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Abstract

We consider the problem of few-shot scene adaptive

crowd counting. Given a target camera scene, our goal

is to adapt a model to this specific scene with only a few

labeled images of that scene. The solution to this prob-

lem has potential applications in numerous real-world sce-

narios, where we ideally like to deploy a crowd counting

model specially adapted to a target camera. We accomplish

this challenge by taking inspiration from the recently intro-

duced learning-to-learn paradigm in the context of few-shot

regime. In training, our method learns the model parame-

ters in a way that facilitates the fast adaptation to the tar-

get scene. At test time, given a target scene with a small

number of labeled data, our method quickly adapts to that

scene with a few gradient updates to the learned parame-

ters. Our extensive experimental results show that the pro-

posed approach outperforms other alternatives in few-shot

scene adaptive crowd counting.

1. Introduction

Recently, the problem of crowd counting [16, 24, 28,

34, 35] is drawing increasing attention in computer vision

research. The key reason for this surge in interest is the

demand of automated complex crowd scene understand-

ing that appears in computer vision applications such as

surveillance, traffic monitoring, etc. Although the con-

temporary methods for crowd counting are promising, they

have some significant limitations. One main limitation of

existing methods is that it is hard to adapt them to a new

crowd scene. This is due to the fact that these methods typ-

ically require a large number of labeled training data which

is expensive and time-consuming to obtain. In this paper,

we focus on this issue and propose a method that learns to

adapt to a new crowd scene with very few labeled examples

of that scene.

Most current approaches [16, 24, 28, 34, 35] of crowd

counting treat it as a supervised regression problem where

a model is learned to produce a crowd density map for the

given image. In the training phase, the model learns to pre-

Figure 1. Illustration of our problem setting. (Top row) During

training, we have access to a set of N different camera scenes

where each scene comes with M labeled examples. From such

training data, we learn the model parameters θ of a mapping func-

tion fθ such that θ is generalizable across scenes in estimating

the crowd count. (Bottom row) Given a test (or target) scene,

we assume that we have a small number of K labeled images

from this scene, where K ≪ M (e.g., K ∈ {1, 5}) to learn

the scene-specific parameters θ̃. With the help of meta-learning

guided approach we quickly adapt fθ to f
θ̃

that predicts more ac-

curate crowd count than other alternative solutions.

dict the density map of an input image given its ground-truth

crowd density map as the label. The final crowd count is ob-

tained by summing over the pixels in the estimated density

map. Once the model is learned, it can be used to estimate

the crowd count in test images. The main drawback of exist-

ing approaches is that they produce a single learned model

that will be used in all unseen images. In order to make the

model generalize well, we often need to make sure that the

labeled training data is diverse enough to cover all possible

scenarios which is infeasible.

A recent work [10] argues that it is more effective to

learn and deploy a model specifically tuned to a particu-

lar scene, instead of learning a generic model that hopefully

works well in all scenes. Let us consider the video surveil-

lance scenario. Once a surveillance camera is installed, the

images captured by the camera are constrained mainly by

the camera parameters and the 3D geometry of a specific

scene. From the viewpoint of practical applications, we do
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not need the crowd counting model to perform well on arbi-

trary images. Instead, we only need the model to be tuned

to this particular scene. Of course, if we can get access to

adequate labeled training images from this camera, a simple

solution is to train a model for this scene using its training

images. However, this is unrealistic since it requires collect-

ing a large number of labeled images from the target scene

whenever a new surveillance camera is installed. Moreover,

generating adequate labeled data for a specific camera scene

can be expensive and tedious. Ideally, we would like a way

of adapting a model to work well in a new camera scene

with only a few labeled examples from that scene.

We consider the few-shot scene adaptive crowd count-

ing similar to [10]. During training, we have access to a set

of training images from different scenes (e.g., each scene

might correspond to one specific camera installed at one

particular location). During testing, we have a new target

crowd scene to which we want to adapt our model. More-

over, we consider that we have a small number (e.g., 1 or 5)

of labeled images from this target scene. During training,

we learn optimal (generalizable) model parameters from

multiple scene-specific data by considering few-labeled im-

ages per scene. During testing, we consider the learned pa-

rameters to be a good initial point to adapt to a specific new

scene. To be precise, we aim at learning the generalizable

model parameters in a fashion that it produces more accu-

rate performance when adapting to a new target scene with

few gradient descent steps provided only a few labeled im-

ages from the target scene. Figure 1 shows an illustration

of the problem in this paper. We address the proposed few-

shot crowd counting problem using meta-learning [9] that

is capable of fast adaptation to new camera scenes.

This paper makes the following contributions. First, we

propose a meta-learning inspired approach to solve the few-

shot scene adaptive crowd counting problem. Using the

meta-learning, the model parameters are learned in a way

that facilitates effective fine-tuning to a new scene with a

few labeled images. Previous work in [10] uses a fine-

tuning approach for this problem. The limitation of this

fine-tuning approach is that it can only update certain lay-

ers that are closer to the output in the decoder to a target

scene. In contrast, our approach does not have such limi-

tation and can be used to adapt any parameters in the de-

coder. Second, we perform a thorough evaluation of the

performance of our proposed approach on several bench-

mark datasets and show that the method outperforms other

alternative baselines. Our approach also outperforms the

fine-tuning approach in [10].

2. Related Work

Crowd Counting: The research in crowd counting can be

grouped into either detection [5, 7], regression [3, 11] or

density-based [15, 22] methods as proposed by [17]. Ear-

lier work focuses on the detection and regression-based ap-

proaches. In recent years, density-based approaches us-

ing deep learning models have become popular and show

superior performance. Zhang et al. [34] propose an ap-

proach with two learning objectives for density estimation

and crowd counting. Additionally, they propose a non-

parametric method to fine-tune the model to minimize the

distribution difference between the source and target scenes.

Zhang et al. [35] address crowd counting by proposing a

multi-column neural network to handle an input image at

multiple scales to overcome the problem of scale variations.

Sam et al. [24] propose to estimate the density of an image

patch from a regressor selected based on the density level

classifier. Sindagi and Patel [28] propose to encode both lo-

cal and global input image contexts to estimate the density

map. In this paper, our backbone crowd counting architec-

ture is based on [16], since it has been shown to achieve

state-of-the-art performance.

In the context of crowd counting adaptation, Loy et

al. [4] propose a non-CNN semi-supervised adaptation

method by exploiting unlabeled data in the target domain.

The drawback of this approach is that it requires corre-

sponding samples that have common labels between the

source and target domains. This information is usually not

available in recent crowd counting datasets. Wang et al. [32]

propose to generate a large synthetic dataset and perform

domain adaptation to the real-world target domain. One

drawback of this method is that it requires the prior knowl-

edge about the distribution of the target domain in order to

manually select the scenes in the synthetic dataset. Hossain

et al. [10] propose a one-shot adaptation approach based on

fine-tuning few layers in the decoder network for adapting

a crowd counting model to a specific scene.

Few-Shot Learning: The goal of few-shot learning is to

learn a model from limited training examples for a task.

Previously, Li et al. [8] propose a method for unsuper-

vised one-shot learning by casting the problem in a prob-

abilistic setting. Lake et al. [14] use compositionality

and causality for one-shot scenario through Hierarchical

Bayesian learning system. Luo et al. [18] demonstrate

the transferability of representations across domains with

few labeled data. A different perspective to tackle few-

shot learning is by treating it is as a meta-learning prob-

lem (also known as learning to learn [1, 26]). The essence

of using meta-learning for few-shot learning problem in-

volves a neural network as a learner to learn about a new

task with just a few instances. The recent work in meta-

learning can be grouped into metric-based [13, 29, 30, 31],

model-based [19, 25] or optimization-based [9, 20, 23]. The

metric-based [13, 29, 30, 31] methods in general learn a

distance function to measure the similarity between data

points belonging to the same class. Memory or model-

based [19, 25] approaches employ a memory component to
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Figure 2. An overview of the main components of our model. (a) Meta-training stage on Dmeta−train. The meta-training involves

optimizing an inner-update over each scene and an outer-update across different scenes. (b) Backbone crowd counting network. We use the

CSRNet [16] as the backbone architecture. It comprises of a feature extractor and a density map estimator. (c) Meta-testing on Dmeta−test.

We adapt the trained meta-model with θ to a new target scene by fine-tuning on K images from this scene and test on other images from

this scene.

store previously used training examples. The optimization-

based [9, 20, 23] frameworks learn good initialization pa-

rameters based on learning from multiple tasks that favour

fast adaptation on a new task. The above works primarily

target image recognition challenge, in our proposed work

we follow the optimization-based meta-learning mechanism

similar to [9] for a more challenging problem of crowd den-

sity estimation as it has shown to achieve superior perfor-

mance compared to other optimization based methods.

3. Few-shot Scene Adaptive Crowd Counting

In this section, we first describe the problem setup for

few-shot scene adaptive crowd counting (Sec. 3.1). We then

introduce our proposed approach for scene adaptive crowd

counting using meta-learning (Sec. 3.2).

3.1. Problem Setup

We describe how we formulate the scene adaptive

crowd counting as a few-shot learning problem using meta-

learning. In a traditional supervised machine learning set-

ting, we are given a dataset D = {Dtrain, Dtest}, where

Dtrain and Dtest are the training and test sets, respectively.

The goal is to learn a mapping function fθ : x → y that

maps an input x (e.g. an input image) to its correspond-

ing label y (e.g. the crowd density map). We use θ to de-

note the parameters of the mapping function fθ. We learn

θ by optimizing its corresponding loss function defined on

Dtrain. After training, we test the generalization of the

learned model fθ on Dtest.

In contrast, a few-shot meta-learning model is trained

on a set of N tasks during meta-learning (meta-training)

from Dmeta−train, where each task has its training and

test sets. We use Ti = {Dtrain
i , Dtest

i } (i = 1, 2, ..., N ),

where Ti ∈ Dmeta−train to denote the i-th task (also called

episode) during the meta-learning phase. The notations

Dtrain
i and Dtest

i correspond to the training set and the

test set of the i-th task, respectively. Note that during the

meta-learning phase, both Dtrain
i and Dtest

i consist of la-

beled examples. We consider each camera scene as a task

in the meta-learning formulation. Each of the training i-
th scene consists of M labeled images. However, in our

work, we randomly sample a small number K ∈ {1, 5} and

K ≪ M labeled images for the i-th scene in each learning

iteration to form Dtrain
i . The Dtest

i is the test set for the i-th
scene. This setup reflects the real-world problem of having

to learn from a few labeled images. Our goal of the meta-

learning is to learn the model in a way that it can adapt to a

new scene using only a few training examples from the new

scene. During testing (i.e., meta-testing) on Dmeta−test,

we are given a new target scene Tnew = {Dtrain
new , Dtest

new},

where Dtrain
new consists of a few (e.g. K) labeled images

from the target scene. The goal is to quickly adapt the
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model using Dtrain
new so that the adapted model performs

well on Dtest
new which is the test data for this target scene. In

our work, we use the meta-learning approach in [9] called

MAML. MAML learns a set of initial model parameters dur-

ing the meta-training stage. The model parameters learned

during meta-training are used for initializing the model dur-

ing meta-testing and is later fine-tuned on the few examples

from a new target task. The adapted model with fine-tuned

parameters is expected to perform well on the test images

from the target task.

3.2. Our Approach

Consider a crowd counting model fθ with the model pa-

rameters θ. Given an input image x, the output of fθ(x)
is a crowd density map representing the density level at

different spatial locations in the image. The crowd count

can be obtained by summing over entries in the generated

density map. When learning to adapt to a particular scene

Ti, the model parameters are updated using a few gradi-

ent steps to optimize the loss function defined on Dtrain
i .

This learning step can be considered as inner-update during

meta-learning and the optimization is expressed as follows:

θ̃i = θ − α∇θLTi
(fθ)

where LTi
(fθ) =

∑

(x(j),y(j))∈Dtrain
i

‖fθ(x
(j))− y(j)‖2F

(1)

where x(j) and y(j) denote a training image and its corre-

sponding ground-truth density map from the scene Ti, re-

spectively. We use || · || to denote the Frobenius norm that

measures the difference between the predicted crowd den-

sity map fθ(x
(j)) and the ground-truth density map y(j).

Here α is the learning rate in the inner-update and its value

is fixed in our implementation. We then define a loss func-

tion on Dtest
i using θ̃i as follows:

LTi
(fθ̃i) =

∑

(x(j),y(j))∈Dtest
i

‖fθ̃i(x
(j))− y(j)‖2F (2)

During the meta-learning phase, we learn the model pa-

rameters θ by optimizing LTi
(fθ̃i) across N different train-

ing scenes. This will effectively learn θ in a way that when

we update θ with a few gradient steps in a new scene, the

updated parameters θ̃ will perform well on test images from

this scene. This optimization problem (or outer-update) is

similar to the optimization described in [9] and it is ex-

pressed as:

θ = θ − β∇θ

N
∑

i=1

LTi
(fθ̃i) (3)

Fig. 2 shows an illustration of this meta-learning

inspired process. The result of the meta-learning phase

is the set of model parameters θ. Given a new scene, we

use θ to initialize the model and obtain the scene adaptive

parameters θ̃ by fine-tuning the parameters on the few

examples from the target scene with a few gradient updates.

The intuition is that a well-learned parameters θ should be

able to generalize to new scenes with only a few gradient

updates. In our implementation for few-shot scene adaptive

crowd counting, we compute the second derivatives to

optimize Eq. 3 during outer-update as described in [9].

Backbone Network Architecture: Our proposed few-shot

learning approach for crowd density estimation can be used

with any backbone crowd counting network architecture. In

this paper, we use the CSRNet [16] (see Fig. 2) as our back-

bone network since it has shown to achieve state-of-the-art

performance in crowd counting. The network consists of

a feature extractor and a density map estimator. The fea-

ture extractor uses VGG-16 [27] to extract a feature map of

the input image. Following [16], we use the first 10 lay-

ers (up to Conv4 3 3) of VGG-16 as the feature extractor.

The output of the feature extractor has a resolution of 1/8
of the input image. The density map estimator consists of

a series of dilated convolutional layers [33] to regress the

output crowd density map for the given image.

We use a pre-trained VGG-16 [27] model on Ima-

geNet [6] to initialize the weights of the feature extractor

part of our network. The weights of the dilated convolu-

tional layers in the density map estimator part of the net-

work are initialized from a Gaussian with 0.01 standard de-

viation. We then train the network end-to-end on the train-

ing set of WorldExpo’10 [34] dataset to learn how to pro-

duce a density map for an image containing the crowd. We

refer to this trained network as “Baseline pre-trained” in

the remaining of the paper. Note that although the baseline

pre-trained model is learned on data from multiple train-

ing scenes, it is susceptible when used for adaptation in

few labeled data regime as it is not specifically designed

to learn from few images which we discuss in the later sec-

tion. Therefore, in order to overcome this limitation, we use

this baseline pre-trained network as the initialization for the

meta-learning phase. During meta-learning, we fix the pa-

rameters of the feature extractor and train only density map

estimator on different scene-specific data. We follow the

training scheme described in this section to learn to adapt to

a scene with a few labeled images.

4. Experiments

In this section, we first introduce the datasets and exper-

iment setup (Sec. 4.1). We then describe several baselines

for comparison (Sec. 4.2). We present the experimental re-

sults (Sec. 4.3).
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Target Methods
1-shot (K=1) 5-shot (K=5)

MAE RMSE MDE MAE RMSE MDE

Scene 1

Baseline pre-trained 5.55 6.31 0.70 5.55 6.31 0.70

Baseline fine-tuned 5.45 ± 0.03 6.23 ± 0.03 0.68 ± 0.004 5.06 ± 0.11 5.88 ± 0.10 0.63 ± 0.005

Meta pre-trained 4.63 5.5 0.529 4.63 5.5 0.529

Ours w/o ROI 3.47 ± 0.01 4.19 ± 0.01 0.50 ± 0.007 3.42 ± 0.03 4.81 ± 0.007 0.29 ± 0.004

Ours w/ ROI 3.19 ± 0.03 4.30 ± 0.07 0.38 ± 0.03 3.05 ± 0.06 4.19 ± 0.15 0.31 ± 0.08

Scene 2

Baseline pre-trained 24.07 34.29 0.17 24.07 34.29 0.17

Baseline fine-tuned 22.74 ± 0.47 32.92 ± 0.66 0.15 ± 0.003 20.84 ± 1.03 30.49 ± 1.37 0.156 ± 0.001

Meta pre-trained 21.65 30.51 0.185 21.65 30.51 0.185

Ours w/o ROI 12.05 ± 0.74 16.62 ± 1.10 0.11 ± 0.007 11.41 ± 0.54 15.35 ± 0.51 0.11 ± 0.015

Ours w/ ROI 11.17 ± 1.01 15.50 ± 1.18 0.11 ± 0.012 10.73 ± 0.36 14.95 ± 0.60 0.10 ± 0.003

Scene 3

Baseline pre-trained 35.54 40.78 0.40 35.54 40.78 0.40

Baseline fine-tuned 33.89 ± 0.26 39.33 ± 0.25 0.38 ± 0.03 31.05 ± 0.41 36.70 ± 0.43 0.34 ± 0.004

Meta pre-trained 36.18 42.32 0.402 36.18 42.32 0.402

Ours w/o ROI 8.15 ± 0.17 11.04 ± 0.42 0.09 ± 0.04 8.31 ± 0.54 10.75 ± 0.54 0.10 ± 0.009

Ours w/ ROI 8.07 ± 0.23 10.92 ± 0.21 0.10 ± 0.007 8.18 ± 0.24 10.96 ± 0.31 0.09 ± 0.002

Scene 4

Baseline pre-trained 23.95 28.57 0.19 23.95 28.57 0.19

Baseline fine-tuned 15.69 ± 0.28 18.96 ± 0.27 0.14 ± 0.003 16.67 ± 0.10 19.70 ± 0.16 0.15 ± 0.002

Meta pre-trained 22.44 28.25 0.183 22.44 28.25 0.183

Ours w/o ROI 9.74 ± 0.09 11.9 ± 0.12 0.084 ± 0.001 11.21 ± 0.47 16.1 ± 0.45 0.118 ± 0.004

Ours w/ ROI 9.39 ± 0.26 11.78 ± 0.34 0.07 ± 0.02 9.41 ± 0.21 11.91 ± 0.17 0.08 ± 0.002

Scene 5

Baseline pre-trained 10.70 13.0 0.67 10.70 13.0 0.67

Baseline fine-tuned 8.9 ± 0.05 11.7 ± 0.04 0.50 ± 0.03 7.79 ± 0.35 10.57 ± 0.66 0.44 ± 0.015

Meta pre-trained 9.78 12.26 0.605 9.78 12.26 0.605

Ours w/o ROI 4.09 ± 0.01 7.36 ± 0.01 0.196 ± 0.001 4.28 ± 0.14 7.68 ± 0.60 0.20 ± 0.001

Ours w/ ROI 3.82 ± 0.05 6.91 ± 0.11 0.192 ± 0.001 3.91 ± 0.26 7.18 ± 0.85 0.18 ± 0.001

Average

Baseline pre-trained 19.96 24.59 0.42 19.96 24.59 0.42

Baseline fine-tuned 17.33 21.82 0.37 16.28 20.66 0.34

Meta pre-trained 18.93 23.76 0.38 18.93 23.76 0.38

Ours w/o ROI 7.5 10.22 0.197 7.7 10.93 0.165

Ours w/ ROI 7.12 9.88 0.172 7.05 9.83 0.155

Table 1. Results on WorldExpo’10 [34] test set with K = 1 and K = 5 train images in the targe scene. We report the performance our our

approach with and without ROI. We also compare with three baselines Baseline pre-trained, Baseline fine-tuned and Meta pre-trained. We

compare the results across 5 test scenes and the last two rows represent the average score for our models.

Methods
1-shot (K=1) 5-shot (K=5)

MAE RMSE MDE MAE RMSE MDE

Baseline pre-trained 7.29 7.96 0.22 7.29 7.96 0.22

Baseline fine-tuned 7.11 ± 0.09 7.80 ± 0.08 0.21 ± 0.003 6.58 ± 0.07 7.32 ± 0.06 0.20 ± 0.002

Meta pre-trained 7.01 7.69 0.230 7.01 7.69 0.230

Ours w/o ROI 2.52 ± 0.08 3.26 ± 0.12 0.078 ± 0.002 2.53 ± 0.18 3.25 ± 0.27 0.078 ± 0.004

Ours w/ ROI 2.44 ± 0.02 3.12 ± 0.03 0.076 ± 0.001 2.37 ± 0.02 3.04 ± 0.01 0.073 ± 0.001

Table 2. Results on the Mall [4] dataset with K = 1 and K = 5 images in the target scene. The meta-training is performed on the

WorldExpo’10 training data.

Methods
1-shot (K=1) 5-shot (K=5)

MAE RMSE MDE MAE RMSE MDE

Baseline pre-trained 17.07 18.13 0.63 17.07 18.13 0.63

Baseline fine-tuned 16.41 ± 0.24 17.50 ± 0.23 0.60 ± 0.010 14.33 ± 0.16 15.55 ± 0.15 0.54 ± 0.006

Meta pre-trained 16.45 16.7 0.627 16.45 16.7 0.627

Ours w/o ROI 4.32 ± 0.74 5.57 ± 0.98 0.15 ± 0.022 3.82 ± 0.39 4.87 ± 0.58 0.14 ± 0.012

Ours w/ ROI 3.08 ± 0.13 4.16 ± 0.23 0.12 ± 0.005 3.41 ± 0.26 4.22 ± 0.36 0.12 ± 0.007

Table 3. Results on the UCSD [2] dataset with K = 1 and K = 5 images in the target scene. The meta-training is performed on the

WorldExpo’10 training data.

4.1. Datasets and Setup

Datasets: Most of the available datasets for crowd-counting

are not specifically designed for the scene adaptive crowd

counting problem. Our problem formulation requires that

the training images are from multiple scenes. To the best of

our knowledge, WorldExpo’10 [34] is the only dataset with
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(a) (b) (c)
Figure 3. Quantitative results of the learning curve during meta-testing. The graph (a) shows the learning for Scene 2 and (b) shows the

result for Scene 3 in WorldExpo [34] test sets, respectively. Similarly, (c) shows the learning on UCSD [2]. Note that our approach

continues to learn and achieves a lower MAE compared to the baseline fine-tuning approach in ten gradient steps. We consider K = 5

labeled examples in all three cases.

multiple scenes. We use this dataset for the training of our

model. We also consider two other datasets (Mall [4] and

UCSD [2]) for cross-dataset testing. The details of these

datasets are described below.

The WorldExpo’10 [34] dataset consists of 3980 labeled

images from 1132 video sequences based on 108 different

scenes. We consider 103 scenes for training and the remain-

ing 5 scenes for testing. The image resolution is fixed at 576

× 720. When testing on a target scene, we randomly choose

K ∈ {1, 5} images from the available images in this scene

and use them for obtaining the scene adaptive model param-

eters θ̃ (see Fig. 1). We then use the remaining images from

this scene to calculate the performance of the parameters θ̃.

The Mall [4] dataset consists of 2000 images from the same

camera setup inside a mall. The resolution of each image

is 640 × 480. We follow the standard split, which consists

of 800 training images and 1200 test images. Similar to

the setup explained earlier, we consider K ∈ {1, 5} images

from the training set for fine-tuning the model to obtain the

scene adaptive model parameters θ̃ and later test the model

on the test set. The UCSD [2] dataset consists of 2000 im-

ages from the same surveillance camera setup to capture a

pedestrian scene. The crowd density is relatively sparse,

ranging from 11 to 46 persons in an image. The resolution

of each image is 238 × 158. We follow the standard split

by considering the first 800 frames for training and 1200

images for testing. We use the same experiment setup of

the Mall dataset.

Ground-truth Density Maps: All datasets come with dot

annotations, where each person in the image is annotated

with a single point. Following [16, 35], we use a Gaussian

kernel to blur the point annotations in an image to create the

ground-truth density map. We set the value of σ = 3 in the

Gaussian kernel by following [16].

Implementation Details: We use PyTorch [21] for the im-

plementation of our approach. The backbone crowd count-

ing network is implemented based on the source code from

the original CSRNet paper [16]. To generate the Baseline

pre-trained network, we follow the procedure described in

[16]. During the meta-learning phase, we initialize the net-

work with baseline pre-trained model. We freeze the fea-

ture extractor and only train the density map estimator of

the network. We set the hyper-parameters α = 0.001 for

the inner-update in SGD (see Eq. 1) and β = 0.001 in the

outer-update (see Eq. 3) in Adam [12]. We randomly sam-

ple a scene for each episode during inner-update.

Evaluation Metrics : To evaluate the results, we use the

standard metrics in the context of crowd count estimation.

The metrics are: Mean Absolute Error (MAE), Root Mean

Squared Error (RMSE) and Mean Deviation Error (MDE)

as expressed below:

MAE =
1

N

N
∑

i=1

|δŷi − δyi | (4)

RMSE =

√

√

√

√

1

N

N
∑

i=1

|δŷi − δyi |
2 (5)

MDE =
1

N

N
∑

i=1

|δŷi − δyi |

δyi
(6)

where N is the total number of images in a given camera

scene, δŷi represents the crowd count of the density map

generated by the model and δyi is the corresponding crowd

count of ground-truth density map for the i-th input image.

Let ph,w be the value at the spatial location (h,w) in a den-

sity map for an image i, the count δi for the image can be

expressed δi =
∑H

h=1

∑W

w=1 ph,w, where H × W is the

spatial size of the density map.

4.2. Baselines

We define the following baselines for comparison. Note

that these baselines have the same backbone architecture as

our approach.
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(a) K=1, Scene 2 (b) K=5, Scene 2

(c) K=1, Scene 3 (d) K=5, Scene 3

(e)K=1, Scene 5 (f) K=5, Scene 5
Figure 4. Crowd counting performance comparison between the baselines and our approaches in different scene-specific images from

WorldExpo’10 [34] dataset. The labels include, (a) K = 1 in Scene 2, (b) K = 5 in Scene 2, (c) K = 1 in Scene 3, (d) K = 5 in Scene

3, (e) K = 1 in Scene 5 and (f) K = 5 in Scene 5. Note that our approaches outperform the baselines in different settings and is robust to

varying crowd density.

Baseline pre-trained: This baseline is a standard crowd

counting model as in [16] trained in a standard supervised

setting. The model parameters are trained from all images

in the training set. Once the training is done, the model is

evaluated directly on images in the new target scene without

any adaptation. Note that, the original model in [16] uses

the perspective maps and ground-truth ROI to enhance the

final scores, we do not use them for the sake of simplicity.

Baseline fine-tuned: In this baseline, we first consider the

Baseline pre-trained crowd counting model learned θ from

the standard supervised setting. For a given new scene dur-

ing testing, we fix the parameters of the feature extractor

and fine-tune only the density map estimator using a few

images K ∈ {1, 5} from the target scene.

Meta pre-trained: This baseline is similar to our approach,

but without the fine-tuning on the target scene. Intuitively,

it is similar to “baseline pre-trained”.

4.3. Experimental Results

Main Results: Table 1 shows the results on the World-

Expo’10 dataset for the 5 test (or target) scenes. We show

the results of using both K = 1 and K = 5 images for

fine-tuning in the test scene. This dataset also comes with

ground-truth region-of-interest (ROI). We report the results

with (w/ ) and without (w/o) ROI. We repeat the experiments

5 times in each setting with K randomly selected images.

We average the scores across the 5 trials and report the stan-

dard deviation along with the mean of the scores in Table 1.

We report the results from our models as “Ours w/o ROI”

and “Ours w/ ROI”. We compare with the three baselines

defined in Sec. 4.2. Our models outperform the baselines in

most cases. This shows that the meta-learning fine-tuning

improves the model’s performance. Note that our problem

setup requires K labeled images in the test set and hence

these K images have to be excluded in the calculation of

the evaluation metrics, i.e., we have slightly fewer test im-

ages for the results in Table 1. Therefore, the performance

numbers in Table 1 should not be directly compared with

previously reported numbers in the crowd counting liter-

ature since our problem formulation is completely differ-

ent. Besides, some previous crowd counting works [16] use

additional components (e.g., perspective maps) to enhance

the final performance. We do not consider these additional

components in our models for the sake of simplicity (also

the publicly available source code for [16] does not imple-

ment those extra components), so the number for “Baseline

pre-trained” in Table 1 is slightly worse than the number

reported in [16].

Table 2 and Table 3 show the results on the Mall and

UCSD datasets, respectively. Here we use the training data
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Target Methods
1-shot (K=1) 5-shot (K=5)

MAE RMSE MDE MAE RMSE MDE

WorldExpo (Avg.)

Meta-LSTM [23] 13.33 18.22 0.252 12.7 16.61 0.223

Reptile [20] 11.63 15.07 0.260 8.20 11.31 0.181

Ours w/o ROI 7.5 10.22 0.197 7.7 10.93 0.165

Ours w/ ROI 7.12 9.88 0.172 7.05 9.83 0.155

Mall

Meta-LSTM [23] 3.95 ± 0.04 4.34 ± 0.537 0.12 ± 0.002 3.54 ± 0.44 4.41 ± 0.472 0.10 ± 0.014

Reptile [20] 2.55 ± 0.07 3.26 ± 0.09 0.079 ± 0.001 2.49 ± 0.23 3.20 ± 0.29 0.078 ± 0.006

Ours w/o ROI 2.52 ± 0.08 3.26 ± 0.12 0.078 ± 0.002 2.53 ± 0.18 3.25 ± 0.27 0.078 ± 0.004

Ours w/ ROI 2.44 ± 0.02 3.12 ± 0.03 0.076 ± 0.001 2.37 ± 0.02 3.04 ± 0.01 0.073 ± 0.001

UCSD

Meta-LSTM [23] 14.15 ± 0.48 16.29 ± 0.425 0.463 ± 0.018 13.81 ± 0.10 15.99 ± 0.009 0.45 ± 0.004

Reptile [20] 5.64 ± 2.05 6.85 ± 2.06 0.20 ± 0.075 4.48 ± 0.88 5.62 ± 0.99 0.166 ± 0.033

Ours w/o ROI 4.32 ± 0.74 5.57 ± 0.98 0.15 ± 0.022 3.82 ± 0.39 4.87 ± 0.58 0.14 ± 0.012

Ours w/ ROI 3.08 ± 0.13 4.16 ± 0.23 0.12 ± 0.005 3.41 ± 0.26 4.22 ± 0.36 0.12 ± 0.007

Table 4. The overall results for adaptation on WorldExpo’10 [34] test set, Mall [4] and UCSD [2] with K = 1 and K = 5 train images.

We compare with other optimization based meta-learning approaches “Reptile” [20] and “Meta-LSTM” [23].

Methods
1-shot (K=1)

MAE RMSE

Hossain et al. [10] 8.23 12.08

Ours w/o ROI 7.5 10.22

Ours w/ ROI 7.12 9.88

Table 5. Comparison of results on the WorldExpo’10 [34] dataset

with K = 1 images in the target scene with Hossain et al. [10]. We

use the standing train/test split on WorldExpo’10. Our approach

outperforms Hossain et al. [10].

of WorldExpo’10 for the meta-learning. We then use Mall

and UCSD for the scene adaptation and evaluation. This

cross-dataset testing can demonstrate the generalization of

the proposed method. Our model clearly outperforms the

baselines.

To gain further insights into our method, we visualize

the MAE over the number of gradient steps in Fig. 3 for

different scenes. In all the cases, our proposed approach

has a better start in learning and improves continuously with

more gradient steps. In the three cases shown in Fig. 3, our

approach performs significantly better that fine-tuning with

the same number of gradient updates.

In Fig. 4, we show the comparison of the crowd count es-

timations between our approaches and baselines in different

scenes in WordExpo’10. Our method consistently produces

crowd counts that are closer to the ground-truth compared

with other baselines. Some qualitative examples of the den-

sity maps generated by our method and baselines are shown

in Fig. 1 of the supplementary material.

In Table 5, we compare our results with the one-shot

scene adaptation proposed in [10] based on the standard

WorldExpo’10 data split. In [10], the last two layers in the

pre-trained model are fine-tuned to adapt to the target scene.

Our approach outperforms [10].

Ablation Studies: Our approach is based on MAML [9]. In

the literature, there are other optimized-based meta-learning

approaches, e.g., [20, 23]. We perform additional ablation

studies on the effect of different meta-learning frameworks.

The results are shown in Table 4. Nichol et al. [20] pro-

pose an optimization based meta-learning approach similar

to [9] using gradient descent. However, [20] differs from [9]

in that it does not consider the second-order derivative in the

meta-optimization. As a result, its performance is slightly

lower as reported in Table 4 although it converges faster. In

case of [23], the meta-learner is a LSTM based model unlike

in [9] and [20], because of the similarity between the gra-

dient update in backpropagation and the cell-state update in

LSTM. The drawback of [23] is the large number of train-

able parameters and different architectures for the learner

and meta-learner. In general, the MAML-based meta learn-

ing that our approach uses outperforms other optimization-

based meta-learning approaches. In Table 4, we highlight

only the average score across 5 scenes in WorldExpo due

to page limit. For more detailed results of every scene in

WorldExpo, refer to Table 1 in the supplementary material.

The training scheme for [20, 23] is similar to our approach

based on the same backbone network [16] as described in

the implementation details (Sec 4.1). For the hyperparame-

ters setting, please refer to [20, 23].

5. Conclusion

In this paper, we have addressed the problem of few-shot

scene adaptation for crowd counting. We have proposed

a meta-learning inspired approach to address the learning

mechanism for few-shot scenario. Our proposed approach

learns the model parameters in a way that facilitates fast

adaptation to new target scenes. Our experimental results

show that our proposed approach can learn to quickly adapt

to new scenes with only a small number of labeled images

from the target camera scene. We believe that our work will

help to increase the adoption of crowd counting techniques

in the real-world applications.
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