1), (8)

where v̂t,n is the n-th selected frame in the t-th segment.

To solve Eq. 8, we build a graph for each segment where

the nodes represent the frames and edges represent the inter-

frame transitions. The weight for the edge connecting a pair

of frames (vg , vh) is given by Eq. 7. Edges are connected up

to a temporal distance of τ = 100 frames. The nodes com-

posing the shortest path are the selected frames of the seg-

ment. We apply a multiplication factor of ⌈δ(v̂t,n,v̂t,n+1)/S∗

t ⌉
to each edge to discourage frame skips larger than S∗

t , with

δ(vg, vh) being the temporal distance, in number of frames,

between vg and vh [27].

Finally, we concatenate all the selected frames in each

segment (Fig. 3-bottom) to compose the personalized hyper-

lapse video V̂ . We perform a 2D stabilization to eliminate

the remaining jitter in the final video. To this end, we use

the fast-forward egocentric video-aware stabilizer proposed

by Silva et al. [34].

4. Experiments

To evaluate our method, we conducted several experi-

ments using real and simulated users with interests in specific

and diverse topics over input videos from different datasets.

4.1. Experimental Setup

Datasets. We used three datasets in our experiments: the

UT Egocentric (UTE) Dataset [19]; the Semantic Data-

set [34]; and EgoSequences, which is composed of videos

used to evaluate previous hyperlapse methodologies [27, 8].

The UTE Dataset consists of 4 first-person videos with 3-

5 hours of daily egocentric activities each. Sharghi et al. [32]

provide human-annotated concepts for this dataset. A binary

semantic vector indicates the presence of concepts in each

shot of 5 seconds. The Semantic Dataset is composed of

11 first-person videos presenting three different activities:

biking, driving, and walking. EgoSequences is composed of

9 first-person videos depicting indoor and outdoor activities.

Methods for comparison. We compared our method

against three fast-forwarding approaches: i) Uniform, which

samples one frame at every S-th frame of the input video,

where S is the required speed-up rate; ii) Microsoft Hyper-

lapse (MSH) [11], which adaptively selects frames from

the input video optimizing for a smooth camera motion, as

well as the target speed-up and; iii) Multi-Importance Fast-

Forward (MIFF) [33] that extracts the semantic information

by detecting faces and pedestrians on each frame.

For the sake of a fair comparison, we do not compare

with video summarization approaches because of the lack

of visual smoothness and speed-up constraints in these tech-

niques. Although some works do include temporal coherence

in their design, such constraint does not play a central role

in the selection of frames as in hyperlapse works.

Evaluation metrics. We evaluate the methodologies in

terms of personalization, speed-up rate accuracy, and insta-

bility of the output videos. To measure personalization, we

used the F1 score, which is the harmonic mean of precision

and recall. An output video reaches the best F1 score if all

frames from relevant segments were selected, and the whole

video is composed only of relevant frames. Regarding the

accuracy of the speed-up rate, we measure the deviation to

the required rate by calculating |S − Ŝ|, where Ŝ = |V |/|V̂ |

is the final speed-up rate and V̂ =
⋃T

t=1F̂t. We propose the
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Table 1. Average F1 scores (higher is better) and Shaking Ratio

(lower is better) for the output videos generated by all the compared

methods in the three datasets (%). Best results are in bold.

D
at

as
et

M
et

h
od

F1 Score
Shaking

RatioCAR CHAIR COMP. PEOPLE TREE

U
T

E

Unif. 09.6 11.6 10.8 12.2 10.2 31.1

MSH 10.2 10.5 08.3 12.7 11.1 27.0

MIFF 10.4 10.3 06.1 13.9 11.6 47.1

Ours 16.4 10.1 23.6 15.1 18.1 37.2

S
em

a
n

ti
c

D
a

ta
se

t Unif. 12.9 07.3 06.9 12.2 15.2 11.0

MSH 12.5 07.0 05.9 12.7 15.7 04.4

MIFF 13.1 09.1 07.4 13.9 13.6 08.9

Ours 15.2 08.8 07.5 15.1 18.5 10.1

E
g

o
-

S
eq

u
en

ce
s Unif. 12.8 03.7 02.2 15.4 17.9 12.0

MSH 11.9 03.2 02.4 14.7 16.4 04.7

MIFF 12.6 03.9 01.3 17.2 15.4 08.2

Ours 14.8 04.7 04.4 16.4 18.9 08.2

Shaking Ratio metric to measure instability. We calculate

it as the average motion of the central point between the

frames transitions throughout the video, which is given by:

1

|V̂ | − 1

|V̂ |−1
∑

n=1

H(v̂n, v̂n+1)

d(vn)
, (9)

where v̂n is the n-th frame in the output video, H computes

the transition of the central point of v̂n when applying the

estimated homography between v̂n and v̂n+1, and d(·) is the

half of the frame diagonal. The lower is this value, the better

it is. Whenever the homography cannot be estimated, we

assign the value of the highest computed motion as a penalty.

Evaluation model for simulated users. Aside from real

Twitter users, we also evaluated our approach using simu-

lated users. They were used for a more detailed performance

assessment since we can control all aspects of their profiles.

We created five virtual Twitter users with interest in top-

ics that are common in social networks and can be easily

found in videos: Vehicles, Furniture, Technology, Human

Interaction, and Nature. To represent each topic, we selected

concepts based on the intersection of the SentiBank [2] and

the PASCAL-Context dataset: CAR, CHAIR, COMPUTER,

PEOPLE, and TREE. Using the Twitter API, we collected

over a week for tweets containing these concepts in the hash-

tags (#) and used them to feed a character-based LSTM

network consisted of 3 recurrent layers of 512 units and

dropout rate of 0.5. For each concept, we trained a different

model to simulate tweets written by each user. To prepare

the data for training, we removed all special words, charac-

ters (i.e., @mentions, RTs, :, $, !, etc.) and, to avoid bias in

training, the hashtag terms were also removed. Finally, we

have generated texts with the trained LSTM models to be

used as input tweets to our method.

Implementation Details. For the word2vec model, we

used the parameters reported by Li et al. [20]. Thus, we

refer the reader to their work for more details. Before clus-

tering, we pruned out all words that were neither related

to the Twitter vocabulary nor the VG dataset vocabulary

since they rarely occur. This can be achieved by overlapping

words in the VG vocabulary with Dataset7 and Dataset1 [20].

After this process, we ended up with N = 936,225 embed-

dings. We tried several values for K (from 21 up to 215).

We used K = 213 due to the insignificant reduction in the

mean squared Euclidean distance from the word embeddings

to their respective cluster centers when increasing the value

of K. We used the SentiStrength algorithm [36] to extract

the positive sentences from the input text and optimized all

λ parameters (λ1, λ2, λs, λi, λm, and λa) using Particle

Swarm Optimization [33]. The desired speedup rate was set

to S = 10 for all experiments.

4.2. Quantitative Results

We report the average F1 scores and Shaking Ratio val-

ues in Table 1. We used the texts from the simulated users

and the videos of all datasets as input. Because only UTE

contains human-annotated concepts, we used the nouns in

the extracted sentences [10] as concepts to validate the per-

sonalization in the EgoSequences and Semantic datasets. In

the evaluation of the UTE Dataset, we replaced the concept

PEOPLE with MEN since PEOPLE is not in the annotations.

Regarding the personalization, the results show that our

method outperforms all approaches in the majority of the

concepts by a considerable margin, especially in the UTE

Dataset, which contains human annotations. In our best

results, our method gets average F1 scores of 7.9 and 12.8
percentage points higher than the best competitors when

using the text with tweets about TREE and COMPUTER,

respectively. We accredit these results to our frame scoring

approach, which is capable of using the context to infer the

topics of interest for the user and assign higher scores for

the scenes that exhibit the related concepts.

Notable exceptions are the experiments using CHAIR, in

which the Uniform and MIFF approaches performed bet-

ter than ours in UTE and Semantic datasets, respectively.

However, we should note that the difference is marginal,

being 1.5 percentage points in the UTE and 0.3 in the Se-

mantic Dataset. We found that although CHAIR is present

in the annotations of the UTE, this concept is not in the

focus of attention in most frames since it is always coupled

with other concepts that generally draw more attention (e.g.,

COMPUTER and MEN). Therefore, the output video empha-

sizes concepts found in the input texts other than CHAIR.

We argue that the reason of MIFF performing better in the

Semantic Dataset is that in the walking and biking videos

people are sat in chairs or benches and, since MIFF aims

at emphasizing scenes with people, it produces a suitable
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Table 2. Average percentage of the selected concepts for question

#1 (%). Higher values are in bold.

Set CAR TREE PEOPLE FOOD None

Ours+Car 66.7 0.0 11.1 0.0 22.2

Ours+Tree 1.9 42.3 25.0 1.9 28.9

Ours+People 9.5 2.4 73.8 0.0 14.3

MIFF 8.9 6.7 64.4 0.0 20.0

MIFF+Food 0.0 0.0 3.0 87.9 9.1

Uniform 11.8 9.8 25.5 0.0 52.9

frame selection.

With concerns to the visual smoothness, the MSH pro-

duced output videos with the lowest Shaking Ratio values

with at least 3.5 percentage points better than the best com-

petitor. It is an expected result since MSH directly optimizes

the smoothness in its frame selection. We also measured the

speed-up deviation of the output videos. Our methodology

achieved the best results for all cases, with an average value

of 0.2 facing 0.9 and 1.4 for MSH and MIFF, respectively.

4.3. Evaluation by volunteers

We used the output videos from EgoSequences generated

by the semantic hyperlapse methods (MIFF and ours) to

perform a survey. The volunteers were asked to watch a

video prompted in a web page and answer: (i) select the

most emphasized content (exhibited in a lower speed-up

rate) and; (ii) evaluate the visual quality of the video. They

were not informed which method generated the video.

As a preprocessing step to better extract meaningful re-

sults from the survey, we removed all videos with a low

frequency of concepts since the emphasis applied by the

speed-up change would not be perceptible, or the video

would not change the playback speed at all. This step re-

duced the set of concepts to CAR, PEOPLE, and TREE. Also,

to validate the data collected, we added two sets of placebo

videos. For the first set, we manually selected 5 egocen-

tric videos from GTEA Gaze+ [6] and created a semantic

hyperlapse video for each one using the MIFF technique.

We embedded the semantic information using the 24 classes

from YOLO [29] most related to food (apple, fork, spoon,

etc.). The second set was composed of the output videos of

the Uniform approach in the EgoSequences. The final collec-

tion of videos presented to the evaluators was composed of

40 fast-forward videos with an average length of 45 seconds.

For the first question, we presented five mutually ex-

clusive options representing the concepts: ‘Car’, ‘People’,

‘Tree’, ‘Food’, and ‘None of the above’. In the second

question, the volunteers rate the visual quality of the video

as: ‘Very shaky’, ‘Shaky’, ‘Tolerable’, ‘Smooth’, and ‘Very

smooth’. We collected 250 answers from 112 graduate and

undergraduate students from the computer science depart-

ment. Table 2 presents the average percentage of the se-

lected concepts for each set of videos. The sets with the

Very Shaky Shaky Tolerable Smooth Very smooth

Percentage

Uniform

MIFF

Ours

M
e
th
o
d

60 40 20 0 604020

Figure 4. Likert scale plots for users’ answers. Each bar repre-

sents the answers’ distribution for the respective method. Bars are

centered by the median value of the ‘Tolerable’ answers.

pattern ‘Ours+<Concept>’ represent the output videos of

our technique when using as input the sentences generated

by the LSTM model that tweets about the <Concept>. The

set ‘MIFF’ represents the videos generated by using the ap-

proach of Silva et al. [33] with either face or pedestrian,

as reported in their paper. Below the dashed line are the

placebo sets, where the set ‘MIFF+Food’ represents the

videos from the GTEA Gaze+ dataset, and ‘Uniform’ repre-

sents the videos generated by the Uniform approach.

As expected for the sets of placebo videos, the majority

of the evaluators selected ‘Food’ for most videos in the

‘MIFF+Food’ set and ‘None of the above’ for the videos in

the ‘Uniform’ set, validating our survey. However, it should

be noted that for the ‘Uniform’ set, 25.5% of the evaluators

considered PEOPLE as being emphasized in the videos. We

argue that PEOPLE is a concept of common interest, and

the evaluators might have been more attentive when people

appear, leading them to this conclusion. In fact, PEOPLE is

the only concept that was selected at least once, regardless

of the presented set.

Most of the volunteers (73.8%) selected ‘People’ after

watching the videos generated by our technique when using

the concept PEOPLE, while 64.44% selected ‘People’ after

watching the ones generated by MIFF. This result demon-

strates that our approach was capable of selecting as many

relevant frames as MIFF when using this concept. Fur-

thermore, our algorithm achieved the correct selection in

66.7% and 42.3% of the answers for the sets ‘Ours+Car’

and ‘Ours+Tree’, respectively, corresponding to the major

part of the answers. Therefore, we can draw the following

observation: our approach could personalize semantics to

match the users’ interest and also generate better results

when compared to MIFF.

We report the results for the answers to the second ques-

tion in the Likert scale plot portrayed in Fig. 4. Each bar rep-

resents the answers’ distribution for the respective method,

centered by the median value of the ‘Tolerable’ answers.

Users considered the Uniform method as being the least

pleasant to watch. The negative answers (‘Shaky’ and ‘Very

shaky’) were 64.7% of the answers for the Uniform method.

Both our method and MIFF received a similar evaluation
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Figure 5. Mean and standard deviation of the Interestingness scores for the bike users in the video ‘Walking 3’ (a), and the car lovers for

the video ‘Bike 3’ (b), both from EgoSequences. The green boxes present one of the most relevant frames for the users, according to our

approach. Note that the extracted captions in the dashed boxes are closely related to the users’ profile.

regarding their visual quality, which was on average ‘Tolera-

ble’. Although our approach has the personalized semantics

constraint, its non-negative answers (75.2%), compared to

MIFF’s (68.9%), indicate that we do not compromise the

perceived stability.

4.4. Results with Twitter Users

In this section, we evaluate our frame scoring approach

using real users as input. We manually selected active users

on Twitter who have explicitly indicated topics of interest

in their bio (self-written short biography in their profile), in-

cluding sentences such as “love <concept>” or “<concept>
enthusiast”. For each concept, we selected 5 users and col-

lected their last 3,000 tweets, when available. Similar to

the evaluation model for simulated users, we pre-filtered

the input texts and ended up with ∼ 1,000 tweets for each

user after sentiment analysis. We selected users with the

following profiles: cyclists, car lovers/drivers, and garden-

ers. Moreover, we selected representative videos from the

datasets containing a wide range of concepts, which gives us

a valuable discussion of the components of our methodology.

Fig. 5 depicts the mean (blue line) and standard deviation

(red shaded region) of the semantic scores assigned by our

approach for the users in each video. A high mean value in

combination with a low standard deviation indicates a video

segment of simultaneous interest among the users. A sizable

shaded region indicates divergence among users.

Fig. 5-a presents the interestingness scores for the cyclists

in the video ‘Walking 3’ from EgoSequences. The picture

in the green box shows one of the frames with the highest

score (left), the saliency map (right), and the extracted con-

cepts (bottom). Note that one of the extracted concepts was

BICYCLE, which matches the users’ profiles. Although the

cyclists have diverse interests over the video, the frame of

high mutual interest presents a man riding a bike, which is a

singular moment in this video, reinforcing the importance of

using the uniqueness score. It is noteworthy that no visual

features are extracted from the users’ profiles by any compo-

nent of our methodology. The users’ interests are inferred

from raw texts in their social network posts.

Frame scoring results for the car lovers/drivers in the

video ‘Bike 3’ from the EgoSequences are presented in

Fig. 5-b. The rightmost dashed box includes the frame of

highest interest according to our approach and its respec-

tive extracted concepts. Because the users tweet positively

about CARS, their BoT present higher activations in the

vehicles cluster, which allows assigning reasonable scores

to frames that the concept CAR is not present, but their

semantic-related concepts are (e.g., VAN, TAXI, etc.). We

illustrate this case in the black dashed box on the left.

5. Discussion and future work

In this paper, we presented a novel approach capable of

creating personalized hyperlapse videos, extracting mean-

ingful moments for a watcher according to her/his activity in

social networks. Our methodology mines sentences from the

user’s social network to infer topics of interest, presenting

average F1 scores of up to 12.8 percentage points higher than

the best competitor. We also presented a user study to show

the effectiveness of our methodology w.r.t. personalization

and stabilization aspects by presenting a personalized hy-

perlapse regarding a specific topic. User-perceived topics

matched the topics used to generate the accelerated video in

most cases, about 61% on average.

Despite the promising results, our method may fail to

emphasize the relevant content in a video if semantically

related concepts lie on distinct clusters, e.g., a video segment

containing TRUCKS could be not emphasized for a user who

posts about CARS if TRUCKS and CARS are from different

clusters. Also, in applications that neither the content nov-

elty nor the visual saliency matter, a limitation arises since

objects can rely on an image patch of low visual saliency,

or the TF-IDF is low due to its recurrence. This results in a

video segment being assigned a lower score, even containing

objects that match an interesting concept for the user. In

future works, we pursue to explore different types of media

(e.g., images, videos, and sound) shared by the users in so-

cial networks. We believe a multi-modal approach might be

a promising research direction for modeling user behavior

and better refining semantics in FPVs.
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