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Abstract

People usually take short videos to record meaningful

moments in their lives. However, selecting the most rep-

resentative frame, which not only has high image visual

quality but also captures video content, from a short video

to share or keep is a time-consuming process for one may

need to manually go through all the frames in a video to

make a decision. In this paper, we introduce the problem of

the best frame selection in a short video and aim to solve

it automatically. Towards this end, we collect and will re-

lease a diverse large-scale short video dataset that includes

11, 000 videos shoot in our daily life. All videos are as-

sumed to be short (e.g., a few seconds) and each video has

human-annotated of the best frame. Then we introduce a

deep convolutional neural network (CNN) based approach

with ranking objective to automatically pick the best frame

from frame sequences extracted via short videos. Addition-

ally, we propose new evaluation metrics, especially for the

best frame selection. In experiments, we show our approach

outperforms various other methods significantly.

1. Introduction

Nowadays, with benefits from the advances in hardware

of digital cameras (e.g., the high-quality camera on iPhone)

and an expanding number of social media platforms, more

and more people would like to take short videos to record

meaningful moments happened in various events, such as

vacations, parties, and festivals. By using mobile devices,

people can easily take high-quality videos and share them

on social media via various applications. To represent a

video, a thumbnail is usually selected and used to attract

viewers by the first impression. The chosen thumbnail is

considered as the best frame in a video, and it has an im-

portant role, for example, people care about thumbnails

when browsing videos [2], so the best frame serves as a

critical factor for determining whether to watch a video or

not [8]. The best frame should have a high visual quality

to be attractive and contain the essence of a video. Differ-

ent from videos with a few minutes contain changing sub-
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jects, short videos, which may only a few seconds, always

record one event. Therefore, one representative frame is

usually enough to capture the content of a video while sev-

eral frames are needed to show the content for video with a

few minutes.

However, selecting the best frame from short videos to

keep, share, or post is still a tedious, time-consuming, and

challenging process. One needs to manually go through

all frames one by one to make a decision. Additionally,

many frames share similar content and visual image qual-

ity, which makes it even harder to decide the better one.

There have been studies on video summarization [54, 58,

32] where key shots including a few continuous frames are

chosen to shorten videos into a compact version. However,

for video summarization, frames with similar content in se-

lected key shots are treated equally, and there is no ranking

information among those frames to help decide the best one.

Similarly, the works on image quality assessment [34, 33]

give image scores on an absolute scale such as low quality

or high quality, cannot still differentiate frames with sim-

ilar quality, which is a common situation in short videos.

Other works process image attributes learning as a regres-

sion problem [55, 27], but the context of a video is an essen-

tial factor for human preference on the best frame in short

videos, which are ignored in those works. The learning of a

robust ranking model for frame selection requires the under-

standing of low-level image features and high-level image

features unified in one model. For example, some videos

contain frames with similar content, low-level features such

as undesired blur or out of focus are usually the decisive

factors for determining best frames, while for other videos

containing frames with changing context, the selection cri-

teria could be high-level features such as image composition

or aesthetics.

Given there is quite limited work on selecting one best

frame from short videos, in this article, we aim to solve the

problem of the best frame selection in a short video. To fa-

cilitate the study on best frame selection, we collect and will

release a new dataset including 11, 000 diverse short videos

that captured in our daily life. Each video has its frames

extracted to form a frame sequence, and the best frame in

a frame sequence is manually annotated. We present two
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Figure 1: Two example short videos. The frames in each example are sampled from a short video and sorted from high to

low in terms of their ground truth scores. In each frame sequence, the frame with red boundary is selected as the best frame

by our approach. The selected frame in each short video captures the video’s essence and has high visual quality.

short video examples from our dataset in Figure 1 where the

frames are sorted from low to high based on their ground

truth scores. The image with a red boundary is automati-

cally selected as the best frame by our approach, which rep-

resents the content of the short videos and has high visual

quality. We introduce an end-to-end training of a deep con-

volutional neural network (CNN) with a ranking loss func-

tion to choose the best frame from frame sequence auto-

matically. Moreover, as the current study has revealed the

importance of facial features in selecting images from al-

bums [59], we incorporate facial features into one end-to-

end network. During inference time, the network predicts

frame scores for a given frame sequence, and the frame with

the highest score is determined as the best frame. To evalu-

ate the proposed method, we further introduce three evalua-

tion metrics because exiting evaluation metrics for ranking

problems, such as Spearman rank correlation [52], cannot

determine whether the top frame is the best. Experimental

results demonstrate that our approach has a clear advantage

over baseline and prior works by outperforming them sig-

nificantly.

In summary, our main contributions are three-fold:

• We propose and address the problem of best frame se-

lection in a short video, and collect a large-scale short

video dataset to facilitate research in this direction.

• We introduce learning strategies for studying the best

frame selection in a short video with newly evaluation

metrics.

• We incorporate facial features in the learning algo-

rithm, which is effective in a real-world application on

personal videos.
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2. Related Work

2.1. Photo Triage

Photo selection has drawn more attention because of the

increasing the of personal albums [7, 49]. Previous works

have explored designing a user interface to help viewers in-

teractively control the process of photo triage according to

their preference [13, 23]. Recently, Chang et al. [4] pro-

posed a neural network-based method to classify a pair of

images in a photo collection to determine which one has

higher quality. However, the method is limited in the fol-

lowing three aspects: (1) the model is trained on photo col-

lections where each collection only has few images instead

of videos, so it may not be optimal for best frame selection

in short videos; (2) it has not incorporated face information

in the neural network model; (3) the model is trained with a

pair-wise classification loss which can be sensitive to pairs

of training images with similar qualities, and it lacks effi-

ciency during inference as it has to evaluate every pair.

Other studies on the assessment of image quality are al-

ternative approaches for selecting photos from the collec-

tion. The estimated image score can be used to rank im-

ages in a collection that can be obtained from low-level im-

age features, such as color [41], texture [9, 48] and light-

ing [37, 3, 24, 56], and high-level image features including

aesthetics [11, 43, 33, 34, 27, 39], composition [37, 1, 17],

content [36, 24], memorability [22, 25, 14], and interesting-

ness [15, 11, 18]. However, the quality assessment across

all the videos can fail in cases where videos contain images

with similar attributes. Instead of using quality attributes,

we find it is more effective to learn the ranking of frames.

2.2. Video Summarization and Keyframes Selection

Researchers have worked on video summarization with

a primary goal of selecting representative key shots from

videos. Recent studies show supervised video summa-

rization [54, 58, 38, 35, 30, 42, 16, 57] that based on

human-created summary sub-shots to learn selection cri-

teria achieves better results than unsupervised summariza-

tion [26, 46, 53, 40, 32] which selects key shots according

to manually designed criteria such as representativeness, di-

versity, and coverage. Similar to video summarization, the

studies on keyframes selection aim to predict representative

frames that are visually attractive and relevant to video con-

tent. Studies have explored the relationship between repre-

sentative frames and various visual features [45, 12, 29, 44].

Different between the research on video summarization

and keyframes selection, we work on short videos that are

less than 10 seconds instead of videos of a few minutes.

Furthermore, we aim to select the most representative frame

from short videos instead of selecting a few key shots or

frames. To achieve the goal, we collect a large short video

dataset and propose evaluation metrics to assess methods

targeting the problem.

3. Data Collection

Due to there is no public benchmark to solve the prob-

lem of best frame selection, we show how we build a stock

video clip dataset (SVCD) primarily to address the issue. To

the best of our knowledge, SVCD is the first video dataset

that only focuses on short videos. We also compare SVCD

with other datasets to show its advantages on the best frame

selection. We will release SVCD and our models.

3.1. Short Videos Collection

We collect short videos by collecting videos from Adobe

Stock Videos1. Each video has a manually annotated key-

words list showing its content. To curate suitable short

videos, we use a positive keyword list including 26 words,

such as family, kid, and boy, to filter out videos captured

in our daily life and a negative list including 136 words,

such as white, background, and design, to block inappropri-

ate ones. To obtain positive and negative keyword lists, we

firstly sampled a small number of videos. If the video shows

a moment that happens in our daily life, then we record the

keywords of the video as positive keywords; otherwise, we

record the keywords from it as negative keywords. We do

this iteratively until we collect enough videos according to

the keywords list. More specifically, the chosen videos in

SVCD need to satisfy three requirements: 1) including at

least one keyword from the positive keyword list; 2) not in-

cluding any keyword from the negative keyword list; 3) the

videos are no longer than 10 seconds.

In total, we collect 11, 000 short videos. Among each

of them, we extract frames (e.g., 8 FPS) from it and uni-

formly sample 19 frames to form the frame sequence. For

all videos, we use a face detection network [31] to detect

face, which results in 5, 576 videos contain at least one

frame with face. The total number of frames with face is

73, 170, which counts for 35.01% for all frames in SVCD.

Additionally, we show the number of videos with the same

number of frames that include face in Figure 2. 2, 422

videos have all 19 frames with detected face. For videos

with face, the average number of frames with face is 13.1.

3.2. Datasets Annotation

To get human preference on the most representative

frames in short videos, we present the sampled frame se-

quence in each video to Amazon Mechanical Turk2 (AMT)

to collect annotations for each frame. For each task on

AMT, only workers who pass the qualification test can work

on our tasks to label 19 frames from each video with a score

1https://stock.adobe.com/video
2www.mturk.com
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Table 1: Datasets comparison of SVCD with benchmarks on video summarization, keyframes selection, and photo triage.

Dataset number of videos (series) video time average number of photos

SumeMe [19] 25 from 1.5 to 6.5 minutes -

TVSum [46] 50 from 1 to 5 minutes -

OVP [10] 50 from 1 to 4 minutes -

Youtube [10] 50 from 1 to 10 minutes -

Yahoo Screen [45] 1, 118 average 2.8 minutes -

Photo triage [4] 5, 953 - 2.6

SVCD 11, 000 less than 10 seconds 19
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Figure 2: The number of videos that have the same number

of frames with face.

in [1, 2, 3], where 3 indicates a frame can be used to repre-

sent the video and has high visual image quality while 1

denotes a frame with low visual image quality and does not

capture video’s content. To control annotation quality, we

randomly insert short videos with known ground truth into

the AMT tasks. Those videos have obviously best frame

so attentive workers should find out the best frame. Each

video is labeled by five distinct AMT workers, and we use

the weighted averaged ratings over the five AMT workers

as ground truth score, in which the weights are proportional

to workers’ accuracy on the quality control videos and nor-

malized among five workers. In total, SVCD consists of

209, 000 labeled images.

3.3. Datasets Comparison

To show the advantages of SVCD, we compare it with

other benchmark datasets from video summarization, which

includes SumMe [19], TVSum [46], Open Video Project

(OVP) [10], and Youtube [10], a Yahoo Screen dataset from

keyframes selection [45], and a triage dataset from photo

triage [4]. We show the number of videos or photo series

contained in each dataset and the averaged number of pho-

tos in each video in Table 1. Compared with the datasets

from video summarization and keyframes selection, SVCD

includes more videos. Additionally, the averaged number

of photos in each frame series is 7 times bigger compared

with the photo triage dataset [4]. Such comparison shows

SVCD is superior to other datasets and can be accepted as

a benchmark for studies of the best frame selection in short

videos for it includes a large number of videos, and all of

them are short ( e.g., less than 10 seconds).

4. Methods

In this section, we propose the model to estimate the

frame score in short videos by considering both the rep-

resentatives and facial features of frames. During the in-

ference time, the best frame of a short video is selected by

choosing the one with the highest score. Given SVCD con-

tains videos shot in our daily life under various contents and

quality, learning to estimate the accurate rank of frames in

each video with a ranking objective is easier and more fa-

vorable than learning a regression by using the Euclidean

loss to force the frame score to get close to ground-truth

annotation. Therefore, we adopt the idea of Siamese net-

work [6] where pairs of images are given as input during

the training process and optimize the network by using a

ranking loss function. Furthermore, SVCD concentrates on

the videos that captured in our daily lives. For those kinds

of videos, the face is an import factor when people con-

sider selecting the best frame. Inspired by an existing study

that facial features play an essential role in selecting repre-

sentative photos from collection [59], we incorporate prior

knowledge obtained from faces in one end-to-end network

for determining frame scores. The architecture is shown in

Figure 3, and the details are introduced as follows.

4.1. Siamese CNN

When selecting the best frame from a video, people fol-

low the criterion that the selected frame can represent the

video content, and it has high image quality. However, the

various quality of videos may bias the annotation for AMT

workers. Thus rather than learning a regression to predict
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Figure 3: The proposed network for predicting best frames from short videos. The siamese network uses pairs of frames

sampled from the same video as input. Facial features, including face heatmaps and face quality, are incorporated into the

network.

an absolute score for frames in all videos, which is difficult,

learning the ranking of frames within each video is more

suitable in applications especially short videos may con-

tain frames with similar context and quality. Toward this

end, we utilize a Siamese CNN architecture that includes

two pathways with shared parameters where each pathway

follows GoogLeNet [47] architecture. To learn the parame-

ters, we adopt the loss function as Piecewise Ranking (PR)

loss [50] because it introduces relaxation of ground truth

score and makes the network more stable for a subjective

task. Supposing input pair of frames fed into the network

is (I1, I2) , G(Ii) is ground truth score of the frame Ii, and

P (Ii) is its estimated value from the network. The PR loss

is formed as the following:

PR =



















1

2
max(0, |Dp| − ms)

2 if Dg < ms

1

2

{

max(0,ms −Dp)
2 + max(0, Dp − md)

2
}

if ms ≤ Dg ≤ md

1

2
max(0,md −Dp)

2 if Dg > md

,

(1)

where Dg = G(I1)−G(I2) is the ground truth score differ-

ence between the two input frames, and Dp = P (I1)−P (I2)
is the predicted value difference. ms and md are constant

margin values. We denote the network design as Siamese

CNN. The Siamese CNN is fine-tuned from an off-the-shelf

image classification or tagging CNN model. For the infer-

ence, Siamese CNN estimates frame scores for a short video

and the higher score denotes the frame is more representa-

tive in the frame sequence.

4.2. Incorporating Facial Features

Many videos that are taken in our daily events contain

people. For those videos that include human faces, the size,

location, and quality of faces are important crucial when

determining the representativeness of frames. For example,

people would like to choose the frame that has an intact face

instead of the one with the only partial face, and the frame

contains face with high visual quality is more appealing and

attractive than the one with low image quality (e.g., face

blurriness). Therefore, we incorporate face information into

Siamese CNN by using face heatmap to represent the size

and location of the face and face quality feature to imply

face quality.

Face Heatmap CNN. To generate the face heatmap, we

first use a state-of-the-art face detection network [31] to

detect faces in frames. Frames without rescaling are for-

warded into the face detection network. Then we use the
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Gaussian kernel to represent the size and location of the

face, which are inferred from the coordinates of face bound-

ary, on face heatmap. For frames without a human face,

there is no face shown on face heatmap. The generated face

heatmap has the same image size (e.g., height and width) as

the frames forwarded into the face detection network. We

show the input pair of frames and their corresponding face

heatmaps in Figure 3.

To incorporate the knowledge from face heatmap into

Siamese CNN, the input face heatmaps are passed through a

convolutional layer with kernel size as 1×1 and number of

channels as 384 before concatenated with the features maps

obtained from lower inception modules. We denote the net-

work design as Face Heatmap CNN. During the training

process, we only train the last inception module and fully

connected layers of Face Heatmap CNN from scratch us-

ing PR loss, while weights of lower inception modules of

Face Heatmap CNN are fixed and the same as the weights

in Siamese CNN.

Face Quality CNN. In order to get face quality features,

we first train a face quality model to estimate face quality.

We manually annotate the quality of faces in a face recog-

nition dataset [20] and use score selected from [0, 0.5, 1] to

show face quality where the higher score implies the better

face quality. Then we utilize SqueezeNet [21] as the net-

work to learn face quality. The loss function is adopted as

Euclidean loss (EL):

EL =
1

2

N
∑

i=1

∥

∥g2i − p2i
∥

∥

2

2
, (2)

where gi is the ground truth annotation of face quality and

pi is the prediction score.

To incorporate face quality estimation to Face Heatmap

CNN, the input pair of frames are forwarded to a face de-

tection network [31] to get cropped faces. We then use the

pre-trained SqueezeNet to get the neural activations from

the second to the last layer as the face quality features.

The face quality features are forwarded to a fully connected

layer with 256 hidden units before concatenated with the

feature maps from the last inception module. For frames

with more the one faces, the averaged feature vectors are

used; for frames without a face, feature vector with all ze-

ros is used. We denote the method as Face Quality CNN. To

train Face Quality CNN, we fix the lower inception modules

where the weights are the same as Siamese CNN and initial-

ize the last inception module from Face Heatmap CNN. The

fully connected layers are trained from scratch.

5. Experiments and Results

In this section, we evaluate the proposed approach on

SVCD and compare it with several other methods. We show

qualitative examples in supplemental materials.

5.1. Implementation Details

Datasets preparation. For training and testing, we split

SVCD by randomly select 1, 000 videos as a testing set and

others as a training set. Since videos comprise the various

number of best frames, we exclude videos from the test-

ing set that have all 19 frames with the same score and get

812 videos left in the testing set. The number of videos in

the testing set that have the same number of best frames is

shown in Figure 4. The average number of best frames for

videos in the testing set is 7.46.
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Figure 4: The number of videos in the testing set that have

the same number of best frames.

Training details. During the training process, the ground

truth scores of frames are normalized in 0 to 1. We set md =

0.03 and md = 0.1 in Equation 1 for PR loss. Since our train-

ing strategy includes three steps, we firstly train Siamese

CNN. Following the data augmentation from [28], we re-

size input pair of images as 256×256, randomly crop them

to 224×224, and apply horizontal flips. Then, to train Face

Heatmap CNN, we fine-tune it from Siamese CNN where

parameters in the lower inception modules are fixed. The

input pair of images are resized as 224×224 without crop-

ping, and their corresponding face heatmaps are resized as

7×7 before forwarded into the network. Lastly, we learn

Face Quality CNN by fine-tuning it from Face Heatmap

CNN and keep parameters in the lower inception modules

fixed. To train the face quality model incorporated in Face

Quality CNN, we resize input faces as 128×128 and ran-

domly cropped them to 112×112. We train all three net-

works using mini-batch Stochastic Gradient Descent with

batch size as 32, weight decay as 0.0002, and momentum

as 0.9. The initial learning rate is 0.001 and multiplied with

0.96 after every 16,000 iterations.

5.2. Evaluation Metrics

To evaluate different approaches for selecting the best

frame from short videos, we further propose new evalua-

tion metrics. Although Spearman rank correlation [52] is
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widely utilized for assessing ranking models, which is cal-

culated as the ranking correlation between predicted scores

and ground truth annotations, we do not adopt it because for

evaluating the selection of best frame, it is more important

to tell whether the top frame given by prediction model is

the best one or not rather than estimating the ranking for all

frames in a video. Instead, we can calculate the differences

between the selected frame and the best one in terms of their

ground truth scores or the ranking and utilize those informa-

tion for evaluation. Thus, we introduce new metrics.

The first evaluation metric is Score Difference (SD).

Supposing the kth video includes n frames, and the ground

truth score for frames are Ski
, ..., Skn

. Assuming the frame

selected by the prediction model is Skp
, and the best frame

has score as Skm
. Then score difference is defined as:

SD =
1

N

N
∑

k=1

(Skm
− Skp

), (3)

where N is the total number of testing videos.

The second metric is Rank Difference (RD). Rank dif-

ference is similar to score difference. When we sort the

all frames in the kth video from low to high in terms of

their ground truth scores, we get a rank for each frame as

Rki
, ..., Rkn

. Assuming the frame selected by the predic-

tion model has the rank as Rkp
, and the most representative

frame has the rank as Rkm
. Then the rank difference is:

RD =
1

N

N
∑

k=1

(Rkm
−Rkp

). (4)

The last one is Accurate Percentage (AP). Let Np be

the number of videos that the frame selected by the predic-

tion model is the best. The accurate percentage is defined

as AP =
Np

N
. For SD and RD, the model with lower values

indicates better performance, while for AP, the model with

a higher value has better performance.

5.3. Comparison Results

Based on three evaluation metrics, we compare our ap-

proach with the following methods.

Random selection: The method randomly selects a frame

from a frame sequence. We run the random selection for ten

times and report the average performance.

Middle selection: We use the method to pick a middle

frame from a video when frames are sorted by their time

stamp. The previous study has shown that middle selection

performs better than selecting the first frame [12]. In exper-

iments, we select the 10th frame in short videos.

Image Aesthetics [27, 43]: In each video sequence, we

try two aesthetics models to predict frame aesthetics and

use the aesthetics score as frame score. The best frame is

selected with the highest aesthetic value.

Photo Composition [5, 51]: We compare two photo com-

position studies, which are View Evaluation Net (VEN) [51]

and View Finding Network (VFN) [5], for best frame selec-

tion. The predicted score from the two networks are used to

decide the best frame.

Photo Triage [4]: We use the classification loss intro-

duced [4] to train a Siamese network where a two-way Soft-

max is used to determine the better frame from an input

pair of images. For a fair comparison, we use the same net-

work architecture as Siamese CNN. The best frame in short

video is determined through majority voting. The method

achieves state-of-the-art results in photo triage [4], which is

a challenging problem.

Euclidean Loss: We use a Euclidean loss function in-

stead of Equation 1 to train a network.

The comparison results demonstrated in Table 2 show

the proposed Siamese CNN has better performance than

other works. For short videos, many frames have similar

aesthetics quality, and content. So the aesthetics model [27,

43] cannot tell the differences between frames with sim-

ilar aesthetics quality, which is consistent with findings

from [5, 51] that the performance of aesthetics models on

ranking images with similar views are not guaranteed. Also,

those studies on learning photo composition [5, 51] per-

forms better than the work on image aesthetics. Similarly,

Euclidean loss do not perform well on the task of ranking

views from similar images.

For the study on photo triage, the work [4] uses a

Siamese network to perform the classification of input

frames. However, a ranking loss is more favorable than a

binary classification for a subjective task because it can in-

Table 2: Comparison of proposed methods with other ap-

proaches on SVCD. Siamese CNN achieves better perfor-

mance than other methods and Face Quality CNN shows

advantage over Siamese CNN.

Approach SD RD AP

Random Selection 0.3800 5.8894 03930

Middle Selection [12] 0.3270 5.4938 0.4236

AesRankNet [27] 0.3862 5. 8445 0.3793

Image Aesthetics [43] 0.3633 5.4778 0.4027

VFN [5] 0.3070 4.9089 0.4495

VEN [51] 0.2152 3.9015 0.5234

Photo Triage [4] 0.2240 3.7418 0.5428

Euclidean Loss 0.2597 4.5234 0.4741

Siamese CNN 0.1832 3.1404 0.5874

Face Heatmap CNN 0.1771 3.0961 0.5961

Face Quality CNN 0.1646 2.9581 0.6096
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troduce the relaxation of ground truth score. Furthermore,

we incorporate face information in our network, which is

not considered in photo triage [4].

Moreover, we show the ablation analysis of three pro-

posed networks at the bottom of Table 2. Face Quality CNN

achieves better results compared with Face Heatmap CNN

and Siamese CNN, which indicates facial features including

size, location, and quality of face are both important factors

when considering the best frames in short videos. In Fig-

ure 5, we show more details of the network performance on

videos with a different number of best frames. Videos with

more best frames are usually more predictable than videos

with less best frames.
Table 3: Comparison results between two sampling strate-

gies. Best pairs sampling is beneficial for best frame selec-

tion than all pairs sampling.

Sampling Strategy SD RD AP

All pairs sampling 0.2239 3.7418 0.5428

Best pairs sampling 0.1832 3.1404 0.5874

5.4. Analysis on Sampling Strategies

We further analyze whether it is necessary to sample

more pairs of frames to train the networks. We compare

with two sampling strategies for learning Siamese CNN.

The first one is all pairs sampling where for each video

in the training set, we sample two frames as a pair when

the two frames have different scores. The second one is

best pairs sampling where for each pair of frames, it in-

cludes one frame is the best frame, and another is not. We

compare the two sampling strategies on Siamese CNN. The

results shown in Table 3 show the advantage of best pairs

sampling as it has better performance than all pairs sam-

pling on all three evaluation metrics. The comparison indi-

cates it is more important to show networks the difference

between the best frame and other frames rather than pass-

ing all pairs of frames into networks when train networks to

learn the most representative frame from a video sequence.

6. Conclusion and Discussion

In this article, we introduce a challenging problem,

which is the best frame selection in short videos. To fa-

cilitate the study, we collect a large dataset that includes

11, 000 short videos. Based on the dataset, we introduce an

end-to-end learning model with a ranking objective to select

the best frames by considering both the representativeness

and facial features in frames. The proposed method outper-

forms existing studies significantly on the introduced eval-

uation metrics. However, for the short videos with dramati-

cally changing content such as sports videos that record bas-

ketball games where some frames focus on one player and
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(a) Average score difference for the videos that have the same

number of best frames.
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(b) Average rank difference for the videos that have the same

number of best frames.
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(c) Average accurate percentage for the videos that have the

same number of best frames.

Figure 5: The score difference, rank difference, and accu-

rate percentage for videos in the testing set with the different

number of best frames.

others focus on a team of players, the proposed method may

not select the best frame that seizes video content. We have

tried using a recurrent neural network to consider all frames

in a short video when deciding the best frame. Unfortu-

nately, we did not observe significant improvement. For fu-

ture work, it would be interesting to investigate other factors

that decide the selection of best frames.
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buquerque Araújo. Vsumm: A mechanism designed to pro-

duce static video summaries and a novel evaluation method.

Pattern Recognition Letters, 32(1):56–68, 2011.

[11] S. Dhar, V. Ordonez, and T. L. Berg. High level describ-

able attributes for predicting aesthetics and interestingness.

In CVPR, pages 1657–1664. IEEE, 2011.

[12] F. Dirfaux. Key frame selection to represent a video. In

Proceedings 2000 International Conference on Image Pro-

cessing (Cat. No. 00CH37101), volume 2, pages 275–278.

IEEE, 2000.

[13] S. Drucker, C. Wong, A. Roseway, S. Glenner, and

S. De Mar. Photo-triage: Rapidly annotating your digital

photographs. 2003.

[14] R. Dubey, J. Peterson, A. Khosla, M.-H. Yang, and

B. Ghanem. What makes an object memorable? In ICCV,

pages 1089–1097, 2015.

[15] Y. Fu, T. M. Hospedales, T. Xiang, S. Gong, and Y. Yao. In-

terestingness prediction by robust learning to rank. In ECCV,

pages 488–503. Springer, 2014.

[16] B. Gong, W.-L. Chao, K. Grauman, and F. Sha. Diverse

sequential subset selection for supervised video summariza-

tion. In NIPS, pages 2069–2077, 2014.

[17] Y. Guo, M. Liu, T. Gu, and W. Wang. Improving photo

composition elegantly: Considering image similarity during

composition optimization. In Computer graphics forum, vol-

ume 31, pages 2193–2202. Wiley Online Library, 2012.

[18] M. Gygli, H. Grabner, H. Riemenschneider, F. Nater, and

L. Van Gool. The interestingness of images. In ICCV, pages

1633–1640, 2013.

[19] M. Gygli, H. Grabner, H. Riemenschneider, and L. Van Gool.

Creating summaries from user videos. In ECCV, pages 505–

520. Springer, 2014.

[20] G. B. Huang, M. Mattar, T. Berg, and E. Learned-Miller. La-

beled faces in the wild: A database forstudying face recog-

nition in unconstrained environments. In Workshop on faces

in’Real-Life’Images: detection, alignment, and recognition,

2008.

[21] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.

Dally, and K. Keutzer. Squeezenet: Alexnet-level accuracy

with 50× fewer parameters and<0.5 mb model size. arXiv

preprint arXiv:1602.07360, 2016.

[22] P. Isola, D. Parikh, A. Torralba, and A. Oliva. Understanding

the intrinsic memorability of images. In NIPS, pages 2429–

2437, 2011.

[23] D. E. Jacobs, D. B. Goldman, and E. Shechtman. Cosaliency:

Where people look when comparing images. In Proceedings

of the 23nd annual ACM symposium on User interface soft-

ware and technology, pages 219–228. ACM, 2010.

[24] L. Kaufman, D. Lischinski, and M. Werman. Content-aware

automatic photo enhancement. In Computer Graphics Fo-

rum, volume 31, pages 2528–2540. Wiley Online Library,

2012.

[25] A. Khosla, A. Das Sarma, and R. Hamid. What makes an

image popular? In WWW, pages 867–876. ACM, 2014.

[26] A. Khosla, R. Hamid, C.-J. Lin, and N. Sundaresan. Large-

scale video summarization using web-image priors. In

CVPR, pages 2698–2705, 2013.

[27] S. Kong, X. Shen, Z. Lin, R. Mech, and C. Fowlkes. Photo

aesthetics ranking network with attributes and content adap-

tation. In ECCV, pages 662–679. Springer, 2016.

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, pages 1097–1105, 2012.

[29] W.-S. Lai, Y. Huang, N. Joshi, C. Buehler, M.-H. Yang, and

S. B. Kang. Semantic-driven generation of hyperlapse from

360 degree video. IEEE transactions on visualization and

computer graphics, 24(9):2610–2621, 2017.

[30] Y. J. Lee, J. Ghosh, and K. Grauman. Discovering important

people and objects for egocentric video summarization. In

CVPR, pages 1346–1353. IEEE, 2012.

[31] H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua. A convolu-

tional neural network cascade for face detection. In CVPR,

pages 5325–5334, 2015.

[32] T. Liu and J. R. Kender. Optimization algorithms for the se-

lection of key frame sequences of variable length. In ECCV,

pages 403–417. Springer, 2002.

[33] X. Lu, Z. Lin, H. Jin, J. Yang, and J. Z. Wang. Rapid: Rat-

ing pictorial aesthetics using deep learning. In Proceedings

of the 22nd ACM international conference on Multimedia,

pages 457–466. ACM, 2014.

[34] X. Lu, Z. Lin, X. Shen, R. Mech, and J. Z. Wang. Deep

multi-patch aggregation network for image style, aesthetics,

and quality estimation. In ICCV, pages 990–998, 2015.

3220



[35] Z. Lu and K. Grauman. Story-driven summarization for ego-

centric video. In CVPR, pages 2714–2721, 2013.

[36] W. Luo, X. Wang, and X. Tang. Content-based photo quality

assessment. In ICCV, pages 2206–2213. IEEE, 2011.

[37] Y. Luo and X. Tang. Photo and video quality evaluation:

Focusing on the subject. In ECCV, pages 386–399. Springer,

2008.

[38] B. Mahasseni, M. Lam, and S. Todorovic. Unsupervised

video summarization with adversarial lstm networks. In

CVPR, volume 1, 2017.

[39] N. Murray, L. Marchesotti, and F. Perronnin. Ava: A large-

scale database for aesthetic visual analysis. In CVPR, pages

2408–2415. IEEE, 2012.

[40] C.-W. Ngo, Y.-F. Ma, and H.-J. Zhang. Automatic video

summarization by graph modeling. In CVPR, pages 104–

109. IEEE, 2003.

[41] M. Nishiyama, T. Okabe, I. Sato, and Y. Sato. Aesthetic qual-

ity classification of photographs based on color harmony.

In Computer Vision and Pattern Recognition (CVPR), 2011

IEEE Conference on, pages 33–40. IEEE, 2011.

[42] D. Potapov, M. Douze, Z. Harchaoui, and C. Schmid.

Category-specific video summarization. In ECCV, pages

540–555. Springer, 2014.

[43] J. Ren, X. Shen, Z. L. Lin, R. Mech, and D. J. Foran. Per-

sonalized image aesthetics. In ICCV, pages 638–647, 2017.

[44] M. Silva, W. Ramos, J. Ferreira, F. Chamone, M. Cam-

pos, and E. R. Nascimento. A weighted sparse sampling

and smoothing frame transition approach for semantic fast-

forward first-person videos. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

2383–2392, 2018.

[45] Y. Song, M. Redi, J. Vallmitjana, and A. Jaimes. To click

or not to click: Automatic selection of beautiful thumbnails

from videos. In Proceedings of the 25th ACM International

on Conference on Information and Knowledge Management,

pages 659–668. ACM, 2016.

[46] Y. Song, J. Vallmitjana, A. Stent, and A. Jaimes. Tvsum:

Summarizing web videos using titles. In CVPR, pages 5179–

5187, 2015.

[47] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In CVPR, pages 1–9, 2015.

[48] H. Tang, N. Joshi, and A. Kapoor. Learning a blind measure

of perceptual image quality. In CVPR, pages 305–312. IEEE,

2011.

[49] T. C. Walber, A. Scherp, and S. Staab. Smart photo selec-

tion: Interpret gaze as personal interest. In Proceedings of

the 32nd annual ACM conference on Human factors in com-

puting systems, pages 2065–2074. ACM, 2014.

[50] Y. Wang, Z. Lin, X. Shen, R. Mech, G. Miller, and G. W.

Cottrell. Event-specific image importance. In CVPR, pages

4810–4819, 2016.

[51] Z. Wei, J. Zhang, X. Shen, Z. Lin, R. Mech, M. Hoai, and

D. Samaras. Good view hunting: Learning photo composi-

tion from dense view pairs. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

5437–5446, 2018.

[52] A. D. Well and J. L. Myers. Research design & statistical

analysis. Psychology Press, 2003.

[53] H. Yang, B. Wang, S. Lin, D. Wipf, M. Guo, and B. Guo. Un-

supervised extraction of video highlights via robust recurrent

auto-encoders. In ICCV, pages 4633–4641, 2015.

[54] T. Yao, T. Mei, and Y. Rui. Highlight detection with pairwise

deep ranking for first-person video summarization. In CVPR,

pages 982–990, 2016.

[55] N. Yu, X. Shen, Z. Lin, R. Mech, and C. Barnes. Learn-

ing to detect multiple photographic defects. arXiv preprint

arXiv:1612.01635, 2016.

[56] L. Yuan and J. Sun. Automatic exposure correction of con-

sumer photographs. In ECCV, pages 771–785. Springer,

2012.

[57] K. Zhang, W.-L. Chao, F. Sha, and K. Grauman. Summary

transfer: Exemplar-based subset selection for video summa-

rization. In CVPR, pages 1059–1067, 2016.

[58] K. Zhang, W.-L. Chao, F. Sha, and K. Grauman. Video sum-

marization with long short-term memory. In ECCV, pages

766–782. Springer, 2016.

[59] J.-Y. Zhu, A. Agarwala, A. A. Efros, E. Shechtman, and

J. Wang. Mirror mirror: Crowdsourcing better portraits.

ACM Transactions on Graphics (TOG), 33(6):234, 2014.

3221


