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Abstract

This work presents Kornia – an open source computer

vision library which consists of a set of differentiable rou-

tines and modules to solve generic computer vision prob-

lems. The package uses PyTorch as its main backend both

for efficiency and to take advantage of the reverse-mode

auto-differentiation to define and compute the gradient of

complex functions. Inspired by OpenCV, Kornia is com-

posed of a set of modules containing operators that can be

inserted inside neural networks to train models to perform

image transformations, camera calibration, epipolar geom-

etry, and low level image processing techniques, such as

filtering and edge detection that operate directly on high

dimensional tensor representations. Examples of classical

vision problems implemented using our framework are pro-

vided including a benchmark comparing to existing vision

libraries.

1. Introduction

Computer vision has driven a lot of advances in modern

society for different industries such as self driving cars, in-

dustrial robotics, visual effects, image search, etc resulting

in a wide field of applications. One of the key components

of this achievement has been due to the open-source soft-

ware and the community that helped to make all this possi-

ble by providing open-source implementations of the main

computer vision algorithms.

There exist several open-source libraries widely used by

the computer vision community designed and optimized

to process images using Central Processing Units (CPUs).

However, many of the best performing computer vision al-

gorithms are now based on deep learning, processing im-

ages in parallel using Graphical Processing Units (GPUs).

Within that context, a framework that is gaining popularity

is Pytorch [41] due to its reverse-mode automatic differen-

Color Filtering Geometry

Figure 1: The library implements routines for low level im-

age processing tasks using native PyTorch operators and

their custom optimization. The purpose of the library is

to be used for large-scale vision projects, data augmenta-

tion, or for creating computer vision layers inside of neural

network layers that allow for backprogating error through

them. The above results are obtained from a given batch of

images using data parallelism in the GPU.

tiation mechanism, dynamic computation graph, distributed

learning and eager/script execution modes. PyTorch and

its ecosystem provide a few packages to work with im-

ages such as it’s most popular toolkit, torchvision, which

is mainly designed to perform data augmentation, read pop-

ular datasets and implementations of state-of-the-art models

for tasks such as detection, segmentation, image generation,

and landmark detection. Yet, it lacks implementations for
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standard vision algorithms that can be run directly on GPUs

using their native tensor data structures.

This paper introduces Kornia, an open source computer

vision library built on top of PyTorch that will help students,

researchers, companies and entrepreneurs to implement

computer vision applications oriented towards deep learn-

ing. Our library, in contrast to traditional CPU-based vision

frameworks, provides standard image processing functions

implemented on GPUs that can also be embedded inside

deep networks.

Kornia is designed to fill the gap between PyTorch and

computer vision communities and it is based on some of

the pre-existing open source solutions for computer vision

(PIL, skimage, torchvision, tf.image), but with a strong in-

spiration on OpenCV [9]. Kornia combines the simplicity

of both frameworks in order to leverage differentiable pro-

gramming for computer vision taking properties from Py-

Torch such as differentiability, GPU acceleration, or dis-

tributed data-flows.

In addition to introducing Kornia, this paper contributes

some demos showing how Kornia eases the implementa-

tion of several computer vision tasks like image registra-

tion, depth estimation or local features detection which are

common in many computer vision systems.

The rest of the paper is organized as follows: we review

the state of the art in terms of open source software for com-

puter vision and machine learning in Section 2; Section 3

describes the design principles of the proposed library and

all its components, and Section 4 introduces use cases that

can be implemented using the library’s main features.

2. Related work

We present in this section a review of the state of the art

for computer vision software. Related works will be divided

in two main categories: traditional computer vision and

deep learning oriented computer vision frameworks. The

first with a focus on the very first libraries that implement

mostly algorithms optimized for the CPU, and the second

targeting solutions for GPU.

2.1. Traditional computer vision libraries

Nowadays there are many different frameworks that im-

plement computer vision algorithms. However, during the

early days of computer vision, it was difficult to find any

centralized software with image processing algorithms. All

the existing software for computer vision was mostly de-

veloped within universities or at small teams in companies,

not shipped in any form and neither released to the public

domain.

It was not until Intel released the first version of the Open

Source Computer Vision Library (OpenCV). OpenCV [9]

which initially implemented computer vision algorithms for

real-time ray tracing, visual interfaces and 3D display walls.

All the algorithms were made available with a permissive

library not only research, but also production. OpenCV

changed the paradigm within the computer vision commu-

nity given the fact that most of the state of art algorithms

in computer vision were now put in an common framework

written very efficient in C, becoming in that way a reference

within the community.

The computer vision community shifted to improving or

besting existing algorithms and started sharing their code

with the community. This resulted in new code optimized

mostly for CPU. Vedaldi et al. introduced VLFeat [57],

an open source library that implements popular computer

vision algorithms specializing in image understanding and

local features extraction and matching. VLFeat was writ-

ten in C for efficiency and compatibility, with interfaces

in MATLAB. For ease of use, it supported Windows, Mac

OS X, and Linux, and has been a reference e.g for efficient

implementations of algorithms such as Fisher Vector [47],

VLAD [24], SIFT [33], and MSER [35].

MathWorks released a proprietary Computer Vision

Toolbox inside one of its famous product MATLAB [36]

that covered many of the main computer vision, 3D vision,

and video processing algorithms which has been used by

many computer vision students and researchers becoming

quite standard within the researcher community. The com-

puter vision community have been using to MATLAB for

some decades, and many still use it.

Existing frameworks like Scikit-learn [42] partially im-

plement machine learning algorithms used by the computer

vision community for classification, regression and clus-

tering including support vector machines, random forests,

gradient boosting and k-means. Similar project as Scikit-

image [56] implement open source collections of algo-

rithms for image processing.

2.2. Deep learning and computer vision

Computer vision frameworks have been optimized for

CPU to fulfill realtime applications, but the recent success

of deep learning in the field object classification changed the

way of addressing many traditional computer vision tasks.

A. Krizhevsky et al [29] took the old ideas from Yann Le-

Cun’s Convolutional Neural Networks (CNNs) [31] paper

with an architecture similar to LeNEt-5 and achieved the

best results by far in the ILSVRC [46] image classification

task. This was a breakthrough moment for the computer

vision community, and changed the way computer vision

was understood. In terms of software, new frameworks

such Caffe [25], Torch [13], MXNet [12], Chainer [55],

Theano [7], MatConvNet [58], PyTorch [41], and Tensor-

flow [3] appeared on the scene implementing many old

ideas in the GPU using parallel programming [14] as an

approach to handle the need for large amounts of data pro-

cessing in order to train deep learning models.
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CPU GPU Batch Processing Differentiable Distributed Multi-dimensional array

torchvision[41] X × × × × ×
scikit-image [56] X × × × × ×
opencv [9] X X × × × ×
tensorflow.image [3] X X X X X X

Kornia X X X X X X

Table 1: Comparison of different computer vision libraries by their main features. Kornia and tensorflow.image are the only

frameworks that mostly run on the GPU, using batched data, differentiable and have the ability to be distributed.

With the rise of deep learning, most of the standard com-

puter vision frameworks have moved to being used more

for certain geometric vision functions, data pre-processing,

data augmentation on the CPU in order to be transferred

later to the GPU as well as post processing to refine results.

Examples of libraries that are currently used to perform pre

and post-processing on the CPU within the deep learning

frameworks are OpenCV or PIL.

Given that most of the deep learning frameworks still use

standard vision libraries to perform the pre and post pro-

cessing on CPU and similar to Tensorflow.image, as Table 1

shows, we fill the gap within the PyTorch ecosystem intro-

ducing a computer vision library that implements standard

vision algorithms taking advantage of the different proper-

ties that modern frameworks for deep learning like PyTorch

can provide: 1) differentiability for commodity avoiding to

write derivative functions for complex loss functions; 2)

transparency to perform parallel or serial computing either

in CPU or GPU devices using batches in a common API; 3)

distributed for computing large-scale applications; 4) code

ready for production. For this reason, we present Kornia, a

modern computer vision framework oriented for deep learn-

ing.

3. Kornia: Computer Vision for PyTorch.

Kornia1 can be defined as a computer vision library for

PyTorch, inspired by OpenCV and with strong GPU sup-

port. Kornia allows users to write code as they were using

plain PyTorch providing high level interfaces to vision algo-

rithms computed directly on tensors. In addition, some of

the main PyTorch features are inherited by Kornia such as

a high performance environment with easy access to auto-

matic differentiation, executing models on different devices

(CPU and GPU), parallel programming by default, commu-

nication primitives for multiprocess parallelism across sev-

eral computation nodes and code ready for production. In

the following, we remark these properties.

Differentiable. An image processing algorithm that can

be defined as a Direct Acyclic Graph (DAG) structure can,

thanks to the reverse-mode [53] auto-differentiation [19],

compute gradients via backpropagation [27]. In practice,

this means that such computer vision functions are opera-

1https://kornia.org

tors that can be placed as layers within the neural networks

for training via backpropagating through them.

Transparent API. A key component in the library de-

sign is its easy way to seamlessly add hardware accelera-

tion to your program with a minimum of effort. The library

API is agnostic to the input source device, meaning that the

algorithms can either be run in CPU or GPU.

Parallel programming. Batch processing is another im-

portant feature that enables running vision operators using

data parallelism by default. The assumption for the opera-

tors is to receive as input batches of N-channel image ten-

sors, contrary to standard vision libraries with single 1-3

channel images. Hence, for Kornia working with multispec-

tral or hyperspectral images would be direct.

Distributed. Support for communication primitives for

multi-process parallelism across several computation nodes

running on one or more machines. The library design al-

lows users to run their applications in different distributed

systems, or even able to process large vision pipelines in an

efficient way.

Production. Since its latest versions, PyTorch is able

to serialize and optimize models for production purposes.

Based on its just-in-time (JIT) compiler, PyTorch traces the

models creating TorchScript programs at runtime in order to

be run in a standalone C++ program using kernel fusion to

do faster inference making out library a perfect fit also for

built-in vision products.

3.1. Library structure

Similar to other frameworks, the library is composed

of several submodules grouped by generic computer vision

topics:

kornia.color: provides operators for color space

conversions. The functionality found in this module covers

conversions such as Grayscale, RGB, BGR, HSV, YCbCr.

In addition, operators to adjust color properties such as

brightness, contrast hue or saturation are also provided.

kornia.features: provides operators to detect lo-

cal features, compute descriptors, and perform feature

matching. The module provides differentiable versions of

the Harris corner detector[20], Hessian detector [6], their

scale and affine covariant versions [38], DoG [33], patch

dominant gradient orientation [33] and the SIFT descrip-

tor [33]. kornia.features provides a high level API
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# load data: Bx3xHxW

img_batch = load_data_batch(...)

# send data to CUDA

if torch.cuda.is_available():

img_batch = img_batch.cuda()

# define vision pipeline

sobel_fcn = torch.nn.Sequential(

kornia.color.RgbToGrayscale(),

kornia.filters.Sobel(),

)

# distribute data

sobel_fcn = torch.nn.DataParallel(

sobel_fcn, [device_ids_list]

)

# run the pipeline: Bx1xHxW

img_sobel = sobel_fcn(img_batch)

Figure 2: Left: Python script showing our image processing API. Notice that the API is transparent to the device, and can be

easily combined with other PyTorch components. Right: Results of the benchmark comparing Kornia to other state-of-the-art

vision libraries. We measure the elapsed time for computing Sobel edges (lower is better).

to perform detections in scale-space, where classical hard

non-maxima suppression is replaced with its soft version

similar to the recently proposed Multiscale Index Proposal

layer (M-SIP) [30]. One can seamlessly replace any or all

modules with deep learned counterparts. A set of operators

for work with local features geometry is also provided.

kornia.filters: provides operators to perform lin-

ear or non-linear filtering operations on tensor images.

Functions to convolve tensors with kernels, for computing

first and second order image derivatives, or high level dif-

ferentiable implementations for blurring algorithms such as

Gaussian and Box blurs, Laplace, and Sobel[26] edges de-

tector.

kornia.geometry: module devoted to perform 2D

and 3D geometry, consist of submodules: transforms:,

camera:, conversions:, linalg: and warp:.

kornia.losses:A stack of loss functions to be used

to solve specific vision tasks such as semantic segmentation,

and image reconstruction such as the Structural Similar In-

dex Loss (SSIM) [59].

kornia.contrib: A set of experimental operators

and user contributions containing routines for splitting ten-

sors in blocks, or to perform subpixel accuracy like the sof-

targmax2d operator.

4. Use cases

This section presents practical examples of the library

use for well known classical vision problems demonstrating

its easiness for computing the derivatives of complex loss

functions and releasing the user of that part. We first show

quantitative and qualitative results on experiments compar-

ing our image processing API compared to existing image

processing libraries. Next, an example of image registration

by its homography and a depth estimation problem showing

the use of our differentiable warpers in a multi-scale fash-

ion. Finally, we show an example making use of our differ-

entiable local features implementations to solve a classical

wide baseline stereo matching problem.

4.1. Batch image processing

In Section 2 we reviewed existing libraries implementing

classical image processing algorithms optimized for practi-

cal applications such noise reduction, image enhancement,

and restoration. In this example we want show the utility

of our framework for similar purposes. In addition, we in-

clude a benchmark comparing our framework to other ex-

isting vision libraries showing that even though Kornia is

not explicitly optimized for computer vision, similar results

can be obtained in terms of performance.

As stated in section 3.1, Kornia provides implementa-

tions for low level processing e.g. color conversions, filter-

ing and geometric image transformations that implicitly use

native PyTorch operators such as 2D convolutions and sim-

ple matrix multiplications all optimized for CPU and GPU

usage. Qualitative results of our image processing API are

illustrated in figure 1. Our API can be combined with other
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Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

Figure 3: Results of the image registration by gradient descent. Each of the columns represent a different level of the image

pyramid used to optimize the loss function. Row 1: the original source image; Row 2: the original destination image; Row 3:

the source image warped to destination at the end of the optimization loop at that specific scale level. Row 4: the photometric

error between the warped image using the estimated homography and the warped image using the ground truth homography.

The algorithm starts to converge in the lower scales refining the solution as it goes to the upper levels of the pyramid.

PyTorch components allowing to run vision algorithms via

parallel programming, or even sending composed functions

to distributed environments. In Figure 2, we provide Python

code highlighting the simplicity of our API and how, with

very few lines of code, we can create a composed function

to compute the Sobel edges [26] of a given batch of im-

ages transparent to the device or even send the composed

function to a distributed set of devices in order to build ap-

plications at large-scale, or for just simply do the data aug-

mentation in the GPU.

Benchmark. The scope of this library is to not provide

explicitly optimized code for vision, but we want to show an

experiment comparing the performance of our library with

respect to other existing vision libraries e.g. OpenCV [9],

PIL, skimage [56] and scipy [42], see figure 2. The purpose

of this experiment is to not give a detailed benchmark be-

tween frameworks, but just to have an idea of how our im-

plementations compares to libraries that are very well op-

timized for computer vision. The setup of the experiment

assumes as input an RGB tensor of images with a fixed res-

olution of (256x256) varying the size of the batch. In this

experiment, we compute Sobel edges 500 times measuring

the median elapsed time between samples. The results show

that for small batches, Kornia’s performance is similar to

those obtained using other libraries. It is worth noting that

when we use a large batch size, the performance for our

CPU implementation is the lowest, but when using the GPU

we get the best timing performance. The machine used for

this experiment was an Intel(R) Xeon(R) CPU E5-1620 v3

@ 3.50GHz and a Nvidia Geforce GTX 1080 Ti.

4.2. Image registration by Gradient Descent

In the following, we show the potential of the library for

tasks requiring 2D planar geometry (for instance, marker-

based camera pose estimation, spatial transformer net-

works, etc.). Kornia provides a set of differentiable op-

erators to perform geometric image transformations such

as rotations, translations, scalings, shearings, as well as

affine and homography transformation. At the core of

the geometry module, we have implemented an operator

kornia.HomographyWarper, which warps by the ho-

mography a tensor in the reference frame A to a reference

frame B that can be used to put in correspondence a set of

images in a very efficient way.

Implementation. The task to solve is image registra-

tion using a multi-scale version of the Lucas-Kanade [5]

strategy. Given a pair of images Ia and Ib, it optimizes

the parameters of the homography Hb
a that minimizes the
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Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

Figure 4: Results of the depth estimation by gradient descent showing the depth map produced by the given set of calibrated

camera images over different scales. Each column represents a level of a multi-resolution image pyramid. Row 1 to 3: the

source images, where the 2nd row is the reference view; Row 3: the images from row 1 and 3 warped to the reference camera

given the depth at that particular scale level. Row 4 & 5: the estimated depth map and the error per pixel compared to the

ground truth depth map in the reference camera. The data used for these experiments was extracted from SceneNet RGB-D

dataset [37], containing photorealistic indoor image trajectories.

photometric error between Ib and the transformation of Îb
denoted as ω(Ia, H

b
a). Thanks to the Pytorch Autograd en-

gine this can be implemented without explicitly computing

the derivatives of the loss function from equation 1, result-

ing in a very compact and intuitive code.

Loss =

N∑

u,v

‖Ib − ω(Ia, H
b
a)‖1 (1)

The loss function is optimized at each level of a multi-

resolution pyramid, from the lower to the upper resolution

levels. Figure 3 shows the original images, warped images

and the error per pixel with respect to the ground truth warp

at each of the scale levels. We use the Adam [28] optimizer

with a learning rate of 1e − 3, iterating 200 times at each

scale level. As a side note, pixel coordinates are normalized

in the range of [−1, 1], meaning that there is no need to re-

scale the optimized parameters between pyramid levels.

4.3. Multi-View Depth Estimation by Gradient De-
scent

In this example we have implemented a fully differential

generic multi-view pipeline, using our framework, to allow

for systematically using multi-view video data for machine
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learning research and applications. For this purpose we

provide the kornia.DepthWarper operator that takes

an arbitrary number of calibrated camera views and warps

them to a reference camera frame given the depth in the ref-

erence frame.

Multi-view reconstruction is a well understood problem

with a good geometric model [21], and many approaches

for matching and optimization [39, 8, 51], and some recent

promising deep learning approaches [34]. We have found

current machine learning approaches [16, 22] to be limit-

ing, in that they have not been generalized to arbitrary num-

bers of views (spatial or temporal); and available datasets

[10, 17] are only stereo and low resolution. Many of

the machine learning approaches assume that there is high

quality ground truth depth provided as commonly available

datasets, which limits their application to new datasets or

new camera configurations. Classical approaches such as

planesweep, patch match or DTAM [40] have not been im-

plemented with deep learning in mind, and do not fit easily

into existing deep learning frameworks.

Implementation. We start with a simple formulation

that allows us to solve for depth images using gradient

descent with a variety of losses based on state of the art

classical approaches (photometric, depth consistency, depth

piece-wise smoothness, and multi-scale pyramids).

The multi-view reconstruction pipeline receives as input

a set of views, with RGB images and calibrated intrinsic

camera models, Ki, and pose estimates T i
ref, and then solves

for the depth image, dref, for a reference view. Since we

assume a calibrated setup, the depth value of a given pixel

uref = [uref, vref] in the reference view, dref, can be used to

compute the corresponding pixel location, ui = [ui, vi] in

any of the other views through simple projective geometry

Hi
ref = Ki · T

i
ref ·K

−1

ref . Given this, we can warp views onto

each other parameterized by depth and camera calibration

using a differentiable bilinear sampling as proposed in [23],
˜Iref = ω(Ii, H

i
ref,dref).

Similar to [39, 18, 43], depth is solved for by minimizing

a photometric error between the views warped to the refer-

ence view, (equation 2 and 3). We compute an additional

loss to encourage disparities to be locally smooth with a

penalty on the disparity gradients weighted by image gra-

dients as seen in equation 4. Finally, losses are combined

with a weighted sum (see in equation 5). These losses are

easily modified or extended, depending on how well the as-

sumptions about these losses fit the data, e.g. it is naive

and assumes photometric consistency which is only true for

small view displacements.

Lphoto1 =
1

n

n∑ 1− SSIM(Iref, ˜Iref)

2
(2)

Lphoto2 =
1

n

n∑
|Iref − ˜Iref| (3)

Lsmooth =
1

n

n∑
|∂x d|e

−‖∂xIi‖ + |∂y d|e
−‖∂yIi‖ (4)

Ltotal = αLphoto1 + (1− α)Lphoto2 + λLsmooth (5)

Figure 4 shows partial results obtained by the depth algo-

rithm implemented using Kornia. The algorithm receives

as input 3 calibrated views with RGB images (320x240).

We used Stochastic Gradient Descent (SGD) with momen-

tum and compute the depth at 7 different scales by blurring

the image and down-sampling the resolution by a factor of 2

from the previous size. To compute the loss, we up-sample

again to the original size using bilinear interpolation. The

refinement at each level was done for 500 iterations starting

from the lowest resolution and going up. The initial values

for depth were obtained by a random uniform sampling in a

range between 0 and 1.

4.4. Targeted adversarial attack on SIFT-matching

In the following example we show how to im-

plement fully differential wide baseline stereo match-

ing with local feature detectors and descriptors using

kornia.features. We demonstrate the differentiabil-

ity by making a targeted adversarial attack on the wide base-

line matching pipeline.

Local feature detectors and descriptors are the

workhorses of 3d reconstruction [49, 45], visual localiza-

tion [48] and image retrieval [52]. Although learning-based

methods now seems to dominate [15], recent benchmark

top-performers still use Difference-of-Gaussians aka SIFT

detector [2]. SIFT descriptor is still one of the best for 3d

reconstruction [50] tasks. Thus, we believe that community

would benefit from having GPU-accelerated and differen-

tiable version of the classical tools.

Adversarial attacks. Adversarial attacks is an area of

research which recently gained popularity after the seminal

work of Szegedy et al. [54] showing that small perturba-

tions in the input image can switch the neural network pre-

diction outcome. There are series of works showing that

CNN-based solution of classification [1], segmentation [4],

object detection [11], and image retrieval [32] tasks are all

prone to such attacks. Yet, the authors do not know of

any paper devoted to adversarial attacks on local features-

based image matching. Most of attack methods are ”white-

box” [1], which means they require access to the model gra-

dients w.r.t the input. This makes them an excellent choice

for a kornia.features differentiability demonstration.

Implementation. The two view matching task is posed in
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Figure 5: Targeted adversarial attack on image matching.

From top to bottom: original images, which do not match;

images, optimized by gradient descent to have local features

that match; the result of the attack: matching features (Hes-

sian detector + SIFT descriptor). Matching features, which

survived RANSAC geometric verification

a following way [44]: given two images Ia and Ib depicting

the same scene, find the correspondences between pixels in

images. If Ia and Ib do not depict the same scene, no corre-

spondences should be returned. This is typically solved by

detecting local features, describing the local patches with

descriptor and then matching by minimum descriptor dis-

tance with some filtering. Kornia has all these parts imple-

mented.

We consider the following adversarial attack: given the

non-matching image pair Ia, Ib, and the desired homogra-

phy Hb
a, modify images so that the correspondence finding

algorithm will output a non-negligible number of matches

consistent with the homography Hb
a. This means that both

local detectors should fire in specific locations and the local

patches around that location should be matchable by given

function:

Ltotal = Lloc + αLdesc + βLreg (6)

Lloc =
1

n

n∑
(p1 −Hp2)

2 (7)

Ldesc =
1

n

n∑
(1 + d(D1, D2)− d(D1, D2neg)) (8)

Lreg =
1

n

n∑
(I − Iinit)

2 (9)

where p1 is keypoint detected in Ia, p2 is closest reprojected

by the Hb
a keypoint detected in image Ib, σ1 and σ2 are

their scales, D1 and D2 – their descriptors, D2neg - hard

negative in batch, d(·, ·) – L2 distance, and Iinit is original

unmodified version of Ia and Ib.

The detector used in the example is the Hessian blob

detector [6]; the descriptor is the SIFT [33]. We keep the

top-2500 keypoints and use the Adam [28] optimizer with a

learning rate of 0.003. Figure 5 shows the original images,

optimized images and optimized images with matching fea-

tures visualized. The perturbations are not quite impercep-

tible, but that it is not the goal of the current example.

5. Conclusions

We have introduced Kornia, a library for computer vision

in PyTorch that implements traditional vision algorithms in

a differentiable fashion making use of the hardware accel-

eration to improve the performance. We demonstrated how

by using our library, classical vision problems such as im-

age registration by homography, depth estimation, or local

features matching can be very easily solved with a high per-

formance similar to existing libraries. By leveraging this

project, we believe that classical computer vision libraries

can take a different role within the deep learning environ-

ments as components of layers of the networks as well as

pre- and post-processing of the results. In the future, we

expect researchers and companies increase the number of

such contributions. At the time of camera ready, Kornia has

1700 github stars and 180 forks
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local descriptors into a compact image representation. In

CVPR, 2010. 2

[25] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-

tional architecture for fast feature embedding. In Proceed-

ings of the 22Nd ACM International Conference on Multi-

media, MM ’14, pages 675–678, New York, NY, USA, 2014.

ACM. 2

[26] N. Kanopoulos, N. Vasanthavada, and R. L. Baker. Design of

an image edge detection filter using the sobel operator. IEEE

Journal of solid-state circuits, 23(2):358–367, 1988. 4, 5

[27] H. J. Kelley. Gradient theory of optimal flight paths. Ars

Journal, 30(10):947–954, 1960. 3

[28] D. P. Kingma and J. Ba. Adam: A Method for Stochastic

Optimization. In ICLR, Dec 2015. 6, 8

[29] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

F. Pereira, C. Burges, L. Bottou, and K. Weinberger, editors,

NIPS, pages 1097–1105, 2012. 2

[30] A. B. Laguna, E. Riba, D. Ponsa, and K. Mikolajczyk.

Key.net: Keypoint detection by handcrafted and learned

CNN filters. In ICCV, 2019. 4

[31] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, Nov 1998. 2

[32] J. Li, R. Ji, H. Liu, X. Hong, Y. Gao, and Q. Tian. Universal

perturbation attack against image retrieval. In ICCV, 2019. 7

[33] D. G. Lowe. Distinctive image features from scale-invariant

keypoints. IJCV 2004, 60(2):91–110, 2004. 2, 3, 8

[34] W. Luo, A. Schwing, and R. Urtasun. Efficient deep learning

for stereo matching. In CVPR, pages 5695–5703, 2016. 7

[35] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide

baseline stereo from maximally stable extremal regions. In

BMVC, 2002. 2

3682



[36] MATLAB. version 7.10.0 (R2010a). The MathWorks Inc.,

Natick, Massachusetts, 2010. 2

[37] J. McCormac, A. Handa, S. Leutenegger, and A. J.Davison.

Scenenet rgb-d: Can 5m synthetic images beat generic ima-

genet pre-training on indoor segmentation. 2017. 6

[38] K. Mikolajczyk and C. Schmid. Scale & affine invariant in-

terest point detectors. IJCV 2004, 60(1):63–86, 2004. 3

[39] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison. Dtam:

Dense tracking and mapping in real-time. In ICCV, pages

2320–2327, 2011. 7

[40] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison. Dtam:

Dense tracking and mapping in real-time. In Proceedings

of the 2011 International Conference on Computer Vision,

ICCV ’11, pages 2320–2327, Washington, DC, USA, 2011.

IEEE Computer Society. 7

[41] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-

Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-

matic differentiation in PyTorch. In NIPS Autodiff Workshop,

2017. 1, 2, 3

[42] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,

B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,

V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-

chine Learning in Python. Journal of Machine Learning Re-

search, 12:2825–2830, 2011. 2, 5

[43] S. Pillai, R. Ambrus, and A. Gaidon. Superdepth: Self-

supervised, super-resolved monocular depth estimation.

CoRR, abs/1810.01849, 2018. 7

[44] P. Pritchett and A. Zisserman. Wide baseline stereo match-

ing. In ICCV, pages 754–, 1998. 8

[45] A. Resindra, A. Torii, and M. Okutomi. Structure from mo-

tion using dense cnn features with keypoint relocalization.

IPSJ Transactions on Computer Vision and Applications, 10,

Dec 2018. 7

[46] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual

Recognition Challenge. IJCV, pages 1–42, April 2015. 2

[47] J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek. Im-

age classification with the fisher vector: Theory and practice.

IJCV, 105(3):222–245, Dec. 2013. 2

[48] P.-E. Sarlin, C. Cadena, R. Siegwart, and M. Dymczyk. From

coarse to fine: Robust hierarchical localization at large scale.

2019. 7

[49] J. L. Schonberger and J.-M. Frahm. Structure-from-motion

revisited. In CVPR, pages 4104–4113, 2016. 7

[50] J. L. Schönberger, H. Hardmeier, T. Sattler, and M. Pollefeys.

Comparative Evaluation of Hand-Crafted and Learned Local

Features. In CVPR, 2017. 7

[51] L. Sevilla-Lara, D. Sun, V. Jampani, and M. J. Black. Optical

flow with semantic segmentation and localized layers. CoRR,

abs/1603.03911, 2016. 7

[52] T. Shen, Z. Luo, L. Zhou, R. Zhang, S. Zhu, T. Fang, and

L. Quan. Matchable image retrieval by learning from surface

reconstruction. arXiv preprint arXiv:1811.10343, 2018. 7

[53] B. Speelpenning. Compiling Fast Partial Derivatives of

Functions Given by Algorithms. PhD thesis, Department

of Computer Science, University of Illinois at Urbana-

Champaign, Urbana-Champaign, IL, January 1980. 3

[54] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,

I. Goodfellow, and R. Fergus. Intriguing properties of neural

networks. In ICLR, 2014. 7

[55] S. Tokui, R. Okuta, T. Akiba, Y. Niitani, T. Ogawa, S. Saito,

S. Suzuki, K. Uenishi, B. Vogel, and H. Yamazaki Vincent.

Chainer: A deep learning framework for accelerating the

research cycle. In Proceedings of the 25th ACM SIGKDD

International Conference on Knowledge Discovery &#38;

Data Mining, KDD ’19, pages 2002–2011, New York, NY,

USA, 2019. ACM. 2

[56] S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias,

F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, T. Yu,

and the scikit-image contributors. scikit-image: image pro-

cessing in Python. PeerJ, 2:e453, 6 2014. 2, 3, 5

[57] A. Vedaldi and B. Fulkerson. VLFeat: An open and portable

library of computer vision algorithms. http://www.

vlfeat.org/, 2008. 2

[58] A. Vedaldi and K. Lenc. Matconvnet: Convolutional neural

networks for matlab. In ACM International Conference on

Multimedia, 2015. 2

[59] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli.

Image quality assessment: From error visibility to structural

similarity. TIP, 13(4):600–612, Apr. 2004. 4

3683


