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Abstract

State-of-the-art detection systems are generally evalu-

ated on their ability to exhaustively retrieve objects densely

distributed in the image, across a wide variety of appear-

ances and semantic categories. Orthogonal to this, many

real-life object detection applications, for example in re-

mote sensing, instead require dealing with large images that

contain only a few small objects of a single class, scattered

heterogeneously across the space. In addition, they are of-

ten subject to strict computational constraints, such as lim-

ited battery capacity and computing power.

To tackle these more practical scenarios, we propose

a novel flexible detection scheme that efficiently adapts to

variable object sizes and densities: We rely on a sequence

of detection stages, each of which has the ability to predict

groups of objects as well as individuals. Similar to a de-

tection cascade, this multi-stage architecture spares com-

putational effort by discarding large irrelevant regions of

the image early during the detection process. The ability

to group objects provides further computational and mem-

ory savings, as it allows working with lower image resolu-

tions in early stages, where groups are more easily detected

than individuals, as they are more salient. We report ex-

perimental results on two aerial image datasets, and show

that the proposed method is as accurate yet computation-

ally more efficient than standard single-shot detectors, con-

sistently across three different backbone architectures.

1. Introduction

As a core component of natural scene understanding,

object detection in natural images has made remarkable

progress in recent years through the adoption of deep con-

volutional networks. A driving force in this growth was the

rise of large public benchmarks, such as PASCAL VOC [5]

and MS COCO [15], which provide extensive bounding box

annotations for objects in natural images across a large di-

versity of semantic categories and appearances.

However, many real-life detection problems exhibit dras-

tically different data distributions and computational re-

Dataset

VEDAI [21] SDD [26] MS COCO [15]
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95.1% 97.1% 49.4%
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robotics, artificial
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imposed by hardware,
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Figure 1. Recent benchmarks and challenges highlight the task of

detecting small objects in aerial views, in particular for real-life

low-resource scenarios [21, 26, 38, 34, 26, 1]. The data distribu-

tion and computational constraints for such tasks often vastly dif-

fer from state-of-the-art benchmarks, for instance MS COCO [15].

quirements, for which state-of-the-art detection systems are

not well suited, as summarized in Figure 1. For exam-

ple, object detection in aerial or satellite imagery often re-

quires localizing objects of a single class, e.g., cars [37],

houses [19] or swimming pools [31]. Similarly, in biomed-

ical applications, only some specific objects are relevant,

e.g. certain types of cells [35]. Moreover, input images in

practical detection tasks are often of much higher resolu-

tion, yet contain small and sparsely distributed objects of

interest, such that only a very limited fraction of pixels is

actually relevant, while most academic benchmarks often

contain more salient objects and cluttered scenes. Last but

not least, detection speed is often at least as important as

detection accuracy for practical applications. This is partic-

ularly apparent when models are meant to run on embed-

ded devices, such as autonomous drones, which have lim-

ited computational resources and battery capacity.

In this work, we propose ODGI (Object Detection with

Grouped Instances), a top-down detection scheme specifi-

cally designed for efficiently handling inhomogeneous ob-

ject distributions, while preserving detection performance.

Its key benefits and components are summarized as follows:

(i) a multi-stage pipeline, in which each stage selects only

a few promising regions to be analyzed by the next

stage, while discarding irrelevant image regions.
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(ii) Fast single-shot detectors augmented with the ability

to identify groups of objects rather than just individual

objects, thereby substantially reducing the number of

regions that have to be considered.

(iii) ODGI reaches similar accuracies than ordinary single-

shot detectors while operating at lower resolution be-

cause groups of objects are generally larger and easier

to detect than individual objects. This allows for a fur-

ther reduction of computational requirements.

We present the proposed method, ODGI, and its training

procedure in Section 3. We then report main quantitative

results as well as several ablation experiments in Section 4.

2. Related work

Cascaded object detection. A popular approach to object

detection consists in extracting numerous region proposals

and then classifying them as one of the object categories of

interest. This includes models such as RFCN [3], RCNN

and variants [7, 8, 2], or SPPNet [9]. Proposal-based meth-

ods are very effective and can handle inhomogeneously dis-

tributed objects, but are usually too slow for real-time us-

age, due to the large amount of proposals generated. Fur-

thermore, with the exception of [25], the proposals are gen-

erally class-independent, which makes these methods more

suitable for general scene understanding tasks, where one

is interested in a wide variety of classes. When targetting

a specific object category, class-independent proposals are

wasteful, as most proposal regions are irrelevant to the task.

Single-shot object detection and Multi-scale pyramids.

In contrast, single-shot detectors, such as SSD [17], or

YOLO [22, 23, 24], split the image into a regular grid of

regions and predict object bounding boxes in each grid cell.

These single-shot detectors are efficient and can be made

fast enough for real-time operation, but only provide a good

speed-versus-accuracy trade-off when the objects of inter-

est are distributed homogeneously on the grid. In fact, the

grid size has to be chosen with worst case scenarios in

mind: in order to identify all objects, the grid resolution

has to be fine enough to capture all objects even in image

regions with high object density, which might rarely occur,

leading to numerous empty cells. Furthermore, the number

of operations scales quadratically with the grid size, hence

precise detection of individual small objects in dense clus-

ters is often mutually exclusive with fast operation. Recent

work [16, 30, 20, 17, 18, 36] proposes to additionally ex-

ploit multi-scale feature pyramids to better detect objects

across varying scales. This helps mitigate the aforemen-

tioned problem but does not suppress it, and, in fact, these

models are still better tailored for dense object detection.

Orthogonal to this, ODGI focuses on making the best of

the given input resolution and resources and instead resort

to grouping objects when individual small instances are too

hard to detect, following the paradigms that “coarse predic-

tions are better than none”. These groups are then refined in

subsequent stages if necessary for the task at hand.

Speed versus accuracy trade-off. Both designs in-

volve intrinsic speed-versus-accuracy trade-offs, see for in-

stance [10] for a deeper discussion, that make neither of

them entirely satisfactory for real-world challenges, such as

controlling an autonomous drone [38], localizing all objects

of a certain type in aerial imagery [1] or efficiently detecting

spatial arrangements of many small objects [32].

Our proposed method, ODGI, falls into neither of these

two designs, but rather combines the strength of both in a

flexible multi-stage pipeline: It identifies a small number of

specific regions of interest, which can also be interpreted

as a form of proposals, thereby concentrating most of its

computations on important regions. Despite the sequential

nature of the pipeline, each individual prediction stage is

based on a coarse, low resolution, grid, and thus very ef-

ficient. ODGI’s design resembles classical detection cas-

cades [14, 27, 33], but differs from them in that it does

not sequentially refine classification decisions for individ-

ual boxes but rather refines the actual region coordinates.

As such, it is conceptually similar to techniques based on

branch-and-bound [12, 13], or on region selection by rein-

forcement learning [6]. Nonetheless, it strongly differs from

these on a technical level as it only requires minor modifi-

cations of existing object detectors and can be trained with

standard backpropagation instead of discrete optimization

or reinforcement learning. Additionally, ODGI generates

meaningful groups of objects as intermediate representa-

tions, which can potentially be useful for other visual tasks.

For example, it was argued in [28] that recurring group

structures can facilitate the detection of individual objects

in complex scenes. Currently, however, we only make use

of the fact that groups are visually more salient and easier to

detect than individuals, especially at low image resolution.

3. ODGI: Detection with Grouped Instances

In Section 3.1 we introduce the proposed multi-stage ar-

chitecture and the notion of group of objects. We then detail

the training and evaluation procedures in Section 3.2.

3.1. Proposed architecture

We design ODGI as a multi-stage detection architecture

φS ◦ · · · ◦ φ1, S > 1. Each stage φs is a detection network,

whose outputs can either be individual objects or groups of

objects. In the latter case, the predicted bounding box de-

fines a relevant image subregion, for which detections can

be refined by feeding it as input to the next stage. To com-

pare the model with standard detection systems, we also

constrain the last stage to only output individual objects.
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Figure 2. Overview of ODGI: Each stage S consists of a single-shot detector that detects groups and individual objects, which are further

processed to produce a few relevant image regions to be fed to subsequent stages and refine detections as needed.

Grouped instances for detection. We design each stage

as a lightweight neural network that performs fast object

detection. In our experiments, we build on standard single-

shot detectors such as YOLO [22] or SSD [17]. More pre-

cisely, φs consists of a fully-convolutional network with

output map [I, J ] directly proportional to the input image

resolution. For each of the I × J cells in this uniform grid,

the model predicts bounding boxes characterized by four

coordinates – the box center (x, y), its width w and height

h, and a predicted confidence score c ∈ [0, 1]. Following

common practice [22, 23, 17], we express the width and

height as a fraction of the total image width and height,

while the coordinates of the center are parameterized rel-

atively to the cell it is linked to. The confidence score c is

used for ranking the bounding boxes at inference time.

For intermediate stages s ≤ S − 1, we further incor-

porate the two following characteristics: First, we augment

each predicted box with a binary group flag, g, as well as

two real-valued offset values (ow, oh): The flag indicates

whether the detector considers the prediction to be a single

object, g = 0, or a group of objects, g = 1. The offset

values are used to appropriately rescale the stage outputs

which are then passed on to subsequent stages. Second, we

design the intermediate stages to predict one bounding box

per cell. This choice provides us with an intuitive defini-

tion of groups, which automatically adapts itself to the input

image resolution without introducing additional hyperpara-

maters: If the model resolution [I, J ] is fine enough, there

is at most one individual object per cell, in which case the

problem reduces to standard object detection. Otherwise, if

a cell is densely occupied, then the model resorts to predict-

ing one group enclosing the relevant objects. We provide

further details on the group training process in Section 3.2.

Multi-stage pipeline. An overview of ODGI’s multi-stage

prediction pipeline is given in Figure 2.

Each intermediate stage takes as inputs the outputs of

the previous stage, which are processed to produce image

regions in the following way: Let B be a bounding box

predicted at stage φs, with confidence c and binary group

flag g. We distinguish three possibilities: (i) the box can

be discarded, (ii) it can be accepted as an individual object

prediction, or (iii) it can be passed on to the next stage for

further refinement. This decision is made based on two con-

fidence thresholds, τlow and τhigh, leading to one of the three

following actions:

(i) if c ≤ τlow: The box B is discarded.

(ii) if c > τhigh and g = 0: The box B is considered a

strong individual object candidate: we make it “exit”

the pipeline and directly propagate it to the last stage’s

output as it is. We denote the set of such boxes as Bs.

(iii) if (c > τlow and g = 1) or (τhigh ≥ c > τlow and g =
0): The box B is either a group or an individual with

medium confidence and is a candidate for refinement.

After this filtering step, we apply non-maximum sup-

pression (NMS) with threshold τnms to the set of refinement

candidates, in order to obtain (at most) γs boxes with high

confidence and little overlap. The resulting γs bounding

boxes are then processed to build the image regions that will

be passed on to the next stage by multiplying each box’s

width and height by 1/ow and 1/oh, respectively, where ow
and oh are the offset values learned by the detector.

This rescaling step ensures that the extracted patches

cover the relevant region well enough, and compensates for

the fact that the detectors are trained to exactly predict

ground-truth coordinates, rather than fully enclose them,

hence sometimes underestimate the extent of the relevant

region. The resulting rescaled rectangular regions are ex-

tracted from the input image and passed on as inputs to the

next stage. The final output of ODGI is the combination of

object boxes predicted in the last stage, φS , as well as the

kept-back outputs from previous stages: B1 . . .BS−1.

The above patch extraction procedure can be tuned via

four hyperparameters: τlow, τhigh, τnms, γs. At training

time, we allow as many boxes to pass as the memory bud-

get allows. For our experiments, this was γtrain
s = 10. We

also do not use any of the aforementioned filtering during

training, nor thresholding (τ train
low = 0, τ train

high = 1) nor NMS
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(τ train
nms = 1) , because both negative and positive patches can

be useful for training subsequent stages. For test-time pre-

diction we use a held-out validation set to determine their

optimal values, as described in Section 4.2. Moreover, these

hyperparameters can be easily changed on the fly, without

retraining. This allows the model to easily adapt to changes

of the input data characteristics, or to make better use of an

increased or reduced computational budget for instance.

Number of stages. Appending an additional refinement

stage benefits the speed-vs-accuracy trade-off fit when the

following two criteria are met: First, a low number of

non empty cells; This correlates to the number of extracted

crops, thus to the number of feed-forward passes of subse-

quent stages. Second, a small average group size: Smaller

extracted regions lead to increased resolution once rescaled

to the input size of the next stage, making the detection task

which is fed to subsequent stages effectively easier.

From the statistics reported in Table 1, we observe that

for classical benchmarks such as MS-COCO, using only

one stage suffices as groups are often dense and cover large

portions of the image: In that case, ODGI collapses to using

a single-shot detector, such as [22, 17]. In contrast, datasets

of aerial views such as VEDAI [21] or SDD [26] contain

small-sized group structures in large sparse areas. This is

a typical scenario where the proposed refinement stages on

groups improve the speed-accuracy trade-off. We find that

for the datasets used in our experiments S = 2 is suffi-

cient, as regions extracted by the first stage typically exhibit

a dense distribution of large objects. We expect the case

S > 2 to be beneficial for very large, e.g. gigapixel images,

but leave its study for future work. Nonetheless, extend-

ing the model to this case should be straightforward: This

would introduce additional hyperparameters as we have to

tune the number of boxes γs for each stage; However, as

we will see in the next section, these parameters have little

impact on training and can be easily tuned at test time.

3.2. Training the model

We train each ODGI stage independently, using a com-

bination of three loss terms that we optimize with standard

backpropagation (note that in the last stage of the pipeline,

only the second term is active, as no groups are predicted):

LODGI = Lgroups + Lcoords + Loffsets (1)

Lcoords is a standard mean squares regression loss on the

predicted coordinates and confidence scores, as described

for instance in [22, 17]. The additional two terms are part of

our contribution: The group loss, Lgroups, drives the model

to classify outputs as individuals or groups, and the offsets

loss, Loffsets, encourages better coverage of the extracted

regions. The rest of this section is dedicated to formally

defining each loss term as well as explaining how we obtain

ground-truth coordinates for group bounding boxes.

Group loss. Let b = bn=1...N be the original ground-truth

individual bounding boxes. We define Aij(n) as an indica-

tor which takes value 1 iff ground-truth box bn is assigned

to output cell (i, j) and 0 otherwise:

Aij(n) = J|bn ∩ cellij | > 0K,with JxK = 1 if x, else 0 (2)

For the model to predict groups of objects, we should in

principle consider all the unions of subsets of b as potential

targets. However, we defined our intermediate detectors to

predict only one bounding box per cell by design, which

allows us to avoid this combinatorial problem. Formally, let

Bij be the predictor associated to cell (i, j). We define its

target ground-truth coordinates B̄ij and group flag ḡij as:

B̄ij =
⋃

n|Aij(n)=1

bn (3)

ḡij = J#{n|Aij(n) = 1} > 1K, (4)

with ∪ denoting the minimum enclosing bounding box of a

set. We define Lgroups as a binary classification objective:

Lgroups = −
∑

i,j

Aij
(

ḡj log(gij) (5)

+ (1− ḡij) log(1− gij)
)

,

where Aij = J
∑

n A
ij(n) > 0K denotes whether cell

(i, j) is empty or not. In summary, we build ground-truth

B̄ij and ḡij as follows: For each cell (i, j), we build the

set Gij which ground-truth boxes bn of ground-truth boxes

it intersects with. If the set is non empty and only a sin-

gle object box, b, falls into this cell, we set B̄ij = b and

ḡij = 0. Otherwise, |Gij | > 1 and we define B̄ij as the

union of bounding boxes in Gij and set ḡij = 1. In partic-

ular, this procedure automatically adapts to the resolution

[I, J ] in a data-driven way, and can be implemented as a

pre-processing step, thus does not produce any overhead at

training time.

Coordinates loss. Following the definition of target bound-

ing boxes B̄ij in (3), we define the coordinates loss as a

standard regression objective on the box coordinates and

confidences, similarly to existing detectors [8, 7, 17, 4, 22].

Lcoords =
∑

i,j

Aij
(

‖Bij − B̄ij‖2 + ωconf ‖c
ij − c̄ij‖2

+ ωno-obj

∑

i,j

(1−Aij)
(

cij
)2 )

(6)

c̄ij = IoU(Bij , B̄ij) =
|Bij ∩ B̄ij |

|Bij ∪ B̄ij |
(7)

The first two terms are ordinary least squares regression ob-

jectives between the predicted coordinates and confidence
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scores and their respective assigned ground-truth. The

ground-truth for the confidence score is defined as the inter-

section over union (IoU) between the corresponding pre-

diction and its assigned target. Finally, the last term in the

sum is a weighted penalty term to push confidence scores

for empty cells towards zero. In practice, we use the same

weights as in [22], i.e. ωconf = 5 and ωno-obj = 1.

Offsets loss. In intermediate stages, ODGI predicts offset

values for each box, ow and oh, that are used to rescale the

region of interest when it is passed as input to the next stage,

as described in Section 3.1. The corresponding predictors

are trained using the following offsets loss:

Loffsets =
∑

i,j

Aij
[

(

ow − ōw(B
ij , B̄ij)

)2

+
(

oh − ōh(B
ij , B̄ij)

)2
]

. (8)

The target values, ōh(B
ij , B̄ij) and ōw(B

ij , B̄ij), for verti-

cal and horizontal offsets, are determined as follows: First,

let α denote the center y-coordinate and h the height. Ide-

ally, the vertical offset should cause the rescaled version of

Bij to encompass both the original Bij and its assigned

ground-truth box B̄ij with a certain margin δ, which we set

to half the average object size (δ = 0.0025). Formally:

hscaled(B, B̄) = max(|(α(B̄)+h(B̄)/2 + δ)−α(B)|,

|(α(B̄)−h(B̄)/2− δ)−α(B)|)

ōh(B
ij , B̄ij) = max(1, h(Bij)/hscaled(Bij , B̄ij)) (9)

For the horizontal offset, we do the analogous construction

using the Bij’s center x-coordinate and its width instead.

Evaluation metrics. We quantitatively evaluate the ODGI

pipeline as a standard object detector: Following the com-

mon protocol from PASCAL VOC 2010 and later chal-

lenges [5], we sort the list of predicted boxes in decreas-

ing order of confidence score and compute the average pre-

cision (MAP) respectively to the ground-truth, at the IoU

cut-offs of 0.5 (standard) and 0.75 (more precise). In line

with our target scenario of single-class object detection, we

ignore class information in experiments and focus on raw

detection. Class labels could easily be added, either on the

level of individual box detections, or as a post-processing

classification operation, which we leave for future work.

Multi-stage training. By design, the inputs of stage s are

obtained from the outputs of stage s − 1. However it is

cumbersome to wait for each stage to be fully trained before

starting to train the next one. In practice we notice that even

after only a few epochs, the top-scoring predictions of in-

termediate detectors often detect image regions that can be

useful for the subsequent stages, thus we propose the fol-

lowing training procedure: After ne = 3 epochs of training

the first stage, we start training the second, querying new in-

puts from a queue fed by the outputs of the first stage. This

allows us to jointly and efficiently train the two stages, and

this delayed training scheme works well in practice.

4. Experiments

We report experiments on two aerial views datasets:

VEDAI [21] contains 1268 aerial views of countryside and

city roads for vehicle detection. Images are 1024x1024 pix-

els and contain on average 2.96 objects of interest. We per-

form 10–fold cross validation, as in [21]. For each run, we

use 8 folds for training, one for validation and one for test-

ing. All reported metrics are averaged over the 10 runs. Our

second benchmark, SDD [26], contains drone videos taken

at different locations with bounding box annotations of road

users. To reduce redundancy, we extract still images ev-

ery 40 frames, which we then pad and resize to 1024x1024

pixels to compensate for different aspect ratios. For each

location, we perform a random train/val/test split with ra-

tios 70%/5%/25%, resulting in total in 9163, 651 and 3281

images respectively. On average, the training set contains

12.07 annotated objects per image. SDD is overall much

more challenging than VEDAI: at full resolution, objects are

small and hard to detect, even to the human eye.

We consider three common backbone networks for

ODGI and baselines: tiny, a simple 7-layer fully con-

volutional network based on the tiny-YOLO architecture,

yolo, a VGG-like network similar to the one used in

YOLOv2 [22] and finally MobileNet [29], which is for

instance used in SSD Lite [17]. More specifically, on the

VEDAI dataset, we train a standard tiny-yolov2 detec-

tor as baseline and compare it to ODGI-teeny-tiny (ODGI-

tt), which refers to two-stage ODGI with tiny backbones.

For SDD, objects are much harder to detect, thus we use a

stronger YOLO V2 model as baseline. We compare this to

ODGI-teeny-tiny as above as well a stronger variant, ODGI-

yolo-tiny (ODGI-yt), in which φ1 is based on the yolo

backbones and φ2 on tiny. Finally we also experiment

with the lightweight MobileNet architecture as baseline

and backbones, with depth multipliers 1 and 0.35. The cor-

responding ODGI models are denoted as ODGI-100-35 and

ODGI-35-35. All models are trained and evaluated at var-

ious resolutions to investigate different grouping scenarios.

In all cases, the detector grid size scales linearly with the

image resolution, because of the fully convolutional net-

work structures, ranging from a 32 × 32 grid for 1024px

inputs to 2× 2 for 64px.

We implement all models in Tensorflow and train with

the Adam optimizer [11] and learning rate 1e-3. To facilitate

reproducibility, we make our code publicly available 1.

1Github repository, https://github.com/ameroyer/ODGI
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Figure 3. Plots of MAP@0.5 versus runtime (CPU) for the VEDAI and SDD datasets on three different backbone architectures. The metrics

are reported as percentages relative to the baseline run at full resolution. Each marker corresponds to a different input resolution, which

the marker size is proportional to. The black line represents the baseline model, while each colored line corresponds to a specific number

of extracted crops, γ1, For readability, we only report results for a subset of γ1 values, and provide full plots in the supplemental material.

4.1. Main results

To benchmark detection accuracy, we evaluate the aver-

age precision (MAP) for the proposed ODGI and baselines.

As is often done, we also apply non-maximum suppression

to the final predictions, with IoU threshold of 0.5 and no

limit on the number of outputs, to remove near duplicates

for all methods. Besides retrieval performance, we assess

the computational and memory resource requirements of

the different methods: We record the number of boxes pre-

dicted by each model, and measure the average runtime of

our implementation for one forward pass on a single image.

As reference hardware, we use a server with 2.2 GHz Intel

Xeon processor (short: CPU) in single-threaded mode. Ad-

ditional timing experiments on weaker and stronger hard-

ware, as well as a description of how we pick ODGI’s test-

time hyperparameters can be found in Section 4.2.

We report experiment results in Figure 3 (see Table 1 for

exact numbers). We find that the proposed method improves

over standard single-shot detectors in two ways: First, when

comparing models with similar accuracies, ODGI generally

requires fewer evaluated boxes and shorter runtimes, and of-

ten lower input image resolution. In fact, only a few relevant

regions are passed to the second stage, at a smaller input

resolution, hence they incur a small computational cost, yet

the ability to selectively refine the boxes can substantially

improve detection. Second, for any given input resolution,

ODGI’s refinement cascade generally improves detection

retrieval, in particular at lower resolutions, e.g. 256px: In

fact, ODGI’s first stage can be kept efficient and operate at

low resolution, because the regions it extracts do not have to

be very precise. Nonetheless, the regions selected in the first

stage form an easy-to-solve detection task for the second

stage (see for instance Figure 4 (d)), which leads to more

precise detections after refinement. This also motivates our

choice of mixing backbones, e.g. using ODGI-yolo-tiny, as

detection in stage 2 is usually much easier.

VEDAI MAP@0.5 MAP@0.75 CPU [s] #boxes

ODGI-tt 512-256 0.646 0.422 0.83 ≤ 448

ODGI-tt 512-64 0.562 0.264 0.58 ≤ 268

ODGI-tt 256-128 0.470 0.197 0.22 ≤ 96

ODGI-tt 256-64 0.386 0.131 0.16 ≤ 72

ODGI-tt 128-64 0.143 0.025 0.08 ≤ 24

tiny-yolo 1024 0.684 0.252 1.9 1024

tiny-yolo 512 0.383 0.057 0.47 256

tiny-yolo 256 0.102 0.009 0.13 64

SDD MAP@0.5 MAP@0.75 CPU [s] #boxes

ODGI-yt 512-256 0.463 0.069 2.4 ≤ 640

ODGI-tt 512-256 0.429 0.061 1.2 ≤ 640

ODGI-yt 256-128 0.305 0.035 0.60 ≤ 160

ODGI-tt 256-128 0.307 0.044 0.31 ≤ 160

yolo 1024 0.470 0.087 6.6 1024

yolo 512 0.309 0.041 1.7 256

yolo 256 0.160 0.020 0.46 64

SDD MAP@0.5 MAP@0.75 CPU [s] #boxes

ODGI-100-35 512-256 0.434 0.061 0.76 ≤ 640

ODGI-100-35 256-128 0.294 0.036 0.19 ≤ 160

mobile-100 1024 0.415 0.061 1.9 1024

mobile-100 512 0.266 0.028 0.46 256

mobile-100 256 0.100 0.009 0.12 64

SDD MAP@0.5 MAP@0.75 CPU [s] #boxes

ODGI-35-35 512-256 0.425 0.055 0.50 ≤ 640

ODGI-35-35 256-128 0.250 0.029 0.13 ≤ 160

mobile-35 1024 0.411 0.054 0.84 1024

mobile-35 512 0.237 0.026 0.19 256

mobile-35 256 0.067 0.007 0.050 64

Table 1. MAP and timing results on the VEDAI and SDD datasets

for the model described in Section 4. The results for ODGI models

are reported with γ test
1 chosen as described in Section 4.2.
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VEDAI
ODGI-tt ODGI-tt ODGI-tt ODGI-tt tiny-yolo tiny-yolo tiny-yolo

512-256 256-128 256-64 128-64 1024 512 256

MAP@0.5 0.65 0.47 0.39 0.14 0.68 0.38 0.10

Raspi [s] 4.9 1.2 0.87 0.44 10.5 2.6 0.70

GPU [ms] 13.9 11.7 11.7 11.7 14.3 8.2 7.0

#parameters 22M 22M 22M 22M 11M 11M 11M

#pixels 458k 98k 73k 25k 1M 262k 65k

SDD
ODGI-yt ODGI-tt ODGI-yt ODGI-tt yolo yolo yolo

512-256 512-256 256-128 256-128 1024 512 256

MAP@0.5 0.46 0.43 0.31 0.31 0.47 0.32 0.16

Raspi [s] 16.4 7.0 4.6 1.8 46.9 12.1 3.4

GPU [ms] 24.5 14.7 18.7 12.0 34.7 16.9 13.5

#parameters 62M 22M 62M 22M 51M 51M 51M

#pixels 655k 655k 164k 164k 1M 260k 65k

SDD
ODGI-100-35 ODGI-100-35 mobile-100 mobile-100 mobile-100

512-256 256-128 1024 512 256

MAP@0.5 0.43 0.29 0.42 0.27 0.10

Raspi [s] 6.6 1.6 17.3 4.0 0.92

GPU [ms] 19.9 17.6 23.1 11.0 9.5

#parameters 2.6M 2.6M 2.2M 2.2M 2.2M

#pixels 655k 164k 1M 260k 65k

SDD
ODGI-35-35 ODGI-35-35 mobile-35 mobile-35 mobile-35

512-256 256-128 1024 512 256

MAP@0.5 0.43 0.25 0.41 0.24 0.067

Raspi [s] 4.1 1.0 6.8 1.5 0.42

GPU [ms] 17.8 17.4 13.9 9.8 9.3

#parameters 800k 800k 400k 400k 400k

#pixels 655k 164k 1M 260k 65k

Table 2. Additional timing results. Time is indicated in seconds for a Raspberry Pi (Raspi), and in milliseconds for an Nvidia GTX 1080Ti

graphics card (GPU). #pixels is the total number of pixels processed and #parameters, the number of model parameters.

4.2. Additional Experiments

Runtime. Absolute runtime values always depend on sev-

eral factors, in particular the software implementation and

hardware. In our case, software-related differences are not

an issue, as all models rely on the same core backbone

implementations. To analyze the effect of hardware, we

performed additional experiments on weaker hardware, a

Raspberry Pi 3 Model B with 1.2 GHz ARMv7 CPU (Raspi),

as well as stronger hardware, an Nvidia GTX 1080Ti graph-

ics card (GPU). Table 2 shows the resulting runtimes of one

feed-forward pass for the same models and baselines as in

Table 1. We also report the total number of pixels processed

by each method, i.e. that have to be stored in memory during

one feed-forward pass, as well as the number of parameters.

The main observations of the previous section again

hold: On the Raspberry Pi, timing ratios are roughly the

same as on the Intel CPU, only the absolute scale changes.

The differences are smaller on GPU, but ODGI is still faster

than the baselines in most cases at similar accuracy levels.

Note that for the application scenario we target, the GPU

timings are the least representative, as systems operating

under resource constraints typically cannot afford the usage

of a 250W graphics card (for comparison, the Raspberry Pi

has a power consumption of approximately 1.2W).

Hyperparameters. As can be seen in Figure 3, a higher

number of crops, γtest
1 , improves detection, but comes at a

higher computational cost. Nonetheless, ODGI appears to

have a better accuracy-speed ratio for most values of γtest
1 .

For practical purposes, we suggest to choose γtest
1 based on

how many patches are effectively used for detection. We

define the occupancy rate of a crop as the sum of the inter-

section ratios of ground-truth boxes that appear in this crop.

We then say a crop is relevant if it has a non-zero occupancy

rate, i.e. it contains objects of interest: For instance, at input

resolution 512px on VEDAI’s validation set, we obtain an

average of 2.33 relevant crops , hence we set γtest
1 = 3. The

same analysis on SDD yields γtest
1 = 6.

SDD γ1 = 1 γ1 = 3 γ1 = 5 γ1 = 10
ODGI-tt 512-256 0.245 0.361 0.415 0.457

no groups 0.225 0.321 0.380 0.438

fixed offsets 0.199 0.136 0.246 0.244

no offsets 0.127 0.127 0.125 0.122

ODGI-tt 256-128 0.128 0.243 0.293 0.331

no groups 0.122 0.229 0.282 0.326

fixed offsets 0.088 0.136 0.150 0.154

no offsets 0.030 0.040 0.040 0.040

Table 3. MAP@0.5 results comparing ODGI with three ablation

variants, no groups, fixed offsets and no offsets (see text).

Three additional hyperparameters influence ODGI’s be-

havior: τ test
low , τ test

high, and τ test
nms, all of which appear in the

patch extraction pipeline. For a range of γ1 ∈ [1, 10],
and for each input resolution, we perform a parameter

sweep on the held-out validation set over the ranges τlow ∈
{0., 0.1, 0.2, 0.3, 0.4}, τhigh ∈ {0.6, 0.7, 0.8, 0.9, 1.0}, and

τnms ∈ {0.25, 0.5, 0.75}. Note that network training is inde-

pendent from these parameters as discussed in Section 3.1.

Therefore the sweep can be done efficiently using pretrained

φ1 and φ2, changing only the patch extraction process. We

report full results of this validation process in the supple-

mental material. The main observations are as follows:

(i) τ test
low is usually in {0, 0.1}. This indicates that the low

confidence patches are generally true negatives that need

not be filtered out. (ii) τhigh ∈ {0.8, 0.9} for VEDAI and

τhigh ∈ {0.6, 0.7} for SDD. This reflects intrinsic proper-

ties of each dataset: VEDAI images contain only few objects

which are easily covered by the extracted crops. It is always

beneficial to refine these predictions, even when they are in-

dividuals with high confidence, hence a high value of τhigh.

In contrast, on the more challenging SDD, ODGI more of-

ten uses the shortcut for confident individuals in stage 1, in

order to focus the refinement stage on groups and lower-

confidence individuals which can benefit more. (iii) τ test
nms

is usually equal to 0.25, which encourages non-overlapping

patches and reduces the number of redundant predictions.
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(a) Ground-truth (b) stage 1: individual boxes (cyan: c ≥ τhigh) (c) stage 1: detected group boxes

(d) stage 1: regions passed to stage 2 (e) stage 2: detected object boxes (f) ODGI: overall detected object boxes

Figure 4. Qualitative results for ODGI. No filtering step was applied here, but for readability we only display boxes predicted with confi-

dence at least 0.5. Best seen on PDF with zoom. Additional figures are provided in the supplemental material.

4.3. Ablation study

In this section we briefly report on ablation experiments

that highlight the influence of the proposed contributions.

Detailed results are provided in the supplemental material.

Memory requirements. ODGI stages are applied conse-

quently, hence only one network needs to live in memory

at a time. However having independent networks for each

stage can still be prohibitory when working with very large

backbones, hence we also study a variant of ODGI where

weights are shared across stages. While this reduces the

number of model parameters, we find that it can signifi-

cantly hurt detection accuracy in our settings. A likely ex-

planation is that the data distribution in stage 1 and stage

2 are drastically different in terms of object resolution and

distribution, effectively causing a domain shift.

Groups. We compare ODGI with a variant without group

information: we drop the loss term Lgroups in (1) and ignore

group flags in the transition between stages. Table 3 (row no

groups) shows that this variant is never as good as ODGI,

even for larger number of crops, confirming that the idea of

grouped detections provides a consistent advantage.

Offsets. We perform two ablation experiments to analyze

the influence of the region rescaling step introduced in Sec-

tion 3.2. First, instead of using learned offsets we test the

model with offset values fixed to 2
3 , i.e. 50% expansion of

the bounding boxes, which corresponds to the value of the

target offsets margin δ we chose for standard ODGI. Our

experiments in Table 3 show that this variant is inferior to

ODGI, confirming that the model benefits from learning off-

sets tailored to its predictions. Second, we entirely ignore

the rescaling step during the patch extraction step (row no

offsets). This affects the MAP even more negatively: ex-

tracted crops are generally localized close to the relevant

objects, but do not fully enclose them. Consequently, the

second stage retrieves partial objects, but with very high

confidence, resulting in strong false positives predictions.

In this case, most correct detections emerge from stage 1’s

early-exit predictions, hence increasing γ1, i.e. passing for-

ward more crops, does not improve the MAP in this scenario.

5. Conclusions

We introduce ODGI, a novel cascaded scheme for object

detection that identifies groups of objects in early stages,

and refines them in later stages as needed: Consequently,

(i) empty image regions are discarded, thus saving compu-

tations especially in situations with heterogeneous object

density, such as aerial imagery, and (ii) groups are typ-

ically larger structures than individuals and easier to de-

tect at lower resolutions. Furthermore, ODGI can be easily

added to off-the-shelf backbone networks commonly used

for single-shot object detection: In extensive experiments,

we show that the proposed method offers substantial com-

putational savings without sacrificing accuracy. The effect

is particularly striking on devices with limited computa-

tional or energy resources, such as embedded platforms.

1734



References

[1] Airbus. Airbus ship detection challenge, a Kaggle competi-

tion, 2018. 1, 2

[2] Z. Cai and N. Vasconcelos. Cascade R-CNN: delving into

high quality object detection. In Conference on Computer

Vision and Pattern Recognition (CVPR), 2018. 2

[3] J. Dai, Y. Li, K. He, and J. Sun. R-FCN: object detection via

region-based fully convolutional networks. In Conference on

Neural Information Processing Systems (NeurIPS), 2016. 2

[4] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov. Scalable

object detection using deep neural networks. In Conference

on Computer Vision and Pattern Recognition (CVPR), 2014.

4

[5] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I.

Williams, J. Winn, and A. Zisserman. The Pascal visual ob-

ject classes challenge: A retrospective. International Journal

of Computer Vision (IJCV), pages 98–136, 2015. 1, 5

[6] M. Gao, R. Yu, A. Li, V. I. Morariu, and L. S. Davis. Dy-

namic zoom-in network for fast object detection in large im-

ages. In Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2018. 2

[7] R. Girshick. Fast R-CNN. In International Conference on

Computer Vision (ICCV), 2015. 2, 4

[8] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In Conference on Computer Vision and Pat-

tern Recognition (CVPR), 2014. 2, 4

[9] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling

in deep convolutional networks for visual recognition. IEEE

Transactions on Pattern Analysis and Machine Intelligence

(T-PAMI), pages 1904–1916, 2015. 2

[10] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara,

A. Fathi, I. Fischer, Z. Wojna, Y. Song, S. Guadarrama, and

K. Murphy. Speed/accuracy trade-offs for modern convolu-

tional object detectors. In Conference on Computer Vision

and Pattern Recognition (CVPR), 2016. 2

[11] D. P. Kingma and J. L. Ba. Adam: a method for stochas-

tic optimization. In International Conference on Learning

Representations (ICLR), 2015. 5

[12] C. H. Lampert. An efficient divide-and-conquer cascade for

nonlinear object detection. In Conference on Computer Vi-

sion and Pattern Recognition (CVPR), 2010. 2

[13] C. H. Lampert, M. B. Blaschko, and T. Hofmann. Efficient

subwindow search: A branch and bound framework for ob-

ject localization. IEEE Transactions on Pattern Analysis and

Machine Intelligence (T-PAMI), pages 2129–2142, 2009. 2

[14] H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua. A convolu-

tional neural network cascade for face detection. In Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

2015. 2

[15] T. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft COCO: com-

mon objects in context. In European Conference on Com-

puter Vision (ECCV), 2014. 1

[16] T.-Y. Lin, P. Goyal, R. B. Girshick, K. He, and P. Dollár.

Focal loss for dense object detection. In International Con-

ference on Computer Vision (ICCV), 2017. 2

[17] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y.

Fu, and A. C. Berg. SSD: Single shot multibox detector. In

European Conference on Computer Vision (ECCV), 2016. 2,

3, 4, 5

[18] M. Murari, S. Manal, M. Prashant, D. Sanhita, and K. V. San-

tosh. AVDNet: A small-sized vehicle detection network for

aerial visual data. In IEEE Geoscience and Remote Sensing

Letters, 2019. 2

[19] S. Mller and D. W. Zaum. Robust building detection in aerial

images. In International Society for Photogrammetry and

Remote Sensing, Workshop CMRT, 2005. 1

[20] M. Najibi, B. Singh, and L. S. Davis. Autofocus: Efficient

multi-scale inference. In International Conference on Com-

puter Vision (ICCV), 2019. 2

[21] S. Razakarivony and F. Jurie. Vehicle detection in aerial im-

agery: A small target detection benchmark. Journal of Visual

Communication and Image Representation, pages 187–203,

2015. 1, 4, 5

[22] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi.

You only look once: Unified, real-time object detection.

In Conference on Computer Vision and Pattern Recognition

(CVPR), 2016. 2, 3, 4, 5

[23] J. Redmon and A. Farhadi. YOLO9000: Better, faster,

stronger. In Conference on Computer Vision and Pattern

Recognition (CVPR), 2017. 2, 3

[24] J. Redmon and A. Farhadi. YOLOv3: An incremental im-

provement. arXiv preprint arXiv:1804.02767, 2018. 2

[25] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: To-

wards real-time object detection with region proposal net-

works. In Conference on Neural Information Processing Sys-

tems (NeurIPS), 2015. 2

[26] A. Robicquet, A. Sadeghian, A. Alahi, and S. Savarese.

Learning social etiquette: Human trajectory prediction in

crowded scenes. In European Conference on Computer Vi-

sion (ECCV), 2016. 1, 4, 5

[27] H. A. Rowley, S. Baluja, and T. Kanade. Neural network-

based face detection. IEEE Transactions on Pattern Analysis

and Machine Intelligence (T-PAMI), pages 23–38, 1998. 2

[28] M. A. Sadeghi and A. Farhadi. Recognition using visual

phrases. In Conference on Computer Vision and Pattern

Recognition (CVPR), 2011. 2

[29] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and

L. Chen. MobileNetV2: Inverted residuals and linear bot-

tlenecks. In Conference on Computer Vision and Pattern

Recognition (CVPR), 2018. 5

[30] B. Singh, M. Najibi, and L. S. Davis. Sniper: Efficient multi-

scale training. In Conference on Neural Information Pro-

cessing Systems (NeurIPS), 2018. 2

[31] D. Steinvorth. Finding swimming pools with

Google Earth: Greek government hauls in bil-

lions in back taxes. SPIEGEL online, 2010.

http://www.spiegel.de/international/europe/finding-

swimming-pools-with-google-earth-greek-government-

hauls-in-billions-in-back-taxes-a-709703.html. 1

[32] L. Tuggener, I. Elezi, J. Schmidhuber, M. Pelillo, and

T. Stadelmann. DeepScores - A dataset for segmentation, de-

tection and classification of tiny objects. International Con-

ference on Pattern Recognition (ICPR), 2018. 2

1735



[33] P. Viola and M. J. Jones. Robust real-time face detection. In-

ternational Journal of Computer Vision (IJCV), pages 137–

154, 2004. 2

[34] G.-S. Xia, X. Bai, L. Zhang, S. Belongie, J. Luo, M. Datcu,

and M. Pelilo. Dota: A large-scale dataset for object detec-

tion in aerial images. In Conference on Computer Vision and

Pattern Recognition (CVPR), 2018. 1

[35] W. Xie, J. A. Noble, and A. Zisserman. Microscopy cell

counting and detection with fully convolutional regression

networks. Computer Methods in Biomechanics and Biomed-

ical Engineering: Imaging & Visualization, 6(3):283–292,

2018. 1

[36] F. Yang, H. Fan, P. Chu, E. Blasch, and H. Ling. Clustered

object detection in aerial images. In International Confer-

ence on Computer Vision (ICCV), 2019. 2

[37] T. Zhao and R. Nevatia. Car detection in low resolution aerial

images. In International Conference on Computer Vision

(ICCV), 2001. 1

[38] P. Zhu, L. Wen, X. Bian, H. Ling, and Q. Hu. Vision meets

drones: A challenge, a ECCV 2018 Workshop, 2018. 1, 2

1736


