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Abstract

“Text can appear anywhere”. This property requires us

to carefully process all the pixels in an image in order to

accurately localize all text instances. In particular, for the

more difficult task of localizing small text regions, many

methods use an enlarged image or even several rescaled

ones as their input. This significantly increases the pro-

cessing time of the entire image and needlessly enlarges

background regions. If we were to have a prior telling us

the coarse location of text instances in the image and their

approximate scale, we could have adaptively chosen which

regions to process and how to rescale them, thus signifi-

cantly reducing the processing time. To estimate this prior

we propose a segmentation-based network with an addi-

tional “scale predictor”, an output channel that predicts

the scale of each text segment. The network is applied on

a scaled down image to efficiently approximate the desired

prior, without processing all the pixels of the original image.

The approximated prior is then used to create a compact

image containing only text regions, resized to a canonical

scale, which is fed again to the segmentation network for

fine-grained detection. We show that our approach offers a

powerful alternative to fixed scaling schemes, achieving an

equivalent accuracy to larger input scales while processing

far fewer pixels. Qualitative and quantitative results are

presented on the ICDAR15 and ICDAR17 MLT benchmarks

to validate our approach.

1. Introduction

Reading text from natural images is a long-standing

problem in the field of computer vision. Usually, the prob-

lem involves two stages: (1) A text detection mechanism,

whose purpose is to localize the individual words in the im-

age, and (2) A text recognition mechanism, whose purpose

is to take each detected text region and parse it into a single

word.

When it comes to the detection stage, recent methods

have made impressive leaps in terms of performance [8,
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Figure 1: The “performance vs accuracy” trade-off. S,

M and L denote an input with a long side of 720, 1024
and 1440 accordingly. Ours is the proposed single-scale

method, while Ours+ is boosted using the proposed scaling

scheme.

16, 15, 3, 40, 35, 1, 21, 17]. These methods can most of-

ten be classified into two distinct types. The first type is

anchor-based approaches [8, 16, 15, 21, 17], which build

upon popular object detection CNN architectures, such as

SSD [20], Yolo [32], or Faster R-CNN [33], and directly

predict a bounding box or quadrilateral around the text.

While efficient, they are less suited for detecting rotated or

irregular text. The second type is segmentation-based meth-

ods [3, 40, 35, 1], which usually predict, for each pixel, a

text/no-text semantic mask from which bounding boxes are

extracted using an additional post-processing stage. While

this representation is more flexible, it struggles with small

text instances which are close to one another and cannot be

easily separated.

Indeed, one of the major difficulties in text detection in

general, and specifically with the segmentation approaches,

lies in detecting small text instances. While much effort has

been put into the problem by creating better post-processing

schemes [3, 35, 24], the problem of finding better scaling

schemes is somewhat overlooked. Instead, most methods

simply resort to fixed scaling schemes which are applied on

top of their proposed baseline. That is, feeding the same im-

age into the baseline network in an enlarged scale, or even
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Figure 2: Canonical representations, “knapsacks”, created using the proposed approach on ICDAR17 images. In the left

image, note how scaling is applied adaptively to create a uniform scale. In the right image, see how all background regions

are removed before rescaling.

multiple ones. Although effective in terms of recall, these

schemes are wasteful both in terms of runtime and memory.

This can be attributed to two main factors:

1. In many cases, text occupies only small regions of

the original image. Thus, when enlarging the im-

age to capture small text instances we also redundantly

process many more background pixels.

2. Enlarging the entire image changes the scale of all text

regions, even though many text regions might al-

ready be in an appropriate scale for detection and

do not need to be enlarged. Large text might even be

harder to detect when further enlarged. To mitigate

that some methods choose to run multiple fixed scales,

but this also increases the processing cost.

In this paper, an approach is presented to tackle these

problems. The core idea behind our approach is that localiz-

ing regions of text is much easier than localizing individual

words. Hence, we propose to utilize a coarse forward eval-

uation on a downsized image to locate text regions while si-

multaneously approximating the scale of each such region.

This information is used to create a compact representation

containing only text regions, where each region is resized

to a canonical scale, as shown in Figure 2. The compact

representation can then be processed using a single forward

pass, resulting in a much more efficient evaluation process.

In practice, this is achieved by taking a semantic segmen-

tation method and adding an output channel that represents

the height of each text instance. While this information is

redundant when the detections are well separated, it is cru-

cial when several text instances are merged. That is because

the raw segmentation mask cannot tell us whether a text

region contains a single large-scale line or several merged

lines of smaller text. The height channel, however, allows

us to easily retrieve the scale of each such region and scale it

as needed, assuring that the text will be well separated in the

second pass. These scaled text regions are then packed to-

gether into a single image, or “knapsack”, that is fed again

into the same segmentation network. The full process is

shown in Figure 3.

To validate our approach we propose and implement a

new semantic segmentation baseline, based on recent state-

of-the-art approaches, which uses a simple and efficient

post-processing scheme. Our scale channel is added to

the proposed baseline to create the final network. The ap-

proach is validated under varying conditions and bench-

marks, showing that our adaptive method is indeed a pow-

erful alternative to fixed scaling schemes.

The main contributions of this paper are:

• A novel scheme for adaptively scaling text images re-

sulting in a far more efficient process compared to

fixed scaling schemes.

• An improved semantic segmentation approach for text

detection requiring only a simple post-processing step.

2. Related Work

As mentioned above, current methods can be roughly di-

vided to anchor-based approaches [8, 16, 15, 21, 26, 17] and

segmentation-based ones [3, 40, 35, 9, 36, 39], where some

recent methods try to fuse the two types together [14, 19, 10,

25]. Our proposed pipeline is based on recent segmentation-

based text detection methods, which are discussed next. De-

tails on other approaches which are not covered in this work

are presented in [23].

Segmentation-based text detection approaches have

gained significant attention in recent years, starting from

the seminal works of Yao et al. [36] and Zhang et al. [39].

These works solve the problem of text detection by refor-

mulating it as a semantic segmentation scheme, which is

then solved by a Fully Convolutional Network (FCN) [22].

It was shown that these approaches are better suited for
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Figure 3: The proposed pipeline. First, a downsized image is fed into our base network to get initial segmentation and scale

masks. These masks are then used to create a canonical knapsack, containing only text regions in a uniform scale. This

knapsack is then fed again through the baseline network where the segmentation mask is then used to create the refined

localization of text instances.

rotated and irregular text and interest in them has subse-

quently emerged. These methods, however, share a com-

mon problem where adjacent word instances tend to con-

nect. This problem is inherent in nearly all segmentation

based methods, and recent segmentation based approaches

for text detection put a large emphasis on mitigating this

problem [31, 3, 35, 1].

The WordFence approach [31] learns an additional bor-

der class to force a better separation of word instances. Pix-

elLink [3] tries to predict, for each pixel in an 8-connected

neighborhood, whether its neighbors belong to the same

text label. The predicted connectivity maps, in addition

to the original text/no-text segmentation map, are then

used to generate the final detections. The recent PSENet

method [35] learns a set of scaled kernels around each text

instance, which, in test time, are progressively expanded

to generate the complete word instance prediction. The

CRAFT method [1] uses character affinity maps to connect

character detections into a single word. While both PSENet

and CRAFT achieve state-of-the-art results on several com-

petitive benchmarks they require extremely large input im-

ages. For example, on the ICDAR15 benchmark [12],

images are enlarged from 720 × 1280 to 1260 × 2240,

which significantly increases runtime and can present diffi-

culties on platforms with limited resources. While some ap-

proaches have tried to apply a two-stage approach, in which

rough text regions are first located [9, 38, 6], to the best of

our knowledge we are the first to directly learn a text scale

channel in order to build an optimized two-stage detection

pipeline.

In contrast to previously mentioned works, research into

adaptive scaling schemes for object and text instance de-

tection is far less prominent. In [2] it is shown that by

learning a single optimal scale for each image, it is possi-

ble to improve both the accuracy and speed of object detec-

tion. Yuan et al. [37] learns scale-adaptive anchors to better

handle multi-scale text using fewer anchors. The AutoFo-

cus approach [28] predicts “FocusPixels”, regions which are

likely to contain small objects, and applies the multi-scaling

process only on these regions, resulting in improvements

in terms of runtime and memory efficiency. None of these

approaches, however, propose an adaptive scaling scheme

specifically suited for text instance segmentation.

3. Proposed Approach

The idea behind our approach is to first use a fast forward

pass, over a downsampled image, to predict general text re-

gions and their respective scales. These scales are then used

to resize all the text regions into a uniform compact repre-

sentation which is then forwarded through the same neural

network to separate the words.

More specifically, our approach is composed of five steps

as can be seen in Figure 3. First, a single-scale detection

network is applied to the given input image to detect gen-

eral text regions and their scales. Secondly, regions are ex-

tracted using the segmentation mask. Thirdly, the informa-

tion extracted from the first stage is used to create a compact

knapsack containing only the regions of text, scaled to the

same size as can be seen in Figure 2. Fourthly, the knapsack

image is forwarded through the same single-scale detection

network. Finally, a post-processing mechanism is used to

extract the output image.
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Figure 4: Training data. From left to right, the input image,

the segmentation map, the shrunk map, and the scale map.

3.1. The SingleScale Method

As shown in many recent works [3, 40, 35], using an ar-

chitecture that predicts dense pixel-wise output maps grants

us the flexibility to learn different forms of mappings, such

as the Geometry Map of EAST [40] and the Connectivity

Map of PixelLink [3]. Usually, the purpose behind these

different representations is to allow effective extraction

of well-separated bounding boxes from the output maps.

While our adaptive scaling scheme can be used on top of

many segmentation architectures, we chose to implement a

new baseline as part of our approach. Figure 5 shows an

overview of our single scale detection network. The back-

bone itself is discussed in Section 4.2.

Inspired by the recent work of PSENet [35] and by the

shrunk polygons used in the EAST method [40] two output

maps are learned. The first one is a simple text/no-text se-

mantic map, while the second one is a shrunk map, where

only the inner part of the polygon is classified as text, see

Figure 4. The shrunk map is used for an improved distinc-

tion between close text instances. As in [35], the shrunk

map is created using the Vatti clipping algorithm [34], with

the numbers of pixels to clip, d, defined as

d =
Area (P )×

(

1− r2
)

Perimeter (P )
. (1)

Here P is the initial polygon and the scale ratio, r, is set

to 0.4. Similar to [35, 6], the segmentation channels are

trained using the dice-loss, which is defined as

L(S,G) = 1−
2
∑

x,y
(Sx,y×Gx,y)

∑
x,y

S2
x,y

+
∑

x,y
G2

x,y

, (2)

where S is the output segmentation map and G is the

ground-truth map. As the shrunk map is incorporated into

full text map, the loss is applied only on the regions inside

the text map. This has the effect of breaking down the learn-

ing process into two sub-problems, detecting text regions

and localizing words inside each such region. The final loss

is set as

Lsegment = 0.5 · Lc + 0.5 · Ls, (3)

where Lc is the dice-loss applied segmentation channel and

Ls is the dice-loss on the shrunk segmentation channel. On-

line Hard Negative Mining is applied on Lc with a ratio of

3. During post-processing, rotated rectangles are extracted

directly from the shrunk map and expanded in accordance

with the shrinking ratio. This results in a simple and effi-

cient post-processing procedure. While the full segmenta-

tion map is not used to extract the text instances, it is helpful

for better extraction of small text regions, as will be dis-

cussed below. Note that unlike [35] our method predicts

only a single kernel map, thus avoiding the need for the ex-

pansion algorithm proposed there which is more helpful for

irregular text shapes.

3.2. Introducing The Scale Channel

The proposed “scale predictor” is created by simply

adding another output channel in the last convolutional

layer, thus outputting a 3-channel image, containing both

the segmentation masks and the scale. The scale of each

word is defined by finding the bounding rotated rectangle

and taking its height, or smaller axis, as the scale of the en-

tire word. The resulting label is shown in Figure 4. We

found that height is a good choice for the scale value, as it

is not affected by the number of characters and is closely

related to the font size and the spacing between words. For

inference we take the average scale inside each segment,

weighted by the confidence of the segmentation map, as its

scale.

The mathematical formulation of our scale prediction

loss draws inspiration from anchor-based object detec-

tion methods, specifically [4]. These methods perform

bounding-box regression in order to transform default an-

chor boxes into tight object proposals, predicting 4 trans-

formation parameters that are used for translation and scal-

ing. The parameters are represented as log-space additive

offsets which are equivalent to pixel-space multiplications.

Having the scale represent multiplication suits our scenario

very well, as it grants the same weight to different sized

texts in the same image. That is, a 30-pixel high text that

was predicted to be 15 pixels high would inflict the same

𝑳𝑺𝒄𝒂𝒍𝒆

𝑳𝒔𝒆𝒈𝒎𝒆𝒏𝒕

Backbone

Figure 5: Proposed architecture. Image is fed through a

convolutional backbone followed by segmentation and scale

layers.
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loss as a 300 pixel high text that was predicted to be 150-

pixels high. A simpler choice of directly predicting the text

height in pixels would result in a drastic over-weighting of

large texts, as their additive pixel difference would be much

bigger than small texts. This results in the following formu-

lation

ˆsi,j = log

(

si,j

sref

)

, (4)

where si,j is the height of the word the pixel belongs to, and

sref is set to 25. Finally, a Smooth-L1 loss is applied over

all regions labeled as text, which means that we do not need

to define scale values for background regions. The Lscale

loss is defined as,

Lscale (ŝ, ŝgt) =

{

0.5 (ŝ− ŝgt)
2
, if |ŝ− ŝgt| < 1

|ŝ− ŝgt| − 0.5 otherwise
,

(5)

where ŝ is the normalized scale, and ŝgt is the ground truth

normalized scale. Lscale is added to Lsegment for joint

training of segmentation and scale,

L = Lsegment + 0.1 · Lscale. (6)

The values for sref and the loss weights were set following

empirical experiments.

3.3. Refined Inference

The first forward pass over the downsampled image is

used to retrieve general text regions, without fine separation

between small words, alongside their respective predicted

scale. Every text region, or “blob”, is then extracted from

the original image and resized to the desired scale, which

is set as 1.5sref . To efficiently process the extracted blobs,

all regions are packed together to create a compact knap-

sack representation. This is done using the Maximal Rect-

angles Best Short Side Fit algorithm [11]. The knapsacks

are then passed through our network to create the refined

×0.5 scale ×1 scale ×4 scale

Figure 6: Segmentation outputs under different scales. Each

column presents the segmentation map followed by the

shrunk segmentation map and the average map. Input image

and scale map are shown in the first column.

Figure 7: Artificial knapsacks created for augmentation.

segmentation result, from which the final rotated rectangles

are extracted.

While text regions can be extracted directly from the

shrunk segmentation map, using an averaged map of the

two segmentation channels for the first stage results in bet-

ter performance. This can be attributed to the fact that while

the shrunk map gives better separation, it misses some of the

smaller text regions, as shown in Figure 6.

Note that while the knapsack images create a compact

representation, they are inherently different from the natu-

ral images used for training, which can cause the network

results to degrade. To mitigate that we simply propose to

add a Knapsack Augmentation to the training process. This

is done by randomly taking regions of text from different

images, resizing them to our reference scale, and packing

them using our packing scheme. Some generated knapsacks

are shown in Figure 7.

4. Experiments

Here, we evaluate the proposed baseline and adaptive

scaling scheme and compare it to fixed scaling approaches.

In all experiments, our single scale method is denoted as

Ours, while our two-stage solution is denoted as Ours+.

Methods are evaluated on three different long side scales

720, 1024 and 1440, which are denoted as S, M and L ac-

cordingly. Finally, OursL denotes that a method was used

with an input image resized to scale L. Experiments are

conducted on the ICDAR15 and ICDAR17 benchmarks.

4.1. Datasets

ICDAR15 The ICDAR15 Competition on Robust Read-

ing [12] is a standard benchmark for detecting oriented text

in-the-wild. The benchmark is composed of 1,500 images

taken using a Google Glass sensor, where 1,000 images are

used for training and 500 for testing. Text instances might

be rotated and are tagged as quadrilaterals.

ICDAR17 MLT The ICDAR17 Competition on Multi-

Lingual Scene Text Detection [29] is a large scale bench-

mark for text detection in multiple languages. The bench-

mark contains 7,200 training images and 9,000 test im-

ages taken from a diverse set of scenes. The benchmark

is deemed challenging both due to the variability in text lo-

cation and scale, and the need to recognize, and separate,

words in different languages.
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Method Recall Precision F-Score Forward Process FPS

PSENetS 46.46% 72.01% 56.48% 66ms 35ms 9.9
PSENetL 80.79% 83.65% 82.19% 247ms 149ms 2.5
CRAFTS 60.13% 79.30% 68.40% 77ms 11ms 11
CRAFTL 80.50% 84.96% 82.67% 301ms 45ms 2.9

OursS 58.97% 82.16% 68.67% 66ms 10ms 13
Ours+S 78.52% 83.60% 80.98% 82ms 16ms 10
OursL 80.60% 84.72% 82.61% 244ms 17ms 3.8
Ours+L 83.05% 85.35% 84.19% 262ms 27ms 3.5

Table 1: Results on the ICDAR15 Benchmark. “Forward”

is the GPU runtime, while “Process” includes all the pro-

cessing done on CPU.

4.2. Implementation Details

For our backbone, we investigate both an FPN mod-

ule [18], which is a widely used architecture for seman-

tic segmentation, and the ESPNet architecture from [27].

For the FPN module, a pretrained ResNet-50 [7] backbone

is used, with an additional feature fusion mechanism, as

in [35]. Compared to the lightweight ESPNet, FPN is rel-

atively heavy in terms of runtime and memory efficiency, a

distinction that can help understand the effect of the under-

lying architecture on our method.

For training data, we use both the ICDAR15 and IC-

DAR17 MLT training images, where both datasets are bal-

anced during training so that every batch is approximately

evenly split. A standard augmentation pipeline is used dur-

ing training, composed of the following steps (1) A photo-

metric distortion process as in [20] (2) Aspect ratio distor-

tion, where the height is scaled by a uniform random factor

in the range of [0.6, 1.4] (3) Random scaling by a factor of

{0.5, 1, 2, 3} (4) Rotation by an angle between −10◦ and

10◦ (5) Random cropping of 640 × 640 pixels around a la-

beled text instance, and finally, (6) mirroring is randomly

applied with a probability of 0.3, where the cropped im-

age padded as needed. The FPN module is trained with a

batch size of 12 using stochastic gradient descent (SGD)

with weight decay of 5 · 10−4 and Nesterov momentum of

0.99. The network is trained for 180 · 103 iterations where

the initial learning rate is 1 · 10−3 and is decayed by a fac-

tor of 0.1 every 60 · 103 iterations. ESPNet is trained with

a batch size of 16 using the ADAM [13] solver, where the

initial learning rate is 1 · 10−3 and is decayed by a factor

of 0.94 every 10 · 103 steps. Training was performed on 4

NVIDIA M60 GPUs, where a single one was used for eval-

uation.

4.3. Benchmark Results

The proposed approach is evaluated on the ICDAR15

and 17 benchmarks alongside PSENet [35] and CRAFT [1].

Results on PSENet and CRAFT were produced using the of-

ficial implementations, but with the same input scale as our

method, where their hyperparameters were reselected for

these scales. This allows us to accurately compare the per-

formance of the method itself decoupled from its input size.

Note that all experiments were run on the same NVIDIA

M60 machine using Pytorch [30].

ICDAR15 Results Table 1 presents the results on the IC-

DAR15 benchmark. One can see that, when using the same

fixed scales, our single scale method achieves comparable

results to state-of-the-art segmentation methods. It is also

clear that the L scale is consistently more accurate but is

also significantly less efficient. Next, looking at the pro-

posed adaptive scaling scheme, Ours+S , one can see that in-

deed our method is able to stay close to OursS in terms of

runtime while producing results of much larger scales. This

shows that our method is able to somewhat mitigate the

inherent trade-off between runtime and accuracy. Note

that Figure 1 shows these results as a “runtime vs F-Score”

graph for better visualization. Qualitative results are pre-

sented in Figure 8, showing both the output of OursS and

Ours+S alongside the generated knapsacks. This also shows

the efficiency of using a compact representation compared

to the original image.

ICDAR17 Results Table 2 shows that the results on the

challenging ICDAR17 benchmark. Our method uses the

same settings, but with a knapsack scale of 1.8sref . One

can see that CRAFT, which was pretrained on the SynthText

dataset [5], is stronger than our baseline in the multi-lingual

scenario. Still, our adaptive scheme proves successful. That

is Ours+S is significantly more accurate than OursS , getting

close to the performance of OursL while staying twice as

fast. Note that both methods do not reach state-of-the-art

results in these configurations, which usually require ex-

tremely large scales. PSENet originally rescales each image

by a factor of two, while the CRAFT method uses a long

side of 2560 pixels, resulting in significantly higher pro-

cessing time. Quantitative results on ICDAR17 are shown

in Figure 10.

Method Recall Precision F-Score Forward Process FPS

CRAFTS 42.56% 74.46% 54.16% 91ms 16ms 9.3
CRAFTL 61.68% 78.80% 69.20% 351ms 65ms 2.4

OursS 39.36% 73.10% 51.17% 83ms 10ms 10.9
Ours+S 51.93% 76.27% 61.79% 106ms 27ms 7.48
OursL 56.77% 74.21% 64.33% 311ms 35ms 2.88
Ours+L 61.82% 72.94% 66.92% 329ms 64ms 2.54

Table 2: Results on the ICDAR17 benchmark.
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x6 pixel reduction

x6 pixel reduction

OursS Generated knapsack Ours+S

Figure 8: Results on the ICDAR15 benchmark. Scaling factor on every region is shown with respect to the input size for

OursS . The pixel reduction is calculated as the ratio between the original image size and the created knapsack.

Backbone1 Backbone2 Recall Precision F-Score FPS

FPN — 58.98% 82.16% 68.66% 13.13

ESPNet — 46.17% 74.17% 56.91% 43.68

FPN FPN 78.52% 83.60% 80.98% 10.05

ESPNet ESPNet 66.49% 78.64% 72.06% 28.09

FPN ESPNet 72.17% 78.93% 75.40% 11.01

ESPNet FPN 70.72% 84.57% 77.03% 23.62

Table 3: Backbone hybrids. Different combinations of the

FPN and ESPNet backbones on the ICDAR15 benchmark

are evaluated. Backbone1 is the backbone used for the ini-

tial segmentation and Backbone2 is the backbone used over

the knapsacks.

4.4. Additional Analysis

On choosing the backbone We now turn to investigate

how using different backbone architectures affects our re-

sults by comparing the behavior of ESPNet and FPN when

used in the first or second segmentation stages. Table 3

shows the results of our method in the S scale over the IC-

DAR15 benchmark where different backbones were used.

One can see that while FPN is indeed more accurate, it is

significantly slower than the ESPNet architecture and that

both methods benefit from our adaptive solution. In the rest

of our experiments we chose to use FPN as our baseline

due to its increased accuracy. An interesting configuration

is the usage of ESPNet for the first stage, which requires

only coarse segmentation, and FPN in the second stage for

the refined localization. This composition is almost twice

as fast than the single-stage FPN while also increasing the

F-Score by 8%.

0 5 10 15 20 25 30

Number of ground truth words

100

150

200

250

300

Ru
nt

im
e 

(m
s)

F:74 F:69 F:66 F:59 F:74 F:30 F:45 F:43

F:78
F:79

F:80
F:81 F:94

F:76

F:75
F:98

F:83 F:81 F:81 F:83 F:89 F:77 F:87
F:95

Sparse

Dense

oursS
ours+

S

oursL

Figure 9: Runtime by number of words in ICDAR15. Av-

erage F-Score is shown for each point. Sample images for

each region are also shown.

On text sparsity and runtime One of the interesting

properties of the proposed method is its adaptive runtime.

Where fixed scaling schemes would use approximately the

same runtime for different images, our method adaptively

changes the processing time according to the amount of text

in the image. Figure 9 shows the average processing time

as a function of the number of words in the image, on the

ICDAR15 benchmark. As expected one can see that while

OursS is constantly fast and OursL is constantly slower,

Ours+S processes sparse images with almost no overhead

while staying faster than OursL even on the more dense im-

ages.
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Figure 10: Results on the ICDAR17 MLT benchmark. Some images were cropped for better visualization.

On processed pixels While previous figures analyze our

results in terms of runtime, another interesting evaluation

is the number of input pixels fed to the network. While

correlated with runtime, this analysis brings us another per-

spective as it is independent on the backbone and hardware

used by the method. In Figure 11 we show the overall in-

put area fed into the network of our different configurations

alongside state-of-the-art methods, where the best reported

single scale configuration is shown. Note how our adaptive

method can significantly increase the F-score with only a

small amount of extra area from the second pass. This can

be attributed to the fact that indeed the knapsacks are signif-

icantly smaller than the original input image. One can see

that our Ours+L configuration is close to those reported by

PSENet and CRAFT on 1260 × 2240 input images while

processing fewer pixels. Interestingly, recent methods such

as the Pyramid Mask Text Detector [19] can get impressive

results while processing 1080 × 1920 images. We believe

that our adaptive scaling could be a powerful extension for

these methods as well.

5. Limitations

As shown in our experiments, our approach achieves re-

sults that are on-par with larger scales while reducing the

runtime. Still, we note that there are some limitations to the

proposed approach. Mainly, when choosing an extremely

small scale for the first stage, the baseline might fail to seg-

ment some of the smaller text regions, resulting in them not

appearing in the final result. Furthermore our method builds

upon the fact that text is usually sparse, for dense images

such as documents or newspapers our method might not be

as effective.

oursS ours+
S oursL ours+

L PSENet CRAFT FOTS PMTDPixelAnchor
Method

0

7072

10002

12242

14142

15812

In
pu

t A
re

a

F:68.7 F:81.0

F:82.6 F:84.2

F:85.7 F:86.9 F:88.0

F:89.3

F:87.7

Input
Knapsack

Figure 11: Input pixels for ICDAR15. For each method,

the amount of pixels fed into the network is shown, for our

method we include the area of compact representation as

well. F-scores are shown on top of each bar according to the

reported results of PSENet [35], CRAFT [1], FOTS [21],

PMTD [19] and Pixel-Anchor [14].

6. Conclusion

We presented a novel adaptive scaling scheme for effi-

cient text detection. Our approach uses a semantic segmen-

tation network to detect coarse text regions while simul-

taneously predicting their scale. This information is then

used to create a compact representation containing only the

scaled text regions, from which refined word instances are

extracted using an additional segmentation stage. Our ap-

proach is shown to be a powerful alternative to fixed scaling

schemes, achieving the accuracy of larger scales in a more

efficient manner.
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