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Abstract

A classical approach to abnormal activity detection is to

learn a representation for normal activities from the train-

ing data and then use this learned representation to detect

abnormal activities while testing. Typically, the methods

based on this approach operate at a fixed timescale — ei-

ther a single time-instant (e.g. frame-based) or a constant

time duration (e.g. video-clip based). But human abnor-

mal activities can take place at different timescales. For

example, jumping is a short-term anomaly and loitering is

a long-term anomaly in a surveillance scenario. A single

and pre-defined timescale is not enough to capture the wide

range of anomalies occurring with different time duration.

In this paper, we propose a multi-timescale model to cap-

ture the temporal dynamics at different timescales. In par-

ticular, the proposed model makes future and past predic-

tions at different timescales for a given input pose trajec-

tory. The model is multi-layered where intermediate lay-

ers are responsible to generate predictions corresponding

to different timescales. These predictions are combined to

detect abnormal activities. In addition, we also introduce

a single-camera abnormal activity dataset for research use

that contains 483,566 annotated frames. Our experiments

show that the proposed model can capture the anomalies of

different time duration and outperforms existing methods.

1. Introduction

Detecting abnormal activities is a challenging problem

in computer vision. There is no generic definition available

for abnormal events and is usually dependent on the scene

under consideration. For example, cycling on a footpath is
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typically an abnormal activity whereas it becomes normal

on a road. To address such a scene context dependency, a

typical approach is to consider rare or unseen events in a

scene as abnormal. But this may classify the unseen normal

activities as abnormal. In general, it may not be possible to

know all the normal and abnormal activities during training.

We only have access to subsets of normal and abnormal ac-

tivities. The lack of a generic definition and insufficiency in

the data, make it extremely hard for any learning algorithm

to understand and capture the nature of abnormal activity.

More often, the abnormal activity detection problem is

posed as an unsupervised learning problem. A common

setup of the problem is this - the training data consists of

only normal activities and the test data contains normal as

well as abnormal activities. A standard approach is to build

a model that captures the normality present in the training

data. During testing, any deviation from the learned nor-

mality indicates the level of abnormality in the test data.

Many existing methods formulate it as an outlier detection

problem [5, 19, 17, 12, 15]. They attempt to fit the features

corresponding to normal activities in a hyper-sphere and the

distance of a test feature from this hyper-sphere indicates its

abnormality.

One major limitation of the current methods is that they

are trained at a fixed timescale - either a single time-step or

a constant number of time-steps. This restricts the model

to build understanding of training data at that timescale

and hence it may not capture anomalies that occur at other

timescales. For example, consider the case of loitering -

someone wanders at a place for a longer period. The inves-

tigation at a smaller time-step may not capture it, because at

this timescale it appears as a normal walk. It can be captured

only when observed for a sufficient amount of time. Hence,

a larger timescale is needed to detect this long-term abnor-

mal activity. Similarly, a larger timescale may not capture

the short term anomaly (e.g. jumping) efficiently. In this

paper, we propose a multi-timescale framework to address
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Figure 1. An illustration of how our model captures a long-term anomaly. The anomaly in consideration is loitering - the intermediate

frames are shown on the right with the person involved in red box. The plots in the left show prediction errors at different timescales. The

prediction errors are less at smaller timescales (3 and 5) because at these timescales, the model considers it as a normal activity (walking).

The errors are higher at larger timescales (13 and 25). At these timescales, the model understands that it is an abnormal pattern of walking.

this problem. The framework has two models - one that

makes future predictions and the other one that makes past

predictions. They take in a single-person pose sequence

to predict future and past sequences at multiple timescales.

This is achieved by providing supervision at intermediate

layers in the models. Since the model is trained at differ-

ent timescales, it tends to learn temporal dynamics at vari-

ous timescales. An illustration of a long-term anomaly (e.g.

loitering) and prediction errors from our model at different

timescales is shown in Figure 1.

Contributions: We make the following major contribu-

tions in the paper:

• We propose a bi-directional (past and future) predic-

tion framework that considers an input pose trajectory

and predicts pose trajectories at different timescales.

Such a framework allows inspection of a trajectory at

different timescales (i.e., with different time duration).

• We introduce a large single-camera dataset that con-

tains a diverse set of abnormal activities. Unlike other

datasets, the dataset contains range of human anoma-

lies - single person, multiple persons, or group.

The paper is organised as follows. The next section re-

views the related work in the area of abnormal activity de-

tection. Section 3 details the proposed model. We introduce

our dataset in Section 4. We provide the experimental setup,

ablation studies, and results in Section 5. Finally, the paper

concludes in Section 6.

2. Related Work

The problem of human abnormal activity detection has

been receiving a lot of interest from computer vision re-

searchers. This is partly because of challenges inherent to

the problem and mainly due to its applications. It is in-

teresting to see the evolution of ideas over the years, espe-

cially after the introduction of deep learning in this area. In

this section, we attempt to summarise this evolution with a

few key papers. One of the common and initial approaches

was based on reconstruction. Hasan et al. in [5] used an

auto-encoder to learn appearance based representation un-

der reconstruction framework. In [19], Xu et al. augmented

the appearance features with optical flow to integrate mo-

tion information. Tran et al. learnt sparse representations

by using convolutional winner-take-all autoencoders [17].

Luo et al. in [12] proposed a method based on learning

a dictionary for the normal scenes under a sparse coding

scheme. To smoothen the predictions over time, they pro-

posed a Temporally-coherent Sparse Coding (TSC) formu-

lation. Ravanbakhsh et al. used GAN to learn the normal

representation [15]. In [9], Liu et al. used GAN with U-

net to predict the future frames. Hinami et al. in [6] pro-

posed a framework that jointly detects and recounts abnor-

mal events. They also learn the basic visual concepts into

the abnormal event detection framework. Abati et al. in [2]

captured surprisal component of anomalous samples, by in-

troducing an auto-regressive density estimator to learn la-

tent vector distribution of autoencoders. In [18], Ionescu et

al. used unmasking to detect anomalies without any train-

ing samples. Recently, Romera et al. in [13] has proposed a

joint framework for trajectory prediction and reconstruction

for anomaly detection. One major limitation of the existing

methods is that they operate at a single timescale. We take

a step forward and propose a multi-timescale model to ad-

dress the limitations of operating with a single timescale.

3. Proposed Model

In this section, we present details of the proposed model.

To restate, our objective is to develop a framework that is

capable of detecting abnormal human activities of differ-

ent time duration. Keeping this aim in mind, we propose a

multi-timescale model that predicts the future trajectories at

different timescales. The idea is to develop understanding

at different timescales. To further improve the performance,
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Figure 2. Top-level block diagram of the proposed framework. The future prediction model takes the input sequence and generate predic-

tions at different timescales. To generate predictions at timescale 1, the model first splits the sequence into smaller sub-sequences and then

makes future predictions for these sub-sequences. These predictions are combined to get the future prediction for the input sequence at this

timescale. To get the past prediction, we reverse the input sequence and pass it to the past prediction model. Finally, all the predictions are

combined appropriately to get a final prediction error for the input sequence that is used to detect abnormal events.

we add an identical model in the framework that reproduces

the past. We use pose trajectory of human as the input. Be-

sides being compact in nature, the pose trajectory captures

the human movements quite well. A top-level block dia-

gram of our framework is shown in Figure 2. It has two

models that make past and future predictions, respectively.

At a particular timescale, we combine the predictions from

both the models to generate a combined prediction at ev-

ery time instant. For example, to generate future predic-

tions at timescale 1 (in our setup, timescale 1 represents

time duration of 3 steps), the model first splits the sequence

into smaller sub-sequences (of length 3) and then makes fu-

ture predictions (for next 3 steps) for these sub-sequences.

These predictions are combined to get the future prediction

for the complete input sequence at this timescale. To get

the past prediction, we reverse the input sequence and pass

it to the past prediction model. Both models have the same

architecture but are trained differently. The past and future

predictions at a timescale are combined to get a predicted

sequence at that timescale. Finally, all the predictions from

different timescales are appropriately combined to get a fi-

nal prediction error sequence for the input sequence. An

illustration of our predicted poses is shown in Figure 3. It

demonstrates higher prediction errors for abnormal activi-

ties and low errors for normal activities.

3.1. Problem Setup

We use human pose trajectory, represented by a collec-

tion of 25 points on the human skeleton over a time period,

as the input to the model. Let pij(t) = [xi
j(t), y

i
j(t)] be the

image coordinates of jth point in the pose representation of

ith person at time t. At time t, the pose of ith person is

represented as Xi
t = [pi

1
(t), pi

2
(t), . . . , pi

25
(t)]T ∈ ❘50×1

and the corresponding predicted pose is represented by X̂i
t .

The model takes pose trajectory of a certain length as input

and generates predictions at different timescales under a hi-

erarchical framework. For any time instant at any timescale,

the model generates multiple predictions because it runs a

sliding window over the input signal. These multiple pre-

dictions are combined together by averaging to get a final

prediction at a particular time instant. Similar approach is

adopted to get the past predictions. Finally, the prediction

errors from all the timescales are combined to get an abnor-

mality score. In the next sub-section, we discuss the archi-

tecture.

3.2. Model

The proposed model is shown in Figure 4. The in-

put to the model is the pose trajectory of an individual

{Xt}t=1,2,...,T , where the superscript to identify a person

is dropped for better clarity. The pose information at each

time instant Xt is passed through an encoder E to get the

corresponding encoded vector ft of length 1024. The en-

coder E consists of two fully-connected layers of length

1024 to transform frame-level pose features of length 50

to 1024. The choice of 1024 is empirically decided. All

these encoded vectors are passed to a series of 1D convo-

lutional filters. We use 1D filters of length 3 for the ini-

tial two layers and then we have 1D filters of length 5 for

the next five layers. We use 1024 filters at each layer. We

train certain intermediate layers to produce predictions at

different timescales. This is achieved by providing supervi-

sion at these layers. A specific layer corresponds to the kth

timescale if its reception field is of length tk and is respon-
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(a) Walking (b) Cycling (c) Leaving bag (d) Throwing bag

Figure 3. An illustration of predicted poses from the proposed model. The first scene has a walking action while the other three have

abnormal actions. The green and blue poses represent the actual and predicted poses, respectively. The model generates large prediction

errors for abnormal poses.

sible to generate tk future (and past) steps in the trajectory.

To provide supervision, we train a decoder to predict the fu-

ture sequence. In our setup, we provide supervision to the

layers corresponding to timescales - 3, 5, 13 and 25. The

decoder Dk at time scale tk consists of two fully-connected

layers, of length 1024 and tk ∗ 50. The output length for

the decoder depends on the specific timescale. Also, we use

Relu as an activation function. Network architecture details

are discussed in the supplementary material. In the next

sub-section, we discuss the loss function in detail.

3.3. Loss Function

To compute the total loss of the model during train-

ing, we add the losses generated by the intermediate layers

where we provide supervision. At such a layer, we have two

types of losses - one at a node level, and another at the layer

level. The loss at a node level computes the prediction error

between the predictions generated by a node and the corre-

sponding ground truth. The loss at a layer level computes

the total prediction error generated by the layer for a com-

plete input sequence. Since, there are multiple predictions

generated at a particular time instant by different nodes, we

use a sliding window approach to calculate the total loss at

a layer. In particular, we take the average of all the pre-

diction errors generated at a time instant by different nodes

to compute the total prediction error at a particular time in-

stant. The average prediction errors at all the time instants

are added to get the layer loss. The total loss at the jth layer

with Mj number of nodes is given as,

▲j =

Mj∑

i=1

L
j
1
(i) +

T∑

t=1

L
j
2
(t), (1)

where L
j
1
(i) is the loss for ith node and L

j
2
(t) is the loss at

time t in the jth layer. The first term corresponds to the total

node loss and the second term corresponds to the total layer

loss at jth layer. Let the ith node in jth layer make predic-

tions for the duration ❚(i) = [tsi, tei] and generate predic-

tion error e(t, i) for a particular time instant t ∈ [tsi, tei].
The ith node loss is computed as follows:

L
j
1
(i) =

tei∑

t=tsi

e(t, i) (2)

To compute the layer loss, we simply take the average of

prediction errors generated by different nodes for a particu-

lar time instant. We finally add these average errors for all

the time instants to get the layer loss.

L
j
2
=

Mj∑
i=1

e(t, i)✶(t ∈ ❚(i))

Mj∑
i=1

✶(t ∈ ❚(i))

(3)

The total model loss for a model with Nts number of

timescales is,

Loss =

Nts∑

j=1

▲j (4)

We use weighted mean square error (mse) to compute the

prediction error.

e =

25∑

k=1

wk(p̂k − pk)
2, (5)

where pk, p̂k are the original and predicted kth pose points,

respectively. The weight wk is obtained from the confidence

of pose estimator [4] for the kth point as

wk =
ck
25∑

i=1

ci

, (6)
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Figure 4. The detailed architecture of the proposed model for future prediction. X1-XT is the input pose trajectory. After encoding, the

vectors f1-fT are passed to a series of 1D convolutional filters. A few intermediate layers generate predictions at different timescales. To

generate predictions, the decoder takes the filtered encoded vector and produces the predictions X̂ . At these intermediate layers, the node

loss and the layer loss are minimised jointly.

where ck is the confidence score for the kth point given

by the pose detector.

With the loss function in Eq.(1), we jointly minimise the

local loss at a node and the global loss at a layer. Min-

imising the node loss makes the prediction better at a node

level, whereas minimising the layer loss drives the nodes to

interact with each other to reduce the layer loss. Another

advantage of using the layer loss under a sliding window

approach during training is that it simulates the testing sce-

nario. During testing, it is common to use a sliding window

over a long test sequence to get an input sample of suitable

length for the model.

3.4. Anomaly Detection

In this section, we discuss the method for anomaly de-

tection during testing. The trained model predicts pose tra-

jectories for a human at different timescales. So at any time

instant, we have multiple predictions coming from different

scales. These different prediction errors are combined using

a voting mechanism to compute the final prediction error.

At any time instant t, the errors are combined as follows:

error(t) =

∑
j∈S L

j
2
(t)

|S|
, (7)

where S is a set of timescales that contains predictions for

the time instant t and L
j
2
(t) is the jth layer loss at time t, as

in (3). Note that at any time instant, there can be more than

one human resulting in multiple error plots - one for each

human. In such a case, we take the maximum of prediction

errors among all the individuals, at a time instant. That is,

error(t) =

∑
j∈S max{Lj

2
(t, pk), ∀k}

|S|
, (8)

where L
j
2
(t, pk) is the jth layer loss at time t for the kth

individual. It is compared against a threshold to identify

any abnormality.

4. IITB-Corridor Dataset

We provide a brief introduction of the proposed IITB-

Corridor dataset for abnormal human activity. The videos

are captured in IIT Bombay campus under a single-camera

setup. The scene consists of a corridor where the normal ac-

tivities are usually walking and standing. We enacted var-

ious abnormal activities with the help of volunteers. The

dataset contains variety of activities and has single person

to group level anomalies. The annotations for normal and

abnormal are provided at frame level. A comparison of the

proposed dataset with other datasets is given in Table 1. The

last column mentions the abnormal activities present in the

datasets. Out of 1,81,567 test frames, the number of abnor-

mal frames is 1,08,278. Another large dataset is proposed
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(a) Chasing (b) Suspicious object (c) Cycling (d) Hiding face from camera

(e) Fighting (f) Loitering (g) Playing with ball (h) Protest

(i) Sudden running (j) Unattended baggage (k) Normal scene (l) Normal scene

Figure 5. Sample images from the proposed IITB-Corridor dataset.

Camera Specific Datasets

Dataset Training frames Testing frames Abnormal activities

USCD Ped-1 [8] 6,800 7,200 Bikers, small carts, walking across walkways

USCD Ped-2 [8] 2,550 2,010 Bikers, small carts, walking across walkways

Subway [3] 20,000 116,524 Climbing over fence, wrong direction

Avenue [11] 15,328 15,324 Running, Throwing object, Wrong direction

ShanghaiTech [12] 2,74,515 42,883 Throwing Object, Jumping, Pushing

Riding a Bike, Loitering, Climbing

IITB-Corridor [1] 3,01,999 1,81,567 Protest, Unattended Baggage, Cycling,

(proposed) Sudden Running, Fighting, Chasing, Loitering,

Suspicious Object,Hiding, Playing with Ball

Camera Independent Datasets

UCF 1610 Training videos 290 Testing videos Abuse, Arrest, Arson, Assault, Accident,

Anomaly Detection Burglary, Explosion, Fighting, Robbery, Shooting,

[16] Stealing, Shoplifting, and Vandalism
Table 1. IITB-Corridor (proposed) dataset compared to existing single camera datasets. This dataset is more challenging as can be seen in

the Table 2 showing performance of state-of-the-art methods on different datasets.

by [16] that was mined from YouTube and LiveLeak but

it is not camera specific. We also provide class label for

each abnormal activity that is useful for classification pur-

poses. Figure 5 shows sample images from the dataset cor-

responding to all the activities. To keep the privacy of vol-

unteers intact, we have blurred the faces in the images. We

used the algorithm proposed by [14] to detect the faces. In

the next section, we discuss our experimentation in detail.

5. Results and Discussions

In this section, we discuss our experimental setup and re-

sults. We tested our method on the proposed dataset and two

public datasets namely, ShanghaiTech Campus dataset [12]

and Avenue [11]. The ShanghaiTech Campus dataset con-

tains videos from 13 different cameras around the Shang-

haiTech University campus. A few examples of human

anomalies present in the dataset are running, fighting, loi-

tering, and jumping. Avenue dataset is captured at CUHK

campus. It contains anomalies such as throwing a bag, run-

ning, walking near the camera, and dancing. The training

set has 16 videos and the test set has 21 videos. Since we

are interested in human anomaly, similar to [13], we test our

algorithm primarily on HR-ShanghaiTech and HR-Avenue

datasets, proposed by them. In this section, we first dis-

cuss our pre-processing to generate the pose trajectories,

followed by training and testing schemes. We then com-

pare the performance of our model with the state-of-the-art

methods.

2631



Figure 6. ROC plots for HR-ShanghaiTech and HR-Avenue dataset obtained from Morais et al. [13], Liu et al. [9], and our method.

HR-ShanghaiTech ShanghaiTech HR-Avenue Avenue IITB-Corridor

Conv-AE [5] 69.80 70.40 84.80 70.20 -

Ionescu et al. [18] - - - 80.60 -

TSC-rRNN [12] - 68.00 - 81.71 -

Liu et al. [9] 72.70 72.80 86.20 84.90 64.65

Abati et al. [2] - 72.50 - - -

Morais et al. [13] 75.40 73.40 86.30 - 64.27

Proposed 77.04 76.03 88.33 82.85 67.12
Table 2. Performance comparison with other existing techniques. In most datasets, the proposed method outperforms other methods.

5.1. Data Preparation

In this section, we discuss our method to obtain the pose

trajectories from the videos. We first run a human detec-

tor [7] on all the videos. We use the multi-target tracker

proposed by [10] to obtain bounding box trajectories from

the detections. Finally, we run a pose-detector [4] on these

bounding boxes to get the pose trajectories. This pose de-

tector outputs the locations of 25 points on human bound-

ing box. It also produces confidence values for each of 25

points. We use these values in Eq. (5) to calculate the

weighted mse.

5.2. Training

In this section, we discuss our training paradigm. To

generate predictions at different timescales, we provide su-

pervision at pre-chosen layers in our multi-layered model.

In our model, we provide supervision to the layers - 1, 2,

4, and 7 corresponding to timescales of 3, 5, 13, and 25,

respectively. Each training epoch consists of sub-epochs.

In each sub-epoch, we train up to a particular layer corre-

sponding to one of the timescales. In the first sub-epoch,

we train only the first layer corresponding to timescale of

3. In the last sub-epoch, we train the complete model up

to layer 7 that corresponds to timescale of 25. There are 4

sub-epochs corresponding to each timescale. To train the

first sub-epoch, we split the training pose trajectories in to

smaller trajectories of length 6 (3 in and 3 out). To train the

last sub-epoch, we split the input trajectories in to length of

50 (25 in and 25 out). The loss after an epoch is equal to the

loss incurred at the last sub-epoch. We used Adam as the

optimiser to train the model.

5.3. Testing

To test an input sequence, we split the input sequence in

to smaller sequences of length 6, 10, 26, and 50. We use

sequences of length 6 to generate predictions from layer 1

(i.e., timescale of 3). Similarly, we use sequences of lengths

10, 26, and 50 to produce predictions at layer 2, 4, and 7,

respectively. This is done for both future and past prediction

models. We combine the prediction errors by voting. The

forward pass to generate predictions at all the scales from

one model takes 50µs on NVIDIA RTX 2070. To generate

all the prediction errors, it needs to wait for next 25 frames.

That is, it takes around 1s (for 25 fps) to make inference at

any time instant.

5.4. Performance Evaluation

We compare our results with [12], [9], [5], [18], [2],

and [13]. The method proposed by Luo et al. in [12] is

based on learning a dictionary for the normal scenes under

a sparse coding scheme. To smoothen the predictions over

time, they proposed a Temporally-coherent Sparse Coding

(TSC) formulation. Liu et al. [9] proposed a future frame

prediction based method to detect anomaly. The method

proposed by Morais et al. [13] uses pose trajectory under the

joint framework of reconstruction and prediction. To com-

pare with these existing approaches, we use Frame-AUC as

the evaluating criteria. The comparison is given in Table

2. The proposed model outperforms the other methods on

HR-ShanghaiTech and HR-Avenue datasets.
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Timescales HR-ShanghaiTech HR-Avenue

Future Past Future+Past Future Past Future+Past

3 71.71 70.62 72.05 85.33 83.36 84.99

3, 5 72.89 71.69 73.39 86.96 84.70 86.82

3, 5, 13 74.51 73.39 75.65 88.29 86.20 88.43

3, 5, 13, 25 74.98 74.17 77.04 87.37 85.65 88.33
Table 3. Effect of multiple timescales and past predictions on the overall performance of the model. It can be seen that both are needed for

improved performance.

Loss HR-ShanghaiTech HR-Avenue

Future Past Future+Past Future Past Future+Past

Layer loss 73.66 74.03 76.46 87.09 85.15 88.05

Node loss 74.26 74.03 76.67 87.31 85.19 88.12

Layer and Node losses 74.98 74.17 77.04 87.37 85.65 88.33
Table 4. Effect of layer loss and node loss on overall performance of the model. It is observed that using both the losses improved the

performance.

Even though our model doesn’t capture the non-human

anomalies (e.g. car), it outperforms on ShanghaiTech

dataset and provides comparable performance on Avenue

dataset. The ROC plots are provided in Figure 6.

5.5. Ablation Studies

In this section, we provide ablation studies. In particu-

lar, we highlight the importance of multiple timescales, past

prediction model, and the choice of loss function.

5.5.1 Effect of Multi-timescale Framework

In order to understand the importance of multiple

timescales, we use our trained model and then test the

model with incremental combinations of timescales. Ta-

ble 3 compares the Frame AUC when using different

timescales. In most of the cases, we see an improvement

in performance as we include more timescales. However,

in case of HR-Avenue, we do not see this trend in the last

row as this dataset does not have long-term anomalies cor-

responding to timescale of 25.

5.5.2 Effect of Past Prediction Model

To see the effect of past prediction model, we compare the

performances of future prediction model, past prediction

model, and combined one. In Table 3, we can observe from

the rows that adding past prediction model improved the

overall performance in most cases.

5.5.3 Effect of Layer and Node Losses

To see the effect of adding layer loss to the node loss,

we compare performance of the model trained using only

the layer loss, node loss, and the combined. In Table 4,

we observed that there is a slight improvement when both

the losses are used. We used the complete model with 4

timescales (3, 5, 13, and 25) for this ablation study.

6. Conclusions

In this work, we developed a multi-timescale framework

to capture abnormal human activities occurring at differ-

ent timescales. The multi-timescale predictions are used

to detect abnormal human activity. Our experiments show

that the proposed framework outperforms state-of-the-art

models. In addition, we also release a challenging single-

camera abnormal activity data set that has varieties of ab-

normalities. In this paper, we addressed single person based

anomaly and our future work will focus on anomalies in-

volving multiple persons.

7. Acknowledgment

The authors are thankful for the efforts by Ashvini

Sharma and Yashswi Jain towards preparing the IITB Corri-

dor dataset. This research work was supported by National

Center of Excellence in Technology for Internal Security

(NCETIS) an initiative by IIT Bombay and Ministry for

Electronics and Information Technology (MeitY).

References

[1] https://rodrigues-royston.github.io/

Multi-timescale_Trajectory_Prediction.

Online: accessed 13/01/2020.

[2] D. Abati, A. Porrello, S. Calderara, and R. Cucchiara. Latent

space autoregression for novelty detection. In IEEE Con-

ference on Computer Vision and Pattern Recognition, June

2019.

[3] A. Adam, E. Rivlin, I. Shimshoni, and D. Reinitz. Ro-

bust real-time unusual event detection using multiple fixed-

location monitors. IEEE transactions on Pattern Analysis

and Machine Intelligence, 30(3):555–560, 2008.

2633



[4] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh. Realtime multi-

person 2D pose estimation using part affinity fields. In Pro-

ceedings of the IEEE International Conference on Computer

Vision, 2017.

[5] M. Hasan, J. Choi, J. Neumann, A. K. Roy-Chowdhury,

and L. S. Davis. Learning temporal regularity in video se-

quences. In Proceedings of the IEEE conference on Com-

puter Vision and Pattern Recognition, pages 733–742, 2016.

[6] R. Hinami, T. Mei, and S. Satoh. Joint detection and re-

counting of abnormal events by learning deep generic knowl-

edge. In Proceedings of the IEEE International Conference

on Computer Vision, pages 3619–3627, 2017.

[7] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara,

A. Fathi, I. Fischer, Z. Wojna, Y. Song, S. Guadarrama,

et al. Speed/accuracy trade-offs for modern convolutional

object detectors. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 7310–

7311, 2017.

[8] W. Li, V. Mahadevan, and N. Vasconcelos. Anomaly detec-

tion and localization in crowded scenes. IEEE transactions

on Pattern Analysis and Machine Intelligence, 36(1):18–32,

2013.

[9] W. Liu, W. Luo, D. Lian, and S. Gao. Future frame prediction

for anomaly detection–a new baseline. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 6536–6545, 2018.

[10] C. Long, A. Haizhou, Z. Zijie, and S. Chong. Real-time mul-

tiple people tracking with deeply learned candidate selection

and person re-identification. In IEEE International Confer-

ence on Multimedia and Expo, 2018.

[11] C. Lu, J. Shi, and J. Jia. Abnormal event detection at 150 fps

in Matlab. In Proceedings of the IEEE International Confer-

ence on Computer Vision, pages 2720–2727, 2013.

[12] W. Luo, W. Liu, and S. Gao. A revisit of sparse coding based

anomaly detection in stacked RNN framework. In Proceed-

ings of the IEEE International Conference on Computer Vi-

sion, pages 341–349, 2017.

[13] R. Morais, V. Le, T. Tran, B. Saha, M. Mansour, and

S. Venkatesh. Learning regularity in skeleton trajectories for

anomaly detection in videos. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 11996–12004, 2019.

[14] M. Najibi, P. Samangouei, R. Chellappa, and L. Davis. SSH:

Single stage headless face detector. In IEEE International

Conference on Computer Vision (ICCV), 2017.

[15] M. Ravanbakhsh, M. Nabi, E. Sangineto, L. Marcenaro,

C. Regazzoni, and N. Sebe. Abnormal event detection in

videos using generative adversarial nets. In IEEE Interna-

tional Conference on Image Processing, pages 1577–1581.

IEEE, 2017.

[16] W. Sultani, C. Chen, and M. Shah. Real-world anomaly de-

tection in surveillance videos. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 6479–6488, 2018.

[17] H. T. Tran and D. Hogg. Anomaly detection using a convo-

lutional winner-take-all autoencoder. In Proceedings of the

British Machine Vision Conference 2017, 2017.

[18] R. Tudor Ionescu, S. Smeureanu, B. Alexe, and M. Popescu.

Unmasking the abnormal events in video. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 2895–2903, 2017.

[19] D. Xu, E. Ricci, Y. Yan, J. Song, and N. Sebe. Learning deep

representations of appearance and motion for anomalous

event detection. arXiv preprint arXiv:1510.01553, 2015.

2634


